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Abstract. Consider a system (e.g. a computer farm or a call center) operating as a M/M/c
queue, where c = 1, or 1 < c < ∞, or c = ∞. The system as a whole suffers disastrous
breakdowns, resulting in the loss of all running and waiting sessions. When the system is
down and undergoing a repair process, newly arriving customers become impatient: each
individual customer activates a random-duration timer. If the timer expires before the
system is repaired, the customer abandons the queue. We analyze this model and derive
various quality of service measures: mean sojourn time of a served customer; proportion of
customers served; rate of lost customers due to disasters; and rate of abandonments due to
impatience.
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1 Introduction

Consider a system (e.g. a call center or a computer farm) operating as a M/M/c queue. The
system as a whole suffers random failures such that, when a failure occurs, all connections
are cut and all existing requests are rejected and lost. The system then goes through a
repair process whose duration is random. Meanwhile, while the system is down, the stream
of newly arriving requests (customers) continues, but the customers become impatient: each
customer ‘activates’ his own ‘timer’ with random duration T , such that, if the system is still
down when the timer expires, the customer abandons the system never to return. Our goal
is to calculate Quality of Service (QoS) measures: proportion of customers served; rate of
customers rejected due to disasters; and rate of abandonments due to impatience when the
system is down.
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Models with customers impatience in queues have been studied by various authors in the
past, where the source of impatience was either a long wait already experienced in the queue,
or a long wait anticipated by a customer upon arrival (see e.g. [5], [9],[3],[7] and references
there). Recently, we analyzed in [1] and [2] models with customers impatience when the
server(s) is (are) on vacation and unavailable for service. The M/M/1, M/G/1, M/M/c and
M/M/∞ queues were investigated. In the current study we extend the analysis to deal with
the case where the system suffers random disasters, resulting in the loss of all customers
present.

We first consider in section 2 the M/M/1 queue with Exponentially distributed life, repair
and impatience times. We derive the PGFs of the queue sizes when the system is functioning
and when it is down. The results depend on the solution of a certain differential equation.
We then calculate the mean Sojourn Time of a served customer and derive Quality of Service
(QoS) measures: proportion of customers served; rate of customers lost due to failures; and
rate of abandonment due to impatience when the system is down.

In section 3 we study the case where failures may occur only when the system is func-
tioning and serving customers. Similar QoS measures are derived. In section 4 we analyze
the M/M/c queue and derive the corresponding conditional PGFs, mean queue sizes and so-
journ times. QoS measures characterizing the system’s effectiveness are calculated. Finally,
in section 5, the M/M/∞ queue is investigated.

2 The M/M/1 queue with exponentially distributed

life, repair and impatience times

2.1 The model

Customers arrive to a M/M/1-type queue according to a Poisson process with rate λ. Service
times B are exponentially distributed with mean 1/µ. The system suffers disastrous break-
downs, occurring when the server is at its functioning phase, at a Poisson rate η. That is,
the system ‘life-time’ is exponentially distributed with mean 1/η. When the system fails, all

customers present are rejected and lost . Upon failure, a repair process starts immediately.
The repair time U is exponentially distributed with mean 1/γ. Customers arriving while
the system is down become impatient : Each customer activates an independent ‘impatience
timer’ T , exponentially distributed with mean 1/ξ, such that, if the repair process has not
been completed by the time T expires, the customer abandons the system never to return.

The above process generates a two-dimensional continuous time Markov process as fol-
lows. Let J indicate the system’s phase: J = 1 denotes the system is functioning and serving
customers, while J = 0 indicates that the system is down, undergoing a repair process. Let
L denote the number of customers in the system. Then the transition-rate diagram of the
(J, L) process is depicted in Figure 1.
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Figure 1: Transition-rate diagram

2.2 Balance equations and generating functions

Let Pjn = P{J = j, L = n} (j = 0, 1; n = 0, 1, 2, 3, ...) denote the system’s steady-state

probabilities. Let Pj• =:
∞
∑

n=0

Pjn be the probability that the system is in phase j(j = 0, 1).

Then, the set of balance equations is given below:

J = 0







n = 0 (λ + γ)P00 = ξP01 + η
∞
∑

n=0

P1n = ξP01 + ηP1•

n ≥ 1 (λ + γ + nξ)P0n = λP0,n−1 + (n + 1)ξP0,n+1

(2.1)

J = 1

{

n = 0 (λ + η)P10 = γP00 + µP11

n ≥ 1 (λ + µ + η)P1n = λP1,n−1 + µP1,n+1 + γP0n

(2.2)

Summing equations (2.1) over n yields

γP0• = ηP1• (2.3)

Clearly, (2.3) can be obtained directly by employing a horizontal cut between the phases
J = 0 and J = 1 in Figure 1.

Equation (2.3) together with 1 = P0• + P1• yield

P0• =
η

γ + η
P1• =

γ

γ + η
(2.4)

Indeed, observing just the phase process itself, in which the system is either up or down, it
is an alternating renewal process with the corresponding fractions of time P1• and P0•.

For j = 0, 1, let Gj(z) =:
∞
∑

n=1

Pjnz
n define the (conditional) Probability Generating

Function (PGF) of phase j. Then, for each j, by multiplying correspondingly every equation
for n by zn and summing over n, we obtain, from (2.1) and (2.2), respectively

ξ(1 − z)G′

0(z) = [λ(1 − z) + γ]G0(z) − ηP1• (2.5)
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[(λz − µ)(1 − z) + ηz] · G1(z) = γzG0(z) − µ(1 − z)P10 (2.6)

where G′

0(z) = d
dz

G0(z).
Following the procedure in Altman and Yechiali [2004, [2005] it can be shown that the

solution of the differential equation (2.5) is given by

G0(z) = G0(0)e
λ
ξ
z

[

1 −
∫ z

0
(1 − s)

γ

ξ
−1e−

λ
ξ
sds

K

]

(1 − z)−
γ

ξ (2.7)

where K =
1
∫

0

(1 − s)
γ

ξ
−1e−

λ
ξ
sds and

G0(0) = P00 = ηP1•K/ξ . (2.8)

Combining with eq. (2.1) for n = 0, we get

P01 =
η

ξ

[

(λ + γ)

ξ
K − 1

]

P1• . (2.9)

Now, knowing P00 and P01, any probability P0n, for n ≥ 2, can be calculated progressively
by using equation (2.1), starting with n = 1. From eq.(2.5), using E[Lj ] = lim

z→1
G′

j(z), we get

E[L0] =
−λG0(1) + γG′

0(1)

−ξ
=

λP0• − γE[L0]

ξ
,

implying that

E[L0] =
λP0•

γ + ξ
. (2.10)

Indeed, (2.10) states equality between the input rate to phase J = 0, being λP0•, and the
output rate from that phase, (γ + ξ)E[L0]. Differentiating equation (2.6) at z = 1 we derive

(−λ + µ + η)P1• + ηE[L1] = γ(P0• + E[L0]) + µP10 .

Using (2.3) we get
ηE[L1] + µ(P1• − P10) = λP1• + γE[L0] (2.11)

Again, equation (2.11) equates the input and output rates of phase J = 1.
To conclude the calculation of E[L1] we need P10. This probability is obtained as follows.

Let g(z) = (λz − µ)(1 − z) + ηz. Then equation (2.6) can be written as

g(z)G1(z) = γzG0(z) − µ(1 − z)P10 .

The quadratic function g(z) has exactly one root z0 in (0, 1). (To see this, observe that
g(0) = −µ, g(1) = η, and g(∞) = −∞). Thus g(z0) = 0, implying that

P10 =
γz0

µ(1 − z0)
G0(z0) . (2.12)
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where z0 =
(λ+µ+η)−

√
(λ+µ+η)2−4λµ

2λ
.

Thus, given P10, G1(z) is completely determined by (2.6). Now, substituting (2.10) in
(2.11) yields

ηE[L1] =
λ

γ + ξ
(ξP1• + γ) − µ (P1• − P10) (2.13)

Remark 1. One can view the system as a Markovian queue in ‘random environment’
(see Yechiali and Naor [10], Gupta, Scheller-Wolf, Harchol-Balter, and Yechiali [8], Byakal-
Gursoy and Xiao [4], and D’ Auria [6]), where the system alternates randomly between two
phases: phase J = 0, when it operates as an M(λ)/M(ξ)/∞ queue, and phase J = 1, where
it operates as an M(λ)/M(µ)/1 queue (or M/M/c in section 4, or M/M/∞ in section 5).
However, there are two distinctions between the current process and the ones mentioned
above: (i) here, when a switch from phase J = 1 to phase J = 0 occurs, it always brings
the system to the same state, namely, to state (0, 0). (ii) all the above works assume work
conservation, which is not the case in this work. This, in fact, leads to the quadratic function
g(z) (or gc(z) in the M/M/c case), rather than to a cubic g(z), as is the case in [10] and [8].

2.3 Sojourn times

Let S denote the total Sojourn time of an arbitrary customer in the system, regardless of
whether he has completed service or not. Then by Little’s law,

E[S] =
1

λ
[E[L0] + E[L1]] . (2.14)

Let Sjn be the total sojourn time in the system of a customer that completes service, given
that he arrives when the system state is (j, n). Then, since future arrivals don’t affect a
customer’s sojourn time, we have

E[S10] =
µ

µ + η

(

1

µ + η

)

. (2.15)

Clearly, E[S10] < 1
µ
. This follows since, if a service is completed before a failure , it should

be a ‘short’ one. Also, when η → 0, E[S10] → 1
µ
.

Now, for n ≥ 1,

E[S1n] =
µ

µ + η

(

1

µ + η
+ E[S1,n−1]

)

,

implying that
E[S1n] = α + βE[S1,n−1] (2.16)

where α =: µ
(µ+η)2

= E[S10], β =: µ
µ+η

.

Iterating (2.16) we get

E[S1n] = α
n
∑

k=0

βk = α
1 − βn+1

1 − β
=

µ

η(µ + η)

[

1 −
(

µ

µ + η

)n+1
]

(2.17)
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Indeed, when η → 0, E[S1n] → n+1
µ

.

We now turn to calculate E[S0n] for n = 0, 1, 2, . . .

E[S00] =
γ

γ + ξ

(

1

γ + ξ
+ E[S10]

)

. (2.18)

For n ≥ 1,

E[S0n] =
γ

γ + (n + 1)ξ

(

1

γ + (n + 1)ξ
+ E[S1n]

)

+
(n + 1)ξ

γ + (n + 1)ξ
· n

n + 1

(

1

γ + (n + 1)ξ
+ E[S0,n−1]

)

where n/(n + 1) is the probability that, if impatience-dependent abandonment occurs, it is
among one of the other n customers present. Thus, substituting (2.17),

(γ + (n + 1)ξ)E[S0n] =
γ + nξ

γ + (n + 1)ξ
+ γα

1 − βn+1

1 − β
+ nξE[S0,n−1] (2.19)

Iterating (2.19) we derive

E[S0n] =
1

γ + (n + 1)ξ

[

an +
n−1
∑

k=0

ak

n
∏

j=k+1

cj + γα

(

bn+1 +
n−1
∑

k=0

bk+1

n
∏

j=k+1

cj

)]

(2.20)

where cj = jξ
γ+jξ

, j = 0, 1, 2, . . .; bk = 1−βk

1−β
, k ≥ 1; and ak = γ+kξ

γ+(k+1)ξ
k = 0, 1, 2, . . .

Finally, the expected sojourn time of a customer that is served may be calculated using
the expression

E[S(served)] =

∞
∑

n=0

P0nE[S0n] +

∞
∑

n=0

P1nE[S1n] (2.21)

Clearly, calculating E[S(served)] numerically, one has to use truncation.

2.4 Proportion of customers served

The system suffers from two types of losses: (i) rejected customers due to system’s disastrous
failures and (ii) abandonments of impatient customers during the repair phase. When the
system is in state (j, n), n ≥ 1, the rate of failure is η and then n customers are lost. Thus,
the unit-time rate of lost customers, r, is given by

r =
∞
∑

n=1

ηnP1n = ηE[L1] (2.22)

Similarly, the expected number of customers served per unit of time is µ(P1•−P10), implying
that the proportion of customers served is

P(served) = (P1• − P10)
µ

λ
(2.23)

Finally, the rate of abandonment due to impatience, R(aband), is given by

R(aband) = λ − ηE[L1] − µ(P1• − P10) = λP0• − γE[L0] = ξE[L0] (2.24)
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3 M/M/1: Failures occur only when the system is

functioning and L ≥ 1

Consider now the case where a functioning system (in phase J = 1) may fail only when it is
operative, i.e. only when L ≥ 1 and it serves customers. Then, the corresponding transition-
rate diagram will look similar to Figure 1 with the exception that the only possible transition
from state (1,0) is to state (1,1), a transition caused by an arrival of a new customer.

3.1 Balance equations and generating functions

With Pjn defined as before, the set of balance equations is:

J = 0

{

n = 0 (λ + γ)P00 = ξP01 + η(P1• − P10)

n ≥ 1 (λ + γ + nξ)P0n = λP0,n−1 + (n + 1)ξP0,n+1

(3.1)

J = 1

{

n = 0 λP10 = γP00 + µP11

n ≥ 1 (λ + µ + η)P1n = λP1,n−1 + µP1,n+1 + γP0n

(3.2)

Summing equations (3.1) over n yields

γP0• = η(P1• − P10) (3.3)

Using (3.1) and (3.2) we derive the corresponding PGFs:

ξ(1 − z)G′

0(z) = [λ(1 − z) + γ]G0(z) − η(P1• − P10) (3.4)

and
[(λz − µ)(1 − z) + ηz]G1(z) = γzG0(z) + [µ(z − 1) + ηz]P10 (3.5)

The solution of (3.4) is given by equation (2.7) but this time

G0(0) = P00 =
η(P1• − P10)K

ξ
(3.6)

Combining with (3.1) for n = 0, and using (3.3), we get

P01 =
γ

ξ

[

(λ + γ

ξ
K − 1

]

P0• (3.7)

From equation (3.4), using E[Lj ] = lim
z→1

G′

j(z), we derive

E[L0] =
λP0• − γE[L0]

ξ

implying that

E[L0] =
λP0•

γ + ξ
(3.8)
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From (3.5),
(−λ + µ + η)P1• + ηE[L1] = γ(P0• + E[L0]) + (µ + η)P10 (3.9)

To calculate E[L1] we need P10. We rewrite equation (3.5) as

g(z)G1(z) = γzG0(z) + [µ(z − 1) + ηz]P10

where the quadratic equation g(z) has a unique root z0 in (0, 1), given in Section 2.
Thus, g(z0) = 0 implies that

P10 =
γz0

µ(1 − z0) − ηz0
G0(z0) (3.10)

Using (3.3) and P0• = 1 − P1• we have

P1• =
γ + ηP10

η + γ
P0• =

η(1 − P10)

η + γ
(3.11)

Now, given P10 and using (3.3), equation (3.9) reduces to equality between output and input
rates of phase 1:

µ(P1• − P10) + ηE[L1] = γE[L0] + λP1• (3.12)

Using (3.8) and P0• + P1• = 1 we obtain E[L1]:

E[L1] =
1

η

[

γλ

γ + ξ
(1 − P1•)

]

− (µ − λ)P1• + µP10 (3.13)

The expected total number of customers in the system is

E[L] = E[L0] + E[L1] (3.14)

3.2 Sojourn times

As in section 2, E[S] = 1
λ
E[L].

The mean sojourn time of a customer that completes service is calculated similarly to
Section 2. Indeed, equations (2.15) to (2.20) hold here as well . Thus, E[S(served)] is given by
(2.21), but the Pjn’s are different .

3.3 Proportion of customers served

Equations (2.22), (2.23) and (2.24) hold true. However, P10, P1• and E[L1] are given by
(3.10), (3.11) and (3.13), respectively.
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4 The c-server case

4.1 The model, balance equations, PGFs and mean queue sizes

Consider now the case with c ≥ 1 servers. The system alternates between phases 1 and 2 as
described in Section 2.1. When the system fails, all servers stop working and all customers
present are lost . It turns out that the proportions of time the system stays in the two phases
are not effected by the number of servers in the system. That is, P0• and P1• are given by
equation (2.4).

The balance equations for phase J = 0 are the same as those given by equations (2.1).
The balance equations for J = 1 are:

n = 0 (λ + η)P10 = γP00 + µP11

c − 1 ≥n ≥ 1 (λ + nµ + η)P1n = λP1,n−1 + (n + 1)µP1,n+1 + γP0n (4.1)

n ≥ c (λ + cµ + η)P1n = λP1,n−1 + cµP1,n+1 + γP0n

It follows that the PGF G0(z), the probabilities P00 and P01, and E[L0] are given by
equations (2.7),(2.8),(2.9) and (2.10), respectively. As before, with P00 and P01 given, one
can calculate any probability P0n progressively from (2.1)

The PGF of phase 1, G1(z), is derived as:

[(λz − cµ)(1 − z) + ηz]G1(z) = γzG0(z) − µ(1 − z)

c
∑

n=0

(c − n)P1nzn . (4.2)

Let gc(z) = (λz − cµ)(1 − z) + ηz. Then, gc(z) has a unique root zc in (0, 1), where

zc =
(λ + cµ + η) −

√

(λ + cµ + η)2 − 4λcµ

2λ

Thus, using (4.2), g(zc) = 0 implies

0 = γzcG0(zc) − µ(1 − zc)
c
∑

n=0

(c − n)P1nzn
c . (4.3)

Equation (4.3) involves (c + 1) unknown probabilities: P10 to P1c. The first c equations in
(4.1), for c − 1 ≥ n ≥ 0, give additional c equations in those (c + 1) unknowns. Solving this
set of (c + 1) independent equations yields the required probabilities.

Finally, to get E[L1], we use (4.2) and obtain, similarly to (2.11),

ηE[L1] + cµP1• − µ
c
∑

n=9

(c − n)P1n = λP1• + γE[L0] (4.4)
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4.2 Sojourn times

We use the same notation as in previous sections. First we note that S0n is independent of
the number of servers, c. Thus, the calculations of E[S0n] are no different, implying that
E[S00], as well as E[S0n] for n ≥ 1, are given by (2.18) and (2.20), respectively. However,
the calculations of E[S1n] depend on c and are more involved. We start with n ≥ c:

E[S1n] =
cµ

cµ + η

(

1

cµ + η
+ E[S1,n−1]

)

(4.5)

The term E[S1,n−1] in (4.5) follows since, when n ≥ c, a customer waits in line, and a service
completion advances him one position forward in the line. Therefore, similarly to (2.16),

E[S1n] = αc + βcE[S1,n−1] (n ≥ c) (4.6)

where,

αc =
cµ

(cµ + η)2
and βc =

cµ

cµ + η

Thus, for m ≥ 0

E[S1,c+m] = αc
1 − βm+1

c

1 − βc

+ βm+1
c [ES1,c−1]

=
cµ

η(cµ + η)
(1 − βm+1

c ) + βm+1
c E[S1,c−1] (4.7)

Now, for n ≤ c − 1, each arrival is independent of the other customers present, leading to

E[S1n] =
µ

µ + η

(

1

µ + η

)

(n ≤ c − 1) (4.8)

Note: It can readily be checked that when η = 0 (no breakdowns) E[S1n] = 1/µ for
all 0 ≤ n ≤ c − 1, and that E[S1,c+m] = m+1

cµ
+ 1

µ
, for m ≥ 0. Finally, E[S(served)], the

expected sojourn time of a served customer is given (again) by (2.21), but with the values
{P0n},{P1n}, {E[S0n]} and {E[S1n]} derived in this section.

4.3 Proportion of customers served

The expected number of rejected customers per unit-time, due to failures, is

rc = ηE[L1] (4.9)

The expected number of customers served per unit-time is

E[Cust. Served] =
c−1
∑

n=1

nµP1n +
∞
∑

n=c

cµP1n = cµP1• − µ
c−1
∑

n=0

(c − n)P1n (4.10)

Thus, using (4.4), the rate of abandonment is given by

R(aband) = λ − rc − E[Cust. Served] = λP0• − γE[L0] = ξE[L0] (4.11)

Remark 2. The scenario where the system can fail only when there is at least one customer
present can be analyzed in a similar manner and will not be presented here.
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5 The M/M/∞ queue

In this section we analyze the case where the underlying process is an M/M/∞ queue.
Although more involved, it can be analyzed in a similar manner to the single-server and the
multi-server cases treated in Sections 2 and 4, respectively. We present the scenario where
a disaster can occur only when the system is rendering service.

5.1 Balance equations and PGFs

For J = 0, equations (2.1) hold here as well, implying that G0(z) and G0(0) = P00, are,
again, given by (2.7) and (2.8), respectively. Moreover, the proportion of time the system
resides in phase j (j = 1, 2) is given, once more, by (2.4), while E[L0] is given by (2.10).

For J = 1 we have:

J = 1







n = 0 (λ + η)P10 = γP00 + µP11

n ≥ 1 (λ + nµ + η)P1n = λP1,n−1 + (n + 1)µP1,n+1 + γP0n

(5.1)

The above leads to the following differential equation for G1(z):

µ(1 − z)G′

1(z) = [λ(1 − z) + η]G1(z) − γG0(z) (5.2)

Dividing by µ(1 − z) and multiplying by e−
λ
µ

z(1 − z)η/µ leads to

e−
λ
µ

z(1 − z)
η

µ G′

1(z) −
[

λ

µ
+

η

µ(1 − z)

]

e−
λ
µ

z(1 − z)
η

µ G1(z) = − γ

µ(1 − z)
e−

µ

λ
z(1 − z)η/µG0(z)

That is,
d

dz

[

e−
µ

λ
z(1 − z)

η

µ G1(z)
]

= −γ

µ
e−

µ

λ
z(1 − z)

η

µ
−1G0(z) (5.3)

Integrating (5.3) from 0 to z leads to

e−
λ
µ

z(1 − z)η/µG1(z) − G1(0) = −γ

µ

z
∫

s=0

(1 − s)η/µ−1e−
λ
µ

sG0(s)ds

Thus,

G1(z) = G1(0)e
λ
µ

z(1 − z)−
η

µ − γ

µ
e

λ
µ

z(1 − z)−
η

µ

z
∫

s=0

(1 − s)η/µ−1e−
λ
µ

sG0(s)ds (5.4)

At z = 1 we have

G1(1) = P1• = e
λ
µ

[

G1(0) − γ

µ

∫ 1

s=0

(1 − s)η/µ−1e−
λ
µ

sG0(s)ds

]

lim
z→1

(1 − z)−η/µ
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Since P1• > 0 and lim
z→1

(1 − z)−η/µ = ∞, we must have that

G1(0) =
γ

µ

1
∫

s=0

(1 − s)η/µ−1e−
λ
µ

sG0(s)ds =:
γ

µ
K∞ (5.5)

where

K∞ =

1
∫

s=0

(1 − s)
η

µ
−1e−

λ
µ

sG0(s)ds

Then, using (2.7) and (2.8), we get

K∞ = P1•
η

ξ

1
∫

s=0

(1 − s)
η
µ
−

γ
ξ
−1e(

λ
ξ
−

λ
µ)s





1
∫

x=s

(1 − x)
γ
ξ
−1e−

λ
ξ
xdx



 ds (5.6)

Clearly, K∞ can easily be calculated for any set of parameters.

Finally, E[L1]is derived from (5.2). Dividing both sides by (z − 1) we get

µE[L1] = λP1• + lim
z→1

{

ηG1(z) − γG0(z)

1 − z

}

= λP1• + γE[L0] − ηE[L1]

Substituting (2.10) in the above leads to

(µ + η)E[L1] = λ

(

1 − ξ

γ + ξ
P0•

)

(5.7)

5.2 Sojourn times and abandonment rate

There is no change in the derivations of E[S0n] for all n. Once more, E[S00] and E[S0n] for
n ≥ 1 are given by (2.18) and (2.20), respectively. E[S1n] is given by (4.8) for all n.

The abandonment rate is given by

R(aband) = λ − (µ + η)E[L1] (5.8)

6 Conclusion

In this paper we’ve studied the M/M/1, M/M/c and M/M/∞ queues subject to system’s
disasters, resulting in the loss of all customers present. Then, when the system is down
and undergoes a repair period, each waiting customer becomes impatient and abandons the
system as soon as his actual waiting time exceeds his individual (random) waiting time
threshold. We’ve derived important QoS performance measures such as the rate of lost
customers due to failures, and rate of abandonments due to customers impatience when

12



the system is down. Our model differs from the common scenarios of customers impatience
(see e.g. [5] [9],[3],[7] and references there) by assuming that customers become impatient
only when the system is down and they have no exact information on the time when it will
become operative again. This situation reflects customers behavior in various real life service
systems.
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