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Abstract

We consider a polling system consisting of N queues and a single server where polling
is performed according to an Elevator (scan) scheme. The server first serves queues in the
‘up’ direction, i.e. in the order 1,2,...,N-1,N, and then serves these queues in the opposite
(‘down’) direction, i.e. visiting them in the order N N-1,...21. The server then changes
direction again, and so on. A globally gating regime is used each time the server changes
direction. We show that, for this Elevator scheme, the expected waiting times in all
channels are equal. This is the only known non-symmetric polling system that exhibits
such a fairness phenomenon. We then discuss the problem of optimally ordering the queues
so as to minimize some measure of variability of the waiting times.

Keywords: Polling, Globally Gating, Elevator policy.

1 Introduction

We consider a polling system with N independent channels, where channel i (i = 1,2,..., N) is

modeled as an M/G/1—type queue. The arrival stream to queue i is Poisson with rate \;, and
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service times are distributed as B;, having Laplace-Stieltjes Transform (LST) b7 (s), and first
2

and second moments b; and b,”’, respectively. We denote by p; def A;bi, and by p def Zi]\il Pi

the traffic offered to channel 7, and to the system at large, respectively.

The time it takes the server to move from the ith to the 7 + 1st queue is called the ith
walking time, and is denoted by D;. We assume that the time it takes for a movement of the
server from queue i to queue 7 + 1 has the same distribution as the time it takes to move in
the opposite direction, i.e. from queue 7 + 1 to queue 7. We assume that the walking times
2

are independent, with LST d;(s), and first and second moments d; and d;”’, respectively. Let

D = Zi]\sl D; be the total walking time in one direction, and denote by d, d? and d*(s) the

expectation, second moment and LST of D, respectively.

We consider the Elevator (or scan) polling scheme, where the server first visits the queues
in one direction, i.e. in the order 1,2,...,N (‘up’ direction), and then reverses its orientation and
visits the queues in the opposite (‘down’) direction, i.e. going through queues N,N-1,....2,1. Tt
then changes its direction again, and so on. This type of service discipline is encountered in
many applications. e.g. it models a common scheme of addressing a hard disk for writing (or
reading) information on (or from) different tracks (see e.g. Tanenbaum [8] pp. 143-146, for a

brief discussion of various techniques for head movement in disks).

Compared with Cyclic polling, the Elevator scheme ‘saves’ the return walking time from
queue N to queue 1. This saving may be a significant factor in decreasing cycle duration
and expected waiting times, since in many systems the return walking time from N to 1 is
considerably large. In the case of hard disks this return walking time represents the movement
of the head all the way back from the Nth track to the first, which means that the time so
waisted may be considerably larger than any other walking time. (The main factor in the access
time to a disk is the seek time, which is the time it takes to move the head from one track to

another).

All service disciplines that have been considered in the literature with relation to cyclic
movement (e.g. the Gated, Exhaustive, Limited, Globally Gated) can also be implemented
with the Elevator approach (see Coffman and Hofri [4], Swartz [5] and Takagi and Murata [7]).
It should be noted that these Elevator service disciplines are special cases of a general polling
table (see, e.g. Baker and Rubin [1]).

We shall consider the following version of the Elevator scheme based on the recently
introduced Globally Gated discipline (Boxma, Levy and Yechiali [2]). At the start of the up
movement all gates are closed and the server, while moving from queue 1 to queue N, serves in
each queue only those customers that were present at the instant when the gates were closed.

When service ends in queue N (at the end of the up movement), all gates are closed once more



and service is immediately given again to the customers present at queue N (i.e. to those who
arrived during the period that the server was moving from queue 1 to queue N and was serving
these queues). The server then goes back through queues N, N — 1,...,2,1, serving only those
customers that were present when the gates were last closed. When this cycle is finished in
queue 1, all gates are immediately closed, service starts in queue 1, and the direction is reversed

again.

We shall call the period during which the server moves up an ‘up cycle’, and the period
during which the server moves down a ‘down cycle’. A ‘cycle’ will be either an up cycle or a

down cycle.

We show for this Elevator scheme that the expected waiting times in all channels
are equal. This is the only known non-symmetric polling system that exhibits such a fairness
phenomenon. We then discuss the problem of optimally ordering the queues so as to minimize

some measure of variability of the waiting times.

2 Performance Measures and Optimization
Cycle Duration

Lemma 1 The distribution of a cycle duration C (in steady state) does not depend on the

direction, and

B[] = —— (1)

B[C?) = - _1p2 <d<2> +2dpE[C] + i Ain(Q)E[C]> . (2)
i=1

Denote 7y(s) L [6*50] and 6(s) def SN (1 = bi(s)), then
v(s) = d*(s)y (9(s)) (3)

Define recursively 6% (s) ©f ¢ and 50D (s) &t 5 (5(j_1)(s)), then

1) =TT (59) (@
=0

Proof: One can conceive an alternative interpretation of the Elevator Globally Gated scheme.
It can be assumed, that when completing serving queue N at the end of the up movement, there

is an extra walking time of zero duration to queue 1. When the server now arrives at queue 1,



all gates are closed, the server jumps to queue N in no time, and then goes down visiting queues
N,N —1,...,1, serving all customers marked when the gates were last closed. After serving
queue 1 all gates are again closed and the server goes up again, serving all customers present

at the moment the gates were closed, etc.

Consider now a polling system with the same arrival, service times and walking time
distributions, but where the server moves cyclically between the queues. The walking time
between queue N back to queue 1 is assumed zero. Assume that at the beginning of each cycle,
i.e. each time the server arrives to queue 1, a global gate is closed, and when a queue is attended,
then only customers that were present at the moment when the gate was closed are served. This
modified model is a special case of the Cyclic Globally Gated polling system analyzed by Boxma,
Levy and Yechiali [2], for which (1), (2), (3), (4) hold (see (2.8), (2.9), (2.5) and (2.7) in [2]).
For the modified model, it can easily be seen that the cycle duration is unchanged if we alter
the order of the queues that are served and/or the order of the walking times. This follows
from the fact that the number of customers served in each queue is determined at the instant
when the global gate is closed, and therefore is not affected by any change of order of service
of queues. In particular, the cycle duration remains unchanged if every second cycle one serves
the queues in the order N,N-1,... ;2,1 and reverses the order of the walking times. Hence, the
distribution of cycle duration in the Elevator Globally Gated scheme is equal to the distribution
of cycle duration in the case of Cyclic Globally Gated service discipline with zero walking time

from queue N to queue 1. The Lemma then follows. [ ]

As in [2] we introduce Cp and Cp, the past and residual time, respectively, of a cycle.

By following similar arguments as in the Lemma above (see [2] eq. (2.11)) we write

el = o] - 5700 .
_ _ B[ 1 d® Loy,
E[Cp]=FE[CRr] = 2B[C] T ((1 —p)og Tdot ;Aibf (6)

Waiting Times

We can now derive expressions for the expected waiting times in the Elevator Globally
Gated system. Consider an arbitrary customer M at queue k. As the distributions of the up
and down cycles are the same, with probability 0.5 he arrives during an up cycle, and with

probability 0.5 he arrives during a down cycle. Thus, denoting the waiting time by W}, we can

server } o {Wk server ]) (7)

moves up moves down

write

E[W] =05 (E {Wk




The waiting time, when the server moves down, is composed of (i) the residual cycle
time Cg, (ii) the service times of all customers who arrive at queues 7 < k during the cycle in
which M arrives, (iii) the walking times from queue 1 to queue k, (iv) the service times of all
customers who arrive at queue k during the past part C'p of the cycle in which M arrives. The
four terms are identical to those appearing in the Cyclic Globally Gated discipline. Denoting
by W,gm) the mth component of the waiting time of M, from equation (2.17) of Boxma, Levy

and Yechiali [2], the sum of the expectations of the four terms is given by

4 k—1 k—1
S° B W] = EWildown] = (1 +2 Y pi + p) EICR] + 3 d; (8)
m=1 =1 =1

Arguing similarly for the case where M arrives while the server is moving up, we have

N N-1
EWilupl = (142 Y pi+p)BICRl + 3 d 9)
i=k+1 1=k
Combining (7), (8) and (9) we obtain
EWg] = (14 p)E[Cr] + 0.5d (10)

That is, the expected waiting time is equal for all queues. This is the only known non-symmetric
polling system that exhibits such a ‘fairness’ phenomenon. (For further discussion on fairness,
the reader is referred to Boxma [3]). An explanation of Equation (10) is the following: E[W}] =
E[CRr]+0.5d+ mean service in same cycle before customer M; the last term follows immediately

by adding the 2nd and 4th term in E[Wj] in the decomposition above.

Comparing the Cyclic Globally Gated regime with the corresponding Elevator Globally

Gated regime we have

Cyclic Elevator
E W, | Globally | — E (Wi | Globally | =
Gated Gated

k-1 N k-1 N-1
(Z pi— Y. Pi) E[CRr]+0.5 (Z di— Y di) (11)
i=1

i=k+1 =1 i=k



Optimization in the Elevator Scheme

Let a; ¥ 2E[CRlp;i + di, (i=1,2,...,N). Then,

k—1
E[Wy|down] = E[CR)(1+p) + 3 a;
i=1
N
E[Wy|up) = E[CR)(1 +pr) + Y a;i +dj
i—=k+1
It follows that
Ay © E[Wy|down] — E[W|up] = Z a; = Y ai—dy

i=k+1

and it is clear that Ay is an increasing function of k.
One goal is to arrange the channels such that lg}ca%XNﬂAkH is as small as possible, as

|Ag| is a measure of the variation in waiting times incurred in channel k. Let mp = {1,2,..., N}

be an order of the channels. Now, under any order of queues 2 to N, we have

N
A1=—Zai—d1=—A+a1—d1<0
=2
N-1
Ay = Zai—dN:A—aN—dN>0
=1

def .
where, A = Zf\;l a; . Therefore, since dy =0

lg}czszﬂAkH max(|A],|An|) = max{A —a; +d1,A —an — dn}

— max{A — (2B[Cplp), A - (2E[Crlon)} (12)

It follows from (12) that 1g}ca<XN{|Ak|} is minimized if channel 1 is the one with the
highest value of p; and channel N is the one with the second highest value of p;, or vice versa.

A question that still remains open is how to arrange the channels such that the sum of

the absolute values of A, i.e. Y0, |Agl, is minimized.
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