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tWe 
onsider a polling system 
onsisting of N queues and a single server where pollingis performed a

ording to an Elevator (s
an) s
heme. The server �rst serves queues in the`up' dire
tion, i.e. in the order 1,2,...,N-1,N, and then serves these queues in the opposite(`down') dire
tion, i.e. visiting them in the order N,N-1,...,2,1. The server then 
hangesdire
tion again, and so on. A globally gating regime is used ea
h time the server 
hangesdire
tion. We show that, for this Elevator s
heme, the expe
ted waiting times in all
hannels are equal. This is the only known non-symmetri
 polling system that exhibitssu
h a fairness phenomenon. We then dis
uss the problem of optimally ordering the queuesso as to minimize some measure of variability of the waiting times.Keywords: Polling, Globally Gating, Elevator poli
y.
1 Introdu
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2servi
e times are distributed as Bi, having Lapla
e-Stieltjes Transform (LST) b�i (s), and �rstand se
ond moments bi and b(2)i , respe
tively. We denote by �i def= �ibi, and by � def= PNi=1 �ithe traÆ
 o�ered to 
hannel i, and to the system at large, respe
tively.The time it takes the server to move from the ith to the i + 1st queue is 
alled the ithwalking time, and is denoted by Di. We assume that the time it takes for a movement of theserver from queue i to queue i + 1 has the same distribution as the time it takes to move inthe opposite dire
tion, i.e. from queue i + 1 to queue i. We assume that the walking timesare independent, with LST d�i (s), and �rst and se
ond moments di and d(2)i , respe
tively. LetD = PN�1i=1 Di be the total walking time in one dire
tion, and denote by d, d(2) and d�(s) theexpe
tation, se
ond moment and LST of D, respe
tively.We 
onsider the Elevator (or s
an) polling s
heme, where the server �rst visits the queuesin one dire
tion, i.e. in the order 1,2,...,N (`up' dire
tion), and then reverses its orientation andvisits the queues in the opposite (`down') dire
tion, i.e. going through queues N,N-1,...,2,1. Itthen 
hanges its dire
tion again, and so on. This type of servi
e dis
ipline is en
ountered inmany appli
ations. e.g. it models a 
ommon s
heme of addressing a hard disk for writing (orreading) information on (or from) di�erent tra
ks (see e.g. Tanenbaum [8℄ pp. 143-146, for abrief dis
ussion of various te
hniques for head movement in disks).Compared with Cy
li
 polling, the Elevator s
heme `saves' the return walking time fromqueue N to queue 1. This saving may be a signi�
ant fa
tor in de
reasing 
y
le durationand expe
ted waiting times, sin
e in many systems the return walking time from N to 1 is
onsiderably large. In the 
ase of hard disks this return walking time represents the movementof the head all the way ba
k from the Nth tra
k to the �rst, whi
h means that the time sowaisted may be 
onsiderably larger than any other walking time. (The main fa
tor in the a

esstime to a disk is the seek time, whi
h is the time it takes to move the head from one tra
k toanother).All servi
e dis
iplines that have been 
onsidered in the literature with relation to 
y
li
movement (e.g. the Gated, Exhaustive, Limited, Globally Gated) 
an also be implementedwith the Elevator approa
h (see Co�man and Hofri [4℄, Swartz [5℄ and Takagi and Murata [7℄).It should be noted that these Elevator servi
e dis
iplines are spe
ial 
ases of a general pollingtable (see, e.g. Baker and Rubin [1℄).We shall 
onsider the following version of the Elevator s
heme based on the re
entlyintrodu
ed Globally Gated dis
ipline (Boxma, Levy and Ye
hiali [2℄). At the start of the upmovement all gates are 
losed and the server, while moving from queue 1 to queue N, serves inea
h queue only those 
ustomers that were present at the instant when the gates were 
losed.When servi
e ends in queue N (at the end of the up movement), all gates are 
losed on
e more



3and servi
e is immediately given again to the 
ustomers present at queue N (i.e. to those whoarrived during the period that the server was moving from queue 1 to queue N and was servingthese queues). The server then goes ba
k through queues N;N � 1; :::; 2; 1, serving only those
ustomers that were present when the gates were last 
losed. When this 
y
le is �nished inqueue 1, all gates are immediately 
losed, servi
e starts in queue 1, and the dire
tion is reversedagain. We shall 
all the period during whi
h the server moves up an `up 
y
le', and the periodduring whi
h the server moves down a `down 
y
le'. A `
y
le' will be either an up 
y
le or adown 
y
le.We show for this Elevator s
heme that the expe
ted waiting times in all 
hannelsare equal. This is the only known non-symmetri
 polling system that exhibits su
h a fairnessphenomenon. We then dis
uss the problem of optimally ordering the queues so as to minimizesome measure of variability of the waiting times.2 Performan
e Measures and OptimizationCy
le DurationLemma 1 The distribution of a 
y
le duration C (in steady state) does not depend on thedire
tion, and E[C℄ = d1� � (1)E[C2℄ = 11� �2  d(2) + 2d�E[C℄ + NXi=1 �ib(2)i E[C℄! : (2)Denote 
(s) def= E he�sCi and Æ(s) def= PNi=1 �i(1� b�i (s)), then
(s) = d�(s)
 (Æ(s)) (3)De�ne re
ursively Æ(0)(s) def= s and Æ(j)(s) def= Æ �Æ(j�1)(s)�, then
(s) = 1Yj=0d� �Æ(j)(s)� (4)Proof: One 
an 
on
eive an alternative interpretation of the Elevator Globally Gated s
heme.It 
an be assumed, that when 
ompleting serving queue N at the end of the up movement, thereis an extra walking time of zero duration to queue 1. When the server now arrives at queue 1,



4all gates are 
losed, the server jumps to queue N in no time, and then goes down visiting queuesN;N � 1; :::; 1, serving all 
ustomers marked when the gates were last 
losed. After servingqueue 1 all gates are again 
losed and the server goes up again, serving all 
ustomers presentat the moment the gates were 
losed, et
.Consider now a polling system with the same arrival, servi
e times and walking timedistributions, but where the server moves 
y
li
ally between the queues. The walking timebetween queue N ba
k to queue 1 is assumed zero. Assume that at the beginning of ea
h 
y
le,i.e. ea
h time the server arrives to queue 1, a global gate is 
losed, and when a queue is attended,then only 
ustomers that were present at the moment when the gate was 
losed are served. Thismodi�ed model is a spe
ial 
ase of the Cy
li
 Globally Gated polling system analyzed by Boxma,Levy and Ye
hiali [2℄, for whi
h (1), (2), (3), (4) hold (see (2.8), (2.9), (2.5) and (2.7) in [2℄).For the modi�ed model, it 
an easily be seen that the 
y
le duration is un
hanged if we alterthe order of the queues that are served and/or the order of the walking times. This followsfrom the fa
t that the number of 
ustomers served in ea
h queue is determined at the instantwhen the global gate is 
losed, and therefore is not a�e
ted by any 
hange of order of servi
eof queues. In parti
ular, the 
y
le duration remains un
hanged if every se
ond 
y
le one servesthe queues in the order N,N-1,... ,2,1 and reverses the order of the walking times. Hen
e, thedistribution of 
y
le duration in the Elevator Globally Gated s
heme is equal to the distributionof 
y
le duration in the 
ase of Cy
li
 Globally Gated servi
e dis
ipline with zero walking timefrom queue N to queue 1. The Lemma then follows.As in [2℄ we introdu
e CP and CR, the past and residual time, respe
tively, of a 
y
le.By following similar arguments as in the Lemma above (see [2℄ eq. (2.11)) we writeE he�sCP i = E he�sCRi = 1� 
(s)sE[C℄ (5)E [CP ℄ = E [CR℄ = E[C2℄2E[C℄ = 11� �2  (1� �)d(2)2d + d�+ 12 NXi=1 �ib(2)i ! (6)Waiting TimesWe 
an now derive expressions for the expe
ted waiting times in the Elevator GloballyGated system. Consider an arbitrary 
ustomer M at queue k. As the distributions of the upand down 
y
les are the same, with probability 0.5 he arrives during an up 
y
le, and withprobability 0.5 he arrives during a down 
y
le. Thus, denoting the waiting time by Wk, we 
anwrite E[Wk℄ = 0:5�E �Wk ���� servermoves up �+E �Wk ���� servermoves down �� (7)



5The waiting time, when the server moves down, is 
omposed of (i) the residual 
y
letime CR, (ii) the servi
e times of all 
ustomers who arrive at queues i < k during the 
y
le inwhi
h M arrives, (iii) the walking times from queue 1 to queue k, (iv) the servi
e times of all
ustomers who arrive at queue k during the past part CP of the 
y
le in whi
h M arrives. Thefour terms are identi
al to those appearing in the Cy
li
 Globally Gated dis
ipline. Denotingby W (m)k the mth 
omponent of the waiting time of M, from equation (2.17) of Boxma, Levyand Ye
hiali [2℄, the sum of the expe
tations of the four terms is given by4Xm=1E hW (m)k i = E[Wkjdown℄ = (1 + 2 k�1Xi=1 �i + �k)E[CR℄ + k�1Xi=1 di (8)Arguing similarly for the 
ase where M arrives while the server is moving up, we haveE[Wkjup℄ = (1 + 2 NXi=k+1 �i + �k)E[CR℄ + N�1Xi=k di (9)Combining (7), (8) and (9) we obtainE[Wk℄ = (1 + �)E[CR℄ + 0:5d (10)That is, the expe
ted waiting time is equal for all queues. This is the only known non-symmetri
polling system that exhibits su
h a `fairness' phenomenon. (For further dis
ussion on fairness,the reader is referred to Boxma [3℄). An explanation of Equation (10) is the following: E[Wk℄ =E[CR℄+0:5d+ mean servi
e in same 
y
le before 
ustomer M; the last term follows immediatelyby adding the 2nd and 4th term in E[Wk℄ in the de
omposition above.Comparing the Cy
li
 Globally Gated regime with the 
orresponding Elevator GloballyGated regime we have E 264Wk ������� Cy
li
GloballyGated 375�E 264Wk ������� ElevatorGloballyGated 375 =0�k�1Xi=1 �i � NXi=k+1�i1AE[CR℄ + 0:5 k�1Xi=1 di � N�1Xi=k di! (11)



6Optimization in the Elevator S
hemeLet ai def= 2E[CR℄�i + di; (i = 1; 2; :::; N): Then,E[Wkjdown℄ = E[CR℄(1 + �k) + k�1Xi=1 aiE[Wkjup℄ = E[CR℄(1 + �k) + NXi=k+1ai + dkIt follows that�k def= E[Wkjdown℄�E[Wkjup℄ = k�1Xi=1 ai � NXi=k+1 ai � dkand it is 
lear that �k is an in
reasing fun
tion of k.One goal is to arrange the 
hannels su
h that max1�k�Nfj�kjg is as small as possible, asj�kj is a measure of the variation in waiting times in
urred in 
hannel k. Let �0 = f1; 2; :::; Ngbe an order of the 
hannels. Now, under any order of queues 2 to N, we have�1 = � NXi=2 ai � d1 = �A+ a1 � d1 < 0�N = N�1Xi=1 ai � dN = A� aN � dN > 0where, A def= PNi=1 ai . Therefore, sin
e dN = 0max1�k�Nfj�kjg = max(j�1j; j�N j) = maxfA� a1 + d1; A� aN � dNg= maxfA� (2E[CR℄�1); A� (2E[CR℄�N )g (12)It follows from (12) that max1�k�Nfj�kjg is minimized if 
hannel 1 is the one with thehighest value of �i and 
hannel N is the one with the se
ond highest value of �i, or vi
e versa.A question that still remains open is how to arrange the 
hannels su
h that the sum ofthe absolute values of �k, i.e. PNk=1 j�kj, is minimized.
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