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1 IntrodutionWe onsider a polling system with N independent hannels, where hannel i (i = 1; 2; :::; N) ismodeled as an M=G=1�type queue. The arrival stream to queue i is Poisson with rate �i, and�Supported by a Grant from the Frane-Israel Sienti� Cooperation (in Computer Siene and Engineering)between the Frenh Ministry of Researh and Tehnology and the Israeli Ministry of Siene and Tehnology,Grant Number 3321190. 1



2servie times are distributed as Bi, having Laplae-Stieltjes Transform (LST) b�i (s), and �rstand seond moments bi and b(2)i , respetively. We denote by �i def= �ibi, and by � def= PNi=1 �ithe traÆ o�ered to hannel i, and to the system at large, respetively.The time it takes the server to move from the ith to the i + 1st queue is alled the ithwalking time, and is denoted by Di. We assume that the time it takes for a movement of theserver from queue i to queue i + 1 has the same distribution as the time it takes to move inthe opposite diretion, i.e. from queue i + 1 to queue i. We assume that the walking timesare independent, with LST d�i (s), and �rst and seond moments di and d(2)i , respetively. LetD = PN�1i=1 Di be the total walking time in one diretion, and denote by d, d(2) and d�(s) theexpetation, seond moment and LST of D, respetively.We onsider the Elevator (or san) polling sheme, where the server �rst visits the queuesin one diretion, i.e. in the order 1,2,...,N (`up' diretion), and then reverses its orientation andvisits the queues in the opposite (`down') diretion, i.e. going through queues N,N-1,...,2,1. Itthen hanges its diretion again, and so on. This type of servie disipline is enountered inmany appliations. e.g. it models a ommon sheme of addressing a hard disk for writing (orreading) information on (or from) di�erent traks (see e.g. Tanenbaum [8℄ pp. 143-146, for abrief disussion of various tehniques for head movement in disks).Compared with Cyli polling, the Elevator sheme `saves' the return walking time fromqueue N to queue 1. This saving may be a signi�ant fator in dereasing yle durationand expeted waiting times, sine in many systems the return walking time from N to 1 isonsiderably large. In the ase of hard disks this return walking time represents the movementof the head all the way bak from the Nth trak to the �rst, whih means that the time sowaisted may be onsiderably larger than any other walking time. (The main fator in the aesstime to a disk is the seek time, whih is the time it takes to move the head from one trak toanother).All servie disiplines that have been onsidered in the literature with relation to ylimovement (e.g. the Gated, Exhaustive, Limited, Globally Gated) an also be implementedwith the Elevator approah (see Co�man and Hofri [4℄, Swartz [5℄ and Takagi and Murata [7℄).It should be noted that these Elevator servie disiplines are speial ases of a general pollingtable (see, e.g. Baker and Rubin [1℄).We shall onsider the following version of the Elevator sheme based on the reentlyintrodued Globally Gated disipline (Boxma, Levy and Yehiali [2℄). At the start of the upmovement all gates are losed and the server, while moving from queue 1 to queue N, serves ineah queue only those ustomers that were present at the instant when the gates were losed.When servie ends in queue N (at the end of the up movement), all gates are losed one more



3and servie is immediately given again to the ustomers present at queue N (i.e. to those whoarrived during the period that the server was moving from queue 1 to queue N and was servingthese queues). The server then goes bak through queues N;N � 1; :::; 2; 1, serving only thoseustomers that were present when the gates were last losed. When this yle is �nished inqueue 1, all gates are immediately losed, servie starts in queue 1, and the diretion is reversedagain. We shall all the period during whih the server moves up an `up yle', and the periodduring whih the server moves down a `down yle'. A `yle' will be either an up yle or adown yle.We show for this Elevator sheme that the expeted waiting times in all hannelsare equal. This is the only known non-symmetri polling system that exhibits suh a fairnessphenomenon. We then disuss the problem of optimally ordering the queues so as to minimizesome measure of variability of the waiting times.2 Performane Measures and OptimizationCyle DurationLemma 1 The distribution of a yle duration C (in steady state) does not depend on thediretion, and E[C℄ = d1� � (1)E[C2℄ = 11� �2  d(2) + 2d�E[C℄ + NXi=1 �ib(2)i E[C℄! : (2)Denote (s) def= E he�sCi and Æ(s) def= PNi=1 �i(1� b�i (s)), then(s) = d�(s) (Æ(s)) (3)De�ne reursively Æ(0)(s) def= s and Æ(j)(s) def= Æ �Æ(j�1)(s)�, then(s) = 1Yj=0d� �Æ(j)(s)� (4)Proof: One an oneive an alternative interpretation of the Elevator Globally Gated sheme.It an be assumed, that when ompleting serving queue N at the end of the up movement, thereis an extra walking time of zero duration to queue 1. When the server now arrives at queue 1,



4all gates are losed, the server jumps to queue N in no time, and then goes down visiting queuesN;N � 1; :::; 1, serving all ustomers marked when the gates were last losed. After servingqueue 1 all gates are again losed and the server goes up again, serving all ustomers presentat the moment the gates were losed, et.Consider now a polling system with the same arrival, servie times and walking timedistributions, but where the server moves ylially between the queues. The walking timebetween queue N bak to queue 1 is assumed zero. Assume that at the beginning of eah yle,i.e. eah time the server arrives to queue 1, a global gate is losed, and when a queue is attended,then only ustomers that were present at the moment when the gate was losed are served. Thismodi�ed model is a speial ase of the Cyli Globally Gated polling system analyzed by Boxma,Levy and Yehiali [2℄, for whih (1), (2), (3), (4) hold (see (2.8), (2.9), (2.5) and (2.7) in [2℄).For the modi�ed model, it an easily be seen that the yle duration is unhanged if we alterthe order of the queues that are served and/or the order of the walking times. This followsfrom the fat that the number of ustomers served in eah queue is determined at the instantwhen the global gate is losed, and therefore is not a�eted by any hange of order of servieof queues. In partiular, the yle duration remains unhanged if every seond yle one servesthe queues in the order N,N-1,... ,2,1 and reverses the order of the walking times. Hene, thedistribution of yle duration in the Elevator Globally Gated sheme is equal to the distributionof yle duration in the ase of Cyli Globally Gated servie disipline with zero walking timefrom queue N to queue 1. The Lemma then follows.As in [2℄ we introdue CP and CR, the past and residual time, respetively, of a yle.By following similar arguments as in the Lemma above (see [2℄ eq. (2.11)) we writeE he�sCP i = E he�sCRi = 1� (s)sE[C℄ (5)E [CP ℄ = E [CR℄ = E[C2℄2E[C℄ = 11� �2  (1� �)d(2)2d + d�+ 12 NXi=1 �ib(2)i ! (6)Waiting TimesWe an now derive expressions for the expeted waiting times in the Elevator GloballyGated system. Consider an arbitrary ustomer M at queue k. As the distributions of the upand down yles are the same, with probability 0.5 he arrives during an up yle, and withprobability 0.5 he arrives during a down yle. Thus, denoting the waiting time by Wk, we anwrite E[Wk℄ = 0:5�E �Wk ���� servermoves up �+E �Wk ���� servermoves down �� (7)



5The waiting time, when the server moves down, is omposed of (i) the residual yletime CR, (ii) the servie times of all ustomers who arrive at queues i < k during the yle inwhih M arrives, (iii) the walking times from queue 1 to queue k, (iv) the servie times of allustomers who arrive at queue k during the past part CP of the yle in whih M arrives. Thefour terms are idential to those appearing in the Cyli Globally Gated disipline. Denotingby W (m)k the mth omponent of the waiting time of M, from equation (2.17) of Boxma, Levyand Yehiali [2℄, the sum of the expetations of the four terms is given by4Xm=1E hW (m)k i = E[Wkjdown℄ = (1 + 2 k�1Xi=1 �i + �k)E[CR℄ + k�1Xi=1 di (8)Arguing similarly for the ase where M arrives while the server is moving up, we haveE[Wkjup℄ = (1 + 2 NXi=k+1 �i + �k)E[CR℄ + N�1Xi=k di (9)Combining (7), (8) and (9) we obtainE[Wk℄ = (1 + �)E[CR℄ + 0:5d (10)That is, the expeted waiting time is equal for all queues. This is the only known non-symmetripolling system that exhibits suh a `fairness' phenomenon. (For further disussion on fairness,the reader is referred to Boxma [3℄). An explanation of Equation (10) is the following: E[Wk℄ =E[CR℄+0:5d+ mean servie in same yle before ustomer M; the last term follows immediatelyby adding the 2nd and 4th term in E[Wk℄ in the deomposition above.Comparing the Cyli Globally Gated regime with the orresponding Elevator GloballyGated regime we have E 264Wk ������� CyliGloballyGated 375�E 264Wk ������� ElevatorGloballyGated 375 =0�k�1Xi=1 �i � NXi=k+1�i1AE[CR℄ + 0:5 k�1Xi=1 di � N�1Xi=k di! (11)



6Optimization in the Elevator ShemeLet ai def= 2E[CR℄�i + di; (i = 1; 2; :::; N): Then,E[Wkjdown℄ = E[CR℄(1 + �k) + k�1Xi=1 aiE[Wkjup℄ = E[CR℄(1 + �k) + NXi=k+1ai + dkIt follows that�k def= E[Wkjdown℄�E[Wkjup℄ = k�1Xi=1 ai � NXi=k+1 ai � dkand it is lear that �k is an inreasing funtion of k.One goal is to arrange the hannels suh that max1�k�Nfj�kjg is as small as possible, asj�kj is a measure of the variation in waiting times inurred in hannel k. Let �0 = f1; 2; :::; Ngbe an order of the hannels. Now, under any order of queues 2 to N, we have�1 = � NXi=2 ai � d1 = �A+ a1 � d1 < 0�N = N�1Xi=1 ai � dN = A� aN � dN > 0where, A def= PNi=1 ai . Therefore, sine dN = 0max1�k�Nfj�kjg = max(j�1j; j�N j) = maxfA� a1 + d1; A� aN � dNg= maxfA� (2E[CR℄�1); A� (2E[CR℄�N )g (12)It follows from (12) that max1�k�Nfj�kjg is minimized if hannel 1 is the one with thehighest value of �i and hannel N is the one with the seond highest value of �i, or vie versa.A question that still remains open is how to arrange the hannels suh that the sum ofthe absolute values of �k, i.e. PNk=1 j�kj, is minimized.
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