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Abstract

This work analyzes various polling systems with both random breakdowns and
repairs. A few works in the literature investigated polling networks with failing nodes,
but none has treated the associated repair process or the combined effect of breakdowns
and repairs on such systems.

We consider three service mechanisms: Gated, Exhaustive and Globally-Gated.
For each service regime we study several variations, differing from each other by (i)
whether the arrival process to a queue being repaired continues or stops during the
repair process, and (ii) whether the failure is observed immediately when it occurs or
only at the end of a service duration.

For each of the twelve models studied we provide analyses regarding the system
state at polling instants (law of motion, probability generating functions, first and
second order moments) and derive expressions for several performance measures, such
as (distribution and mean of) number of customers at the different queues, their waiting
and sojourn times, server’s cycle times, etc. We derive stability conditions for the
various models and express all results in a unified generalized form.
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1 Introduction

Only a few works in the literature deal with the important phenomenon of nodes breakdowns
in polling systems. Recently Kofman and Yechiali studied models with failing nodes, analyz-
ing the Gated and Exhaustive [8], as well as the Globally Gated [9] service regimes. However,
we know of no works studying the combined effect of breakdowns and the associated repair
processes on such systems. This work addresses this issue.

Queueing systems consisting of N queues (stations, nodes, or channels) served by a single
server who incurs switchover periods when moving from one queue to another have been
studied widely in the literature and used as a central model for the analysis of a large variety
of applications in the areas of telecommunication systems, computer networks, multiple
access protocols, multiplexing schemes in ISDN, readerhead movements in a computer’s
hard disk, manufacturing systems, road traffic control, repair problems, etc. Very often,
such applications are modeled as polling systems in which the server visits the queues in a
cyclic or some other order.

In many of these applications, as well as in most polling models, it is customary to control
the amount of service time allocated to each queue during the server’s visit. Two common
service policies are the Gated and the Exhaustive regimes. Under the Gated regime, in each
cycle only customers who are present when the server polls the queue are served during its
current visit, while customers arriving when the queue is attended will be served during the
next visit. Under the Exhaustive regime, at each visit the server attends the queue until it
becomes completely empty, and only then is the sever allowed to move on. There is extensive
literature on the theory and applications of these models (see Takagi [10],[11], Yechiali [12]
and references there).

Another service regime is the Globally-Gated, introduced by Boxma, Levy and Yechiali
[1] and extended in Boxma, Weststrate and Yechiali [2]. Under this regime, the server uses
the instant of cycle beginning as a reference point of time, serving in each queue, during
each cycle, only those customers that were present there at the cycle-beginning.

In this work we consider a polling system with N infinite-capacity stations, where cus-
tomers arrive to the various queues according to independent Poisson processes, requiring
general independent service times. A single server visits the stations in a cyclic order, in-
curring random switchover times when moving from one station to another. A station being
served may fail due to a breakdown process (described in the sequel), and a repair process
is initiated immediately after such a failure is observed. We assume that during the repair
process the server stays dormant in the station, and once the repair is completed, the server

continues serving customers in that station, starting anew with the interrupted customer.



We study two models, differing from each other by the behavior of the arrival process
to queues being repaired: In the first model, called Arrival Continues [AC], the arrival
processes continue even when a station is being repaired, while in the second, called Arrival
Stops [AS], the arrival process to the station being repaired stops for the entire repair period.
We also distinguish between two versions for determining when the breakdowns (failures)
are observed. In the first version a failure is observed immediately when it occurs, while in
the second version it is observed only at the end of the service. We analyze these systems
under each of the above mentioned regimes, namely the Gated, Exhaustive and Globally
Gated service protocols.

The [AC] model may be viewed as a regular polling model, with N M /G /1-type queues
and a single server, where each customer requires a generalized service time, composed
of several unsuccessful and one successful service attempts. Therefore, once the required
expressions for such a generalized service time are derived, we can use well known results
and apply them in the analysis of this model.

The [AS] model is the more interesting one in this work. We introduce a new parameter
of the system, n, which is the “loss” of potential customers to a queue during a service of
a customer, due to arrival stoppage. Using 7 in the results, rather than using repair time
expressions, makes the [AS] model a generalization of the [AC] model. Moreover, the [AS]
model is a generalized polling model, which may be reduced to the standard one when the
mean time to breakdown tends to infinity (implying 7 — 0). An important generalization is

of the queue work rate: we show that if one defines a generalized work-load rate,
— _ (arrival rate)x(mean service time)
P = 147

relevant expressions.

, then p preserves its characteristics as work rate in all

The structure of the paper is as follows: In section 2 we present the general description
of the models along with a set of assumptions, definitions and notations used throughout the
work. In section 3 we derive some general results, independent of the service regime, for mean
number of service attempts of a customer, Laplace-Stieltjes transforms, means and second
moments of successful and unsuccessful service attempts (for both versions), etc. In sections
4 and 5 we analyze the Gated and Exhaustive service regimes, respectively. In section 6

we obtain expressions common to all models, versions and service regimes discussed in the

previous sections — for various important performance measures, such as mean number of

customers at polling instants and mean cycle time. In addition, stability conditions are
derived. Section 7 concludes the paper with the analysis of the Globally Gated service

regime.



2 Model and Notation

We consider a polling system consisting of N infinite-capacity queues (stations, channels,
nodes), labeled 1,2,..., N, and a single server. Customers arrive to queue i according to
a Poisson process with rate \;. The server visits (polls) the queues in a cyclic order. Each
customer in queue 7 requires a random service time, distributed as B;, with Laplace-Stieltjes
Transform (LST) Bj(-), mean b; and second moment bi(Q). The random switchover time from
(2)

i

queue i to queue i + 1 is denoted by D;, with LST D} (-), mean d; and second moment d;”’.

If the server enters a non-empty station and starts serving customers present there, the
station may fail due to a breakdown process. There are two versions for determining when
the breakdowns are observed: (i) the breakdown is observed immediately when it occurs;
(ii) the breakdown is observed only at the end of the current service (such as in packet
transmission applications). In both versions, a repair process is initiated immediately after
the breakdown is observed. The repair time for station ¢ is V;, with LST V;*(:), mean v;
(2)

and second moment v;”’. During the repair process the server stays dormant in the station,
and only when the repair is completed the server continues serving customers in the station,
starting anew with the interrupted customer (whose service time is resampled) until it moves
to the next station, following the Gated, Exhaustive or Globally-Gated service discipline,
whichever applies.

The time to breakdown of station i is denoted by 7; and is distributed Exponentially
with parameter ;. This process is regenerated at the beginning of every new visit of the
server to the station and after the completion of every repair.

We consider two models: in the first, the arrival processes to the various stations never
stop, while in the second, the arrival process to the station being repaired stops for the
entire repair period, whereas the arrival streams to other queues continue uninterruptedly.
We denote the first model by [AC] (Arrival Continues), and the second by [AS] (Arrival
Stops).

We assume that the underlying arrival processes, the service times, the breakdown pro-
cesses, the repair times and the switchover times are all mutually independent.

We use the following notation:

o S*(w) = E[e “%] = LST of a non-negative continuous random variable S.
° X;j = number of jobs present in queue j at a polling instant of queue 7.
o X, =(X/ X2 ... ,X}) = state of the system at a polling instant of queue i.

N .
e Fi(z) =Fi(z1,...,2n) = E[ H1 zJXJ} = Probability Generating Function (PGF) of X ,.
]:



e A'(t) = number of Poisson arrivals to queue i during a random time interval of length

t, in which the arrival process doesn’t stop.

3 Some General Results

3.1 Number of Service Attempts of a Customer

Let a; be the probability of a successful service attempt in queue i, i.e., the probability that

no breakdown occurs during a service time of a customer. Then,
w = P(B; < T) = EIP(Bi < Ty Bi)) = Ele %] = B () ()

Due to the memoryless property of the exponential distribution, we can assume that the
‘timer’ of the breakdown process is initiated each time a service starts.

Let K; be the number of unsuccessful service attempts of a customer in queue i before
a successful service completion. Then P(K; = k) = (1 — a;)fa; (k =0,1,2,...). K, is a

shifted Geometric variable with parameter a;. Thus,

BlK] = 1% (2)

a;

and

IR (1, = 1)) = B{2] - Bl =2

3.2 A Successful Service Attempt

Let S;" be the duration of a successful service attempt. Then (for both versions), S}t ~

B;

B; <T;- Hence,

E[eiUJBiP(BZ' < E|Bz)]

S+* — E *b)si—k — E —wbB; B7 < 711 — _

i (M) [6 ] [6 ; ] P(Bl > TZ)

1 1 B :
= _E[E*UJBi /*%‘Bi] — _E[ef(w+’yi)Bi] _ M . (5)

a a; a;
Therefore,
B ! ; B 7 1
Ul al



3.3 An Unsuccessful Service Attempt

Let S;” be the duration of an unsuccessful service attempt. S; is distributed differently for

each version:

In version (i) the service is interrupted whenever a breakdown occurs, thus S; ~ T}|g,>1;,

and

Ble~ P(B, > T,|T3)]
P(B; > T;)

S; *(w) = Ele ¥ | = Ele “"|B; > T;] =

7

(7)

Now, with fg.(-) denoting the probability density function of B;,
T

( / e*(wﬂi)tdt) [, (x)dx

Ele B P(B; > T{|T})] =

I—

z=t

L ~—3

t T t=0
_ Vi ( 7(w+fyi)fr,) o Yi *
= 1—ce - fg.(x)dr = 1— B (w+ )| (8
| fafa)dn = =21 = B+ 2] 8)
0
Substituting (8) in (7) we get, for version (i),
ok Vi 1 — B (w+ )
5 (w) = (9)
w 4+ 1—a;
Hence,
- B ’(%') 1 - 2 2By (7i) B*”(%:)
E[S]] = —— JE[(S))] = = + Lo ! 10
571 = T2 4 B = o + g - (10)
In version (ii) the failure is observed only upon service completion. Thus, S; ~ B; ,
B;>T;

and

E[eiLUB"’P(Bi > THBZ)
P(B;, > T))

S *(w) = Ele “Pi

Bi>Ti]:

Ele#B:(1 — ¢ #5)] B (w) — B (w+ %)
1—aq; B 1 —a ‘

(11)

Hence, for version (ii),

(12)



3.4 A Generalized Service and Repair Time

For both versions, let B; denote the total length of time starting from the moment a service
of a type-i customer is initiated until he leaves the system (after a successful completion
of service). Let b; and 57;(2) denote the mean and second moment of B;, respectively. To
calculate the LST of B; we use a similar approach to the one used in [3] when studying
the residence time of a job in a queue under a preemptive repeat rule with resampling.

Considered as a generalized service time, B; can be expressed as
Bi=) 5,V + V| + 5t (13)
j=1

where S, ~ 57 VY < Vi for j = 1,... K; and {S; YV (VU g are all

j=1 > i j=01 [
mutually independent. Therefore:

Ee’“§i|K,;:k-} -

Hence,

00 . . k . B ‘S+*( )
=> (- a)a(S @V @) S @ = s e 0

k=0

Substituting (5) in (15) we get

_ B;(w—#%)
1—(1—a)8 " (w)Vi(w)

(16)

The first and second moments of B; may be calculated by taking derivatives of (16), or
directly from (13), using (2),(4) and (6):

@—mmwﬂa+m+M$wﬂaW<M%Hw)Bﬁw (17)
57 = E[(SH?) + 2E[Ki] - E[SF(S; + Vi) + EIKi] - E[(S; + Vi) + E[Ki(K; — 1)] - [E(S;) + vi]?
_ B*a( % 4 9.[5 4+ Bé"a(‘%) N 10_.“1‘ BT + o 2808 ] 0} (18)

Substituting (9) and (10) for version (i), and (11) and (12) for version (ii), respectively, in
(16), (17) and (18) yields:



Version (i):

B = T e (19)

_ 1—a; [ BY (v 1 B¥ (v 1—a 1
b, = a,( L) + — +7)Z~) — (’y) @ (— +7)i) (20)
a; 1 —aq Vi a; a Vi

That is, E| EK;] - (vi + v,-), which is the mean number of unsuccessful service

Bi] =
attempts (F[K;]) multiplied by (E[T;] + v;).

(2)

_ _ B (v, 11-  1-aq
b, = 2bz~2 + 2 {& + —] b; + a'?),@) (21)
a;(1 — a;) Vi ai
T . . —a; o o B (v (2) _ogp2
(Clearly, when ~; — 0,b; — b;, since }1210 17— = —B; (0), while a1;~l(1(jaz) + “/i m 2
implying that 5;2) — b,@).
Version (ii):
B. = ! 22
B @) - B @ 2
= 1-a (bi+ B (v Bi(w) _ b 1-ga
a; — G a; a; a;

That is, the mean generalized service time is comprised of the total service time devoted to
a customer, namely b; x E[K; + 1], augmented by E[K;| times the mean length of a repair,

v;. The second moment of B, is given by

2 2
5(2):2524_1)2()4—(1—&7) ()—1-21)76, N b + v;

7 i

B () (24)

a; Q;
It is clear that in version (ii), as in version (i), when % — 0, bj — b; and b - b,

Similarly to the definition of B;, we define V; = Z V as the generalized repair time in
j=
queue i. That is, the period of time, out of B;, in Wthh the station is being repaired. Now,

Vv

7

() = Y P(K;=k)-Ele “V|K; = I

= 20 afe WL = = AR (25)
%, = E[V)]=E[K) E[Vi] = 10‘”’1‘ v (26)



Define E, as the effective time, out of B;, in which customers arrive to queue i, and
denote the mean and second moment of Bl by /b\z and /I;F), respectively. Clearly, in the [AC]
model, Bl = B,. To find the distribution of Bl in the [AS] model, we apply the general
results for B; to the special case where V; = 0(= V;*(w) = 1; v; = vi(Q) =0):

In the [AS] model, version (i), Egs. (19),(20) and (21) are reduced, respectively, to

B:‘ (w + %‘)

Bi(w) = - . (27)
1 — 35 1 Bf(w+ )]
~ 1-a 1
b = L (28)
a; Vi
and
~ 9 ¥
02 = o [1— ai+ B} ()] (29)
a; v;

In the [AS] model, version (ii), Eqs. (22),(23) and (24) are reduced, respectively, to

B;k (w + %‘)

B (w) = 30
@) = B W - Bw ) (30)
~ b;
bi = af (31)
and
b = =3 b+ By ()] + (32)

Again /b\i(Q) — bi(Q) as v; — 0.

Note that for both versions, from the definitions of B;, V; and Ei, the following relations
hold:

3 B, [AC] model
B; — Vi, [AS] model

In the sequel, we will need the value E[B;B;]. (Clearly, since B; is stochastically smaller
than B;, 02 < E[B;B;] <5.°.)

In the [AC] model, E[B;B;] = 57;(2), because B; = B;.

In the [AS] model, using the definitions of V;, equations (13), (2) and (3):

E[B;B;| = E|B?>+V,;B;]=b" + E[E(V,Bj|K;)] (33)
~ ~ 1—a 2—a; .
= 00+ B[Kwi- (B + KiB(S)) | =57+ —uB(S7) + —2E(S,)]

9



Thus, in version (i), by substituting (6),(10) and (29) in (33) we get

— ~ 1 2 ' 1—aq; 1—a;\2v;
" [} ) £ 1

while in version (ii), by substituting (6),(12) and (32) in (33) we obtain

0P 262+ 2B (%) + (2= an)ui] - b+ 0 BY (v
Ly A RBI0) + 2= au] - bt uiB] () (35)

Clearly, when ~; — 0, E[E,R] — bl(?) for both versions.

4 The Gated Regime

4.1 System-State: Law of Motion, PGFs and First Moments

In the Gated service regime, in each visit the server serves only those customers that were
present in the queue at the polling instant.

For the [AC] model, the evolution law of the system-state is given by:

X+ Ai( S BY) D), i
m=1
y (36)
(oS 5 (m) : .
A1 35 B™) + A4i(Dy), j=i
m=1

where Ei(m) ~ B; for every m, and are mutually independent. Since the server moves in a
cyclic order, all summations throughout the paper are cyclic ones. This model is actually
the classical gated polling scheme, with N M/G/1-queues and a single server, where each
customer in queue i requires a (generalized) service time of B;. Therefore, fori =1,2,... N
and for j =1,2,... , N the PGF of X, is given by (see Takagi [10], Yechiali [12]):

Fip(2) = F(z1 ,zi],Ei*[iV:)\k(l —zk)],zH],... ,ZN) -D;‘(Z)\k(l —zk)> (37)

Setting

k=1 k=1
the first moments satisfy
() fiG) + Nbifi(i) + Nydi G # i (38)
i+1()) = _
’ ABfili) + A j=i

10



implying that

i1
_d .,
Aj - Z (pkfﬁ + dk) . JF (39)
fi(d) = ’“:(-;
Ai-——, j=1 40
o (40)

In the [AS] model, the evolution of the state of the system is given by:

i S
X+ 41 S B + 4Dy, i

X/, = N (41)
m=1
where Bi( )~ B; and Bi( ) ~ B; for every m. Note that {B,( )} are independent of
) m=1

)

X: —(m o ‘
each other and so are {B,(m)} . However, Bf; ) and Bi( ) are not independent.
m=1
Then,

7

Nooxia (s BN Al 2 L
J

J=1

N Ai( 5t g(m)) NSt e N
() (S Emsz]
B E -
N N
Let 0(z) = > Aj(1 — z;) and 0;(2) = > A;(1 — 2;). Then, as the arrival is Poissonian,
i B
N .
B 4Wm]—DHdQ% (43)
J=1
~ K;
We now use (13) and the fact that B; = > S; ¥’ + S} and write

x?

ACY By [N Ai( Y Bi(m)
o (H@-Wl X, = 1B

j=1

\g|

E

E |z Z;

j=1
J#i

o0 Al (s;“+ ) S;(’")) N o ai (S;‘+ > [s;(’"')+vi(m)}) X
E 1 _ a”, Z m=1 m=1
k=0

11



- { S (1 aar ST (0(2) - [8(0(2) mai(g))]k} | (44)

) { 0,5 *(0(2)) }XZ |
T —a)5, "(0(2) Vi (o:(2)

Combining (42), (43) and (44), we get:

Al X7 a;S;"*(0(2)) X
(H >'{1(1a»si*(o(z))-mai(g))} ] v

Fia(z) = Di(o(2)-E

a;S; *(o(2)) ,ZN> .

= D! (o(2))- E;(zl,... VBl T 0= a)S (02) Vo) Zigls - - -

Since fi(j) = E[X]] = %)

5 , we get, by taking derivatives of (45) or directly from (41),

z=1

the following relations between the first-order moments of {X{}:

by LD EARLG)
i+1(7) = ~

Aibi fi(i) + Nid, J=1 (46)
Let n; denote the “loss” of potential customers to queue ¢, during a generalized service time

of a customer, due to arrival stoppage. That is n; = )\i(Ei — /I;Z) Thus, for j = 7, we can write
(46) as

firr (i) = Nibi fi (i) — mi fu(i) + Nid; . (47)
We can use (46) and (47) to express {f;(j)}iz; in terms of {f;(i)}:

—_

1—

Fi(G) = X)) (befi(k) + di) — 0, f;(5) - (48)

J

Thus, finding {f;(7)}¥, readily gives all values of {f;(j)}.
Summing (46) over all 4, and using (47), we get:

e
| I

N

N N
> fil) Zml =_fl) ZE i) =i f;(5) + Nd |
i=1 i—1

Fi0) = o (4 3B (49)



Multiplying (49) by b; and summing over all j lead to

> bifi0) = (d+Zb £)) Y 1)\+b777 (50)

7=1

Let p; » [AC] model we have already defined p; as A;b;. Nevertheless,
i = j

= ] +
the deﬁnl’rlon here for the [AS] model holds for the [AC] model as well, where, by its definition,

n; = 0. We again use p to denote Z p;- (In section 6 we'll show that 7 represents the total

traffic load of the system). Thus, Eq (50) is expressed as

Zg_jfj(j) = (d+ ZE fi(d ))ﬁ leading to

N 5
bifi(i) = —— . ol
D_bifil) = 1 (51)
i=1
Substituting (51) in (49), we get
, Aj dp Aj d
fil) = T (d+ ) = 2 = (52)
+ 1; L=p/  14mn; 1-p
It will be shown that for all models, the mean cycle time is given by E[C] = % ﬁ Hence
fi(5) A E[C] for j=1,2 N
(7)) =— or 7=1,2,... ,N.
Ji\J 1+ J
Substituting the values of {f;(i)} from (52) and (48) yields
i1
d n; d
(i) = A, (— +d>_ TR 53
) [z A &

4.2 Second-Order Moments

The second-order moments of { X7} are derived from the PGFs (37) for the [AC] model and
(45) for the [AS] model. Let

0?Fy(2)
02;02,

fiik) = BIX/X[]= (i,4.k=1,... N:ij#k),

°F;(z)

fij.3) = BIX}(X]-1)]= (i,j=1,...,N). (54)




Eqgs. (54) define a set of N? linear equations, that its solution gives the values of the second-

order moments { f;(j, k)}.
In the [AC] model, Egs. (54) are given by (see also Takagi [10])

Froa(iyi) = A2dP + X2£,(3) - [2dib; + B0 + A2B] (i, )
hﬂ@ﬁ:AMd.+Akﬁuypm@+@]+MM@ﬁ@n}j#i
+ Nidi fi(5) + Aibi fi (1, 7)
Fia(Go k) = M + Ao fila) - (24 + 57+ SAB Fili, )]
AR + M £G) + NEFGD) FNBEGR) 0 h
+ fi(4, k)
In the [AS] model, Eqgs. (54) become (after a lengthy calculation)

fi+1(i=2)—)‘2d +)\2f7() [d ]+)‘2b fili, 1)

Fir (i) = Aiddy? +AAﬂ()[( +b;) + E(BiB H+AAbbﬂ@w}j%i
+)\df7()+)\bf,(z 7)

Fort G k) = AAd® + NS () - 240+ 57T+ b fi(i i) } o0
+Adfz()+Akdfl<>+Akbfz< J) + ABifili. ) ',ZZ

Note the following:
(i) The expressions for f;;1(i,i) are similar in the [AC] and [AS] models, except that in

» (59)

)

the latter the moments of EZ replace those of B; in the former.

(ii) The expressions for f;1(j, k) when j # i and k # i are the same for both models.

The symmetric case.

When all stations are (stochastically) identical, we set, for all .

>
By
[N}
>
I

>

S~
>
)
O“
@)
@)

MRQ:E@mw

Now, in the [AC] model, f;(7,7) is given by (see Hashida [6], Takagi [10]:
7(2)
N-—1)-ds 2Nd: NXodob
( ) 0 opo+ 000}’ (57)

NAZ o)
fi 7"7’ - — 2 — d + — —
G =) - ® 17 1-p 1-7

14




and in the [AS] model we get:

N O (N—=1)-d? . N2 Aoby L Ndy 5
(14 Aobo)(1 —B)(1+m0) | 1-7p 1—=p 1+m 1—-2 141

where (3 is the following convex combination of 552), /b\éQ) and E[ByBl:

(N-1)-(1-py) v 1-=(N—-1)-7py~ 2IN-1)Dy = 5
= b+ = 0 b2 4+ TOE[BOBU]. (59)

8=

4.3 Number of Customers at Departing Instants

Let L; be the number of customers left behind by an arbitrary departing customer from
queue i, and let Q);(2) be its PGF. Let M; be the total number of customers served in queue
i during a visit of the server to that queue, and let L;(n) be the sequence of random variables
denoting the number of customers that the n-th departing customer from queue i (in the
current visit of the server) leaves behind him (n = 1,2, ..., M;). Then it is well known (cf.
Takagi [10])

n=1

Qi(2) = W (60)

Let Gi(z) = E[zX] = F;(1,...,1,2,1,...,1) (where z is in the i-th coordinate).
In the [AC] model the PGF of L; and its expected value are given by (see Takagi [10],
Yechiali [12]):

*

A e e IO TR P NG
and
plty=p, + CHPMGA0D _ o OB o)

In the [AS] model:

-~ ~

Li(n) = X! —n+ Ai( B}m)) and M; = X!, where B™ ~ B .

)

m=1
Hence,
M; X7’ . n N Xl i D
N Lin L xientAi(Y B L i (B[ B\
E{Zzu( )} - F E(Zz =1 X;) — pgl.X 2( - )

15



2 : ——— (63)

and
E[M;] = E[X]] = f:(4) . (64)
Combining (52), (60), (63) and (64), we get

Cl4+m 1-p Br(hi — \i2)

= - |Giz) = Gi(B; (\ — Ni2))| - 65

Qi(2)

Differentiating (65) and performing the required calculations lead to

1 01—\ (1+)\7Z/b\i)fi(iai)
BIL] = Q) = xb+ 2

~ L4 17 (L4 Ab)fili.d)

= \b; 66
o y (66)

Note the similarity between (66) and (62) where b; replaces b,.

In the symmetric case, the mean number of customers is given for the [AC] model by

MNd? (N 1) dody  Nodop, . NAZB?

E|L| =7, + ’ L . 67
Ll =2y 2d, 2(1-7) 1-7 2(1 - 7) (67)
and in the [AS] model it becomes
~ N\d? N —1) \od N\2dyb N2
E[L:] = Moo ody” )_0“ + U U _06 . (68)
2dy 2(1-7) Q=21 +m)  2(01-7)(1+no)

4.4 Waiting and Sojourn Times

Let W,, denote the waiting time (excluding service time) of an arbitrary customer at queue
7, and let /qu denote the period of time, out of W,,, in which the arrival process to queue i

is active.
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In the [AC] model /qu = W,,, and their LST and expected value are given by (see
Takagi [10], Yechiali [12]):

*

S 1o7 Gl w/A) - Gi(Bi W)
W (w) = i w/h =B () (69)
and

d 2A?

In the [AS] model:
The number of customers left behind by a departing customer from queue i is the number

of arrivals to that queue during the sojourn time of this customer in the system. Therefore

Qi(2) = WE (N — Aiz) - Bi (A — Ai2) (71)
Hence, from (65),
W) = QO—w/A) _ 1am 17 G —w/X) - GUBiw) g
ai B (w) Ai d 1—w/A\i — Br(w)

To find the expected value of /I/I?qi, we can differentiate (72) or use Little’s Law:

= me BIL] o T4 filii
e R R Rl L (73)

L; is also the number of customers found in the queue by an arriving customer. This

follows since the system-state changes by unit jumps (see Kleinrock [7]). Then the waiting
time of a customer in queue ¢ is W\qi with the addition of the arrival stoppage periods that
took place during the service periods of all the customers who where present in the system

when he arrived:

Wo =W+ [BY - B (74)
Jj=1
Thus,
EW,] = B|W,|+E[L] E[Bi - B = ELL] — b+ E[L] - (b — )
— BlL] 1:’7" " (75)
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Substituting E[L;] from (66) in (75) we get:

~ 1+mn 1-=p (1+)\i/b\i)fi(i=i) 1+ ~
E ) - b . . . _ b
W] (Azb,, + y y 5 N b,
ol 17 (L4 AD)fi(60) -
= ( o ) = ; + by (76)

In the symmetric case, the mean waiting time is given for the [AC] model by

2 — _(2)
d\? L (N1 dy | Nypy |, Noby

EWal =50 = 30 7) 1-p  20-p°

(77)

and in the [AS] model, using (75) and (68), it becomes

(1 + 770) ) dE)Q) (N - 1) ) (1 + 770) - dy 4 N)\odo/b\o N
2d, 2(1 -7 1-7 2(1 -

E[W,] = + mobo . (78)

Finally, the mean sojourn time of an arbitrary customer in queue i is given by

_ l+m ~ -
EW) = EW,)+bh=E[L] - —% 547

E[L]-(1+mn)+mn
i '

5 The Exhaustive Regime

5.1 System-State: Law of Motion, PGFs and First Moments

In the exhaustive regime, in each visit, the server leaves a station only when it becomes
empty.

Let ©; denote the length of a ‘busy period’ generated by a single customer in queue .
Let ©7(-), 6; and 92(2) denote the LST of ©;, its mean and its second moment, respectively.

The evolution laws for the system-state are:

. X .
X7 +A-7< S (—)Em’) +AN(D;), j#i
m=1
Al(Dy), J=1

X/

i+t1 = (80)

where @Em) ~ ©; for every m, and they are mutually independent. Then (see Takagi [10],
Yechiali [12])

Fii(2) = Elz1, .5 201,07 (0i(2)), 2ig1, -+ 2n] - Di(0(2)) (81)
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and by differentiating (81) or directly from (80),

fi+1(j)—{fi( AR A 7 (82

)\idu ] =1

In the [AC] model, ©; is a regular busy period of an M/G/1 type, but with service times

B, to customers in queue 4. It is well known (see [7]) that

Oj(w) = Bjlw+X-(1-0;w))], (83)
b;
9, = E[O,]= 5 (84)
o) , Ei(Q)
9 = E[@i]:m. (85)

Therefore, the corresponding polling model may be viewed as a ‘standard’ one for which (see

[10], [12])

N DY i +de, j#i (862)
fi(]): ’ tp k=j+ =
In the [AS] model:
A'(B;)
O, =B, + CHR (87)
m=1

Hence,

Using (13), the definition of R;, and by conditioning on K; we get

N 1—a)fa;E|e
> )

k=0

m=1 m=1

k & -
- [S+ > (s +V(”)>} Xi(1-65 (@) [SH 5 s, (’"')]]
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o0

S AL M@ S @)t (S + AL O (@)} [V ()
B a;S; *w + A\i(1 — G;;‘(w))}
T 0 a) S A W) V@) (89)

2 2

The first and second moments of the busy period in the [AS] model can be calculated by
differentiating (89), or directly from (87), as follows:

b
0, = S 90
1 — \ib; (80)

0P = E[02 =15 + 2ME[B,B,] - 0; + Abo? +E[Ai(l§i) - (AZ(E) )} 92 . (91)

Using (90) and the definition of p;, we get:

Aib; Aib; 1— \ib; 1+m — Aib; D,
Ny = ——=< = — 5 ) (AN - P (g
1 — \b; T+ L+ L+ L—p;

Now,
B (4R < p WiB)F
E[A(B) (A(B) 1)} = B | Y k(k 1) e R
L k=0 o
~ S — )\13\7' k—2 ~
- Ej (,\,;B,;)%AiBiZﬁ =225 . (93)
L k=2 ’

By combining (91), (92) and (93), we get:

leading to

(172" + 25,(1 — 5, E[B:B;] + 52b”

9(2) — i
l (1= Aibi) - (1 —p;)?
(1+m) (1 py)

(Note, while comparing to (85), that the numerator of (94) is a convex combination of
5( : b-( ) and E[B;B;]). Summing (82) over all i gives

7

N N
S Fia() =D L)+ Zeﬂ )+ Ad = f505) = A Zﬂﬁ — X0 f5(5) + Al -
i=1 i=1
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Thus,

. Aj al .
() = (D 050)) 95
=157 £ 2o 0A) (95)
Multiplying (95) by 6, and summing over all j yield
N N N
SU056) = (443 0:00) 3 (96)
7j=1 =1 7j=1
Using (92) for the expression of A;6;, we get
A0, 1z 1
77 — p]_ — = D . (97)
L+XN8;  1-p; 1-p; 7
Substituting (97) in (96) leads to
N N
So0:50) = (4+ Y 6:56)) -7
=1 i=1
from which
N 75
> 0:fili) = 7= (98)
i=1 1= P
Now, using (92) again,
Aj 1
-\ = X:(1—7.). 99
Substituting results (98) and (99) in (95) we get
: _ dp \ _ _ d
fiG) = A1 =7;) - (d+1—ﬁ) —)\j(l—Pj)'fﬁ : (100)
Using (82) and by proper summation we have
i—1 i—1
ROEPYR IS AGES AR (101)
k=j+1 k=j
Combining (92) with (100) leads to:
_d
0l = B (102)
and therefore, using (101),
J i1 i—1
D) =Nl Y me+ Y di] (103)
P kSin k=j

Note that expressions (100) and (103) for the first-order moments in the [AS] model now
look ‘the same’ as in the [AC] model. (See (86b) and (86a).) However, the values of the {5,}

in each model are different.

21



5.2 Second-Order Moments

In both [AC] model and [AS] model, Eqgs. (54) have the ‘same’ expressions (of course, 6

and 9§2) have different values in each model). After lengthy calculations we derive:

fia(3,0) = N2d(? w

Fern (0, 5) = MAgd® £ Nd[fG) + MOS0 } 5 #

Firn (G k) = MAd? + ML fili) - [2dit; + 07 + \bP filii)) (104)
)+ MG + MG )+ AR
+ filj. k) )

In the symmetric case, in both [AC] model and [AS] model, using similar definitions

as for the Gated regime, we obtain:

NX5(1 P N—1)-d2 N 1) Ady(1 — B,)?
,fi(i,i):H_{dgﬂjL( 1_; ;L >13ﬁ< 7o)

where we set 0; = 6 and 952) = 982) fori=1,2,...,N.

o0}, (105)

5.3 PGF and Mean of Number of Customers

We use (60) again to find the PGF of L; and its expected value. In the [AC] model, the

expressions are given by (see [10], [12])

1= B (A — \iz)
R R S R o

)

A2 L7 fd) o 37 F.(i,0)
— ' —_— = pP; — -
2(1 - Pz’) d 2)\12(1 - Pz’) 2(1 - Pz’) 2f7:(2)

The [AS] model requires additional calculations: Let (:)l denote the period of time, out

ElL] = p;+

.(107)

of ©,, in which customers arrive to queue i, and let ©%(-) and 6; denote its LST and its

expected value, respectively. Then, as in (83) and (84),

6;(w) = Blw+ i - (1~ 6;(w))] (108)
and
0, = BE[O;] = b (109)
Z RV




1— \b d 1 \i d

M,
~ 1 Pi(z) .
Li(n)| _ i 4 _
zﬂ;;z ]z—RﬁﬂQ@) 1] (see Takagi [10]) , (111)

where P;(2) is the PGF of the number of customers arrived to queue 7 during a (generalized)

service time of a single customer. Then, for the [AS] model,

-~

Fi(z) = B;(Ai(1 — 2)) (112)
Combining (60), (110), (111) and (112) gives the PGF of L;:

Cl4+m 17 B (M — \iz)

ilZ =

[Gi(2) —1] . (113)

Differentiating (113) and performing some calculations lead to

~ 2P ()
FE L7 = ' == )\767 ! - ~ = 7. 4
bl = @ o0 am) | 20) e

- A2 5@ 1-7 (i,
)\b"— 2 ) _ _|_ p . f1(7’7)_ ]
21— \b) 4 201 -7)

In the symmetric case, the mean number of customers is given for the [AC] model by
(see Takagi [10]):

Aod? L (V= Dy NAZB?

E[L;] =7, + a . 115
7 (R (= )
and in the [AS] model it becomes
~ AdY N —1)Xod N2
E[L;] = Aoby + - ( Pody 0 (116)

24 2(1-7) 2(1 =p)(1 +m) -
5.4 Waiting and Sojourn Times

In the [AC] model the LST and the expected value of the waiting times are given by (see
[10], [12]):
1-2 G(l-w/N) -1

Walw) = Nd 1—w/)\i—§:(w); (117)

—(2) _ .
A, 17 fili,i)
EW. | = ’ . . 118
Wl =55 Y Ta -y (118)
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In [AS] model, define /qu (as in the Gated regime) to be the period of time out of W,
in which the arrival process to queue 7 is active.
Then, using the general relation (71) and (113),
= Qi(1 —w/A\i) l+n 1-7p Gi(l-w/\)—1

M =T R e T A T Tah - B "

To find the expected value of /I/I?qi, we can differentiate (119) or use Little’s Law:

w T E[L;] 7 )\1‘3(2) fi(i, 1)
EW,|=-W (0)= - — b= L+ . 120

By substituting E[L;] from (114) in (75), we finally obtain:

~ A2.5® f:(i,1) 1+mn -~
EW,] = (Abi+ "1 + 2 - )
22 1—p fi(i, 1) L+ o
= L LA —+ . A — . - + nzbz . 121

In the symmetric case, the mean waiting time is given for the [AC] model by (see Hashida
[5], Takagi [10]):

d? (N -1)-dy  Nb”

EWy,) = 57 122
Wl =50, * a5 Tou-p (122)
and in the [AS] model, using (75) and (116), it becomes:
(Ltm)-d  (N-D-(4m)-dy = Nwg =
EW,| = by - 123

The above results have the following important consequence:
It follows from (77) and (122), as well as from (78) and (123), that for the symmetric

cases in both models

Nodobo

E[W,, (Gated)] = E[W,, (Exhaustive)] + 1 -
- P

i

(124)

(remember that in the [AC] model 7, = A\oby = )\[]/b\[]). That is, for both models, as in the

regular symmetric polling schemes

E[W,, (Exhaustive)] < E[W,, (Gated)] . (125)
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6 Common Results

Combining the above results, it follows that for both regimes (Gated and Exhaustive), for
both models (JAC] and [AS]) and for both versions (breakdown observation upon occurrence
or at end of service), we can derive a common (generalized) expression for f;(i), the mean
number of customers in a queue at a polling instant of that queue (see Eq. (126) below).
As a result of that, we obtain some generalized expressions for other important parameters.
With b; having the corresponding values for each version, and with #; expressing the mean
busy period generated by a customer (which for the Gated regime equals the mean service

time of a single customer) we construct the following table:

Regime | Model | p; 0; £:(0)
AC Aibi b, A\ %
Gated
Exhaustive AC | A IEIF, Ai(1—7;) %
AS ]Afn uib Ai(1=7;) - %

N
fili) = 0. 1-5 (126)

By using (126) the mean cycle time (for all models, all versions and all regimes) is given

by a common expression:

N
7y d d
E[C]:d+2fi(7;).9i:d+rﬁ 3 Z— Gi=dd e p= g (120)
i=1 i ¢

It follows from (127) that a necessary condition for stability is p < 1. Now, from (126),

fi) =2 Bl (18)

fi(i) -0 =p; - E[C] . (129)

Thus, p; is the fraction of time the server resides in queue 7. We use this result to calculate

the mean arrival rate to queue i, A;, which is composed of weighted effective arrival rates,
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with weights p, and (1 — p;), respectively:

-~ ~

O N Y R N TR I W Y (A |

_ Ai[lf i }:Ai[l B ]: - b (130)
1+ b; L+ L+ b;

Accordingly, the work rate (traffic load) of queue is
Aibi = p; , (131)

and the total traffic load of the system is indeed the generalized 5 (see remark after equation
(50)). It follows (see Fricker and Jaibi [4]) that 5 < 1 is not only a necessary condition for
stability, but also a sufficient one. ;jFrom (129), the mean number of customers served in

queue i during a cycle is

By = P = A o), (132)

which coincides with the results obtained separately for each of the regimes (Egs. (52) and
(64) for the Gated, and Eq. (110) for the Exhaustive).

7 The Globally-Gated Regime

In the (cyclic) Globally-Gated (GG) regime ([1], [2]), as in the Gated and Exhaustive regimes,
the server visits the queues in a cyclic order. However, at the initiation of every new cycle
all gates are simultaneously closed, so that only those customers present in the system at
that instant are served during that cycle.

We assume, without loss of generality, that a cycle starts from queue 1.

Let X; = Xf = the number of customers at queue j at a cycle-beginning. Let f; =
B(X;) = Ai()).

In the [AC] model (see Yechiali [12]):

') = D'w)-C [ N0 Byw))] (133)
E[C] = % (134)
E[C?] = 1_1ﬁ2 : [d(2>+(2dﬁ+zN:AjEf))-E[C]], (135)



where D = Y D; and d? is its second order moment.
J=1

In both models, the number of customers present at queue j at a cycle-beginning is the

number of customers that arrived at queue j during a (previous) cycle. However, in the

[AS] model, the arrival process to queue j stops during repair times at that queue, and

therefore, in steady state,

where E;k) ~ B; and Bj(k) ~ E]- for every k. It follows that

fi = A (B[C] — f;(bj —b;)) = ME[C] — fym;, leading to
N EC]
= 95
1j
Now,
N Xj
C=D+) BY
=1 k=1
Noox
Hence, with Fi(z) E[ 12 ’] we get
j=1
C*(w) = D*(w) - Fi(B;(w), By(w), ... , By(w)) ,
and,

N
Cl=d+) fib
j=1

Substituting f7 from (137), we have

ElC]=d+ Z 1)11:7] E[C] =d+ p- E[C], leading to, as in the other regimes,
d
Bl = —
L=7
Thus,
Aj d
fj J
Ltmy  1-p

That is, f1(J)ae = fj(J)cated-
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(138)

(139)

(140)

(141)

(142)



Waiting Times

To be able to obtain expressions for the mean waiting time of a customer in queue 7 in the
two models we need an expression for the second-order moment of a cycle. ;From (138) we

get:

X

<
<

E[C2]—E{D2+2DEN: 4 B+ (Y 3 E}’“))Q}. (143)

j=1 k=1 j=1 k=1
After some algebraic manipulations (see Appendix) we obtain:

N Fae)) 52 - D N
4 4 Jadp > (Y 4 22 07— 2m(B, B +3)] - ElC)
j= N ’ '

E[C?] = (144)

1—7p2
Now, for both models, let C'p» and C'; denote, respectively, the past and residual duration of

a cycle. Then (see Boxma, Levy and Yechiali [1]):

1—-C*(w)
C* =C* = - 7/ 145
() = Cilo) = — 5y (145)
and
E[C?]
E|Cp] = E|Cg| = . 146
(Cr] = EICW) = Sy (146)
Consider an arbitrary customer J at queue j. His waiting time is composed of

(i) a residual cycle time Chg,

(ii) the service times of all customers who arrive at queues 1,2,... 5 — 1 during the cycle

in which .J arrives,
(iii) the switchover times of the server between queues 1,2,... .7 — 1 and j, and

(iv) the service times of all customers who arrived at queue j before .J, i.e. during the past

part C'p of the cycle in which .J arrives.

Then,
Jj—1 j—1

E[W,]=E[Cgl+ Y E[A*(Cp+ Cr)]| - b+ Y _ di + E[A/(Cp)] - b; . (147)

k=1 k=1
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In the [AC] model Eq. (147) becomes (see [1])

j-1 j-1

E[W,] = (1 +2) Bt p]) E[CRl+ Y dy . (148)
k=1

In the [AS] model the calculation of E[A¥(Cp)] is much more complicated. In order

to find E[A*(Cp)] we consider the three possible cases for the position of the server at the
instant of arrival of customer .J.

(1) the server is before queue ;
(2) the server is in queue k; and

(3) the server has passed queue k.

The probabilities for these cases are, respectively, = [ T P and (1 P — %), where

sk is the mean time from the start of a cycle until the server enters queue k. From (129),
k—1

s = Y. (puF[C] + dy). The arrival rate to queue k when the server is in that queue is

m=1
b

Ak

E
by:

and it equals A\; when the server is not in queue k. Therefore, an approximation to

:B:rla-)

3
k
¥(Cp)], based on an assumption of independence between the various elements, is given

-~

E[AF(Cp)] = = - MeE[Cp] + 7y - | Aksk + )\kg—k - (E[Cp] — sk)]

k

+ <1ﬁk - m) ' [)\kg—k'ﬁkE[C]+)\k'(E[0P]ﬁkE[C])

k

:Ah{ngu—m) (O] + (PEJP%—HQWPWM}

= )\k-{E[Cp]—lnk -E[CP]+1”’“

25, — E[C]- (1= m)]}

+ Nk + Nk
A
= 3 Y [B(Cp) + 2msk — m(1 —B,) - E(O)] . (149)
+
In a similar way,
E[A*(CR)] = —2 -A@'TMQ+A-WKW7‘EWD
R E[C’] kgk Pk k R Pk
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+ D [)\k [(1 =P E[C] — si] + )\kg_: [E[CR] — (1 — ) E[C] + 54
+ ( D — ES[kC’]> M E[Ch] (150)
= M {(ﬁkg—z+1ﬁk> E[CR]*ﬁkO* i)[ngE[O] (1ﬁk)]}
_ Tk _ S$p — =
= M\ {E[OR] . [CR] T [2 E[C] (1 Pk)]}
= S (B(Ca) - 2+ (1 ) EIO))

Substituting (149) and (150) in (147) while using (146) and (148), we get, for the [AS]

model:

Jj—1 T Jj—1
Aib
E[W, (AS)] = E[Cr]+ 21ik E[Crl + Y dy
k=1 Mk k=1
\ib _
+ o E(CR) + 28 —ni(1 = py) - B(C)] (151)
m

= (1 +22ﬁk+ﬁj> - E[CR] +idk+ﬁjnj 255 = (1 =75) - E(C)]

= E {ij (AC)} + ;- (25— (L= p;) - E[(C)]

which generalizes (148) since 7; = 0 in the [AC] model. Note, however, that E[C|sc] #
E[C|as]-

8 Conclusions

We have studied the combined effects of breakdowns and repairs on the performance measures
of polling systems operating under the Gated, Exhaustive or Globally-Gated regimes. Twelve
models were analyzed in a generalized and unified manner. The results can be applied to
various manufacturing and communication systems and used as stepping stones for further

analysis of complex polling models.

30



Appendix: Calculation of E[C?] for the GG Regime

Observing Eq. (143) we first calculate:

N Xj 9
- (k)
Bl(X X8")
j=1 k=1
N X X; X X; N  Xm
- (k) - (k)5 (©) - (k) - ()
S PGS b oS o 9D ol
j=1 L k=1 k=1 (=1 k=1 m=1 g=]
L#k m#j
N - N
Aj - (2) 72 Ajb Ambm >
= : b EIX (X, —1)]- b, A E
S {2 b0 7 - E + 2 5 el i
Jj=1 ‘ :;;
Similarly to the derivation of Eq. (93), we get,
— X]_ 2
~ 5k Sk
EIX;(X; - 1] =X} - E (c (B,” - B b)}
L k=1
i X Xj
&) Sk k&) Sk
=\ -E|C*—20) (B - B")+ > (B;" - B")
L k=1 k=1
X; X
2 &) Sk M 5m)
+A B Z(Bj = B;7) - (B = B;)
k=1 :;1\
— B[O - =N, — 8 BlCY + B[] 5P — 2B[B, B, + 5?)
— [ }_ +777‘(]_J) [ ] 1 n; J ] J
X2 BN = D) (55— 5y)?]
22 1—n, s _(2) N ~
EIX;(X;, —1)] = 2 1 plc? I_glO]- b, —2E[B,;B;] + b
= E[X;(X; —1)] 177_?{1“7.7 [ H1+?77 [C]- [B;jBj] +b;"]




N
(7= 25) e
By substituting (A1) in (143) we get

E[C? = d® + 2dpE[C)|

N 7(2) 9
E: Aib; APy () — =~
+7.]{1+77j + 1f77j(.7 [B;B;] + fi ) IC] + p E[C] (A2)

which leads to Equation (144).
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