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Abstract: The Poisson process is a stochastic counting process that arises
naturally in a large variety of daily-life situations. We present a few defini-
tions of the Poisson process and discuss several properties as well as relations
to some well-known probability distributions. We further briefly discuss the
compound Poisson process.
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1 Introduction

Many processes in everyday life that ”count” events up to a particular point
in time can be accurately described by the so-called Poisson process, named
after the French scientist Siméon Poisson (1781-1840; appointed as full pro-
fessor at the Ecole Polytechnique, Paris, in 1806 as a successor of Fourier).
An (ordinary) Poisson process is a special Markov process [ref. to Stadje
in this volume], in continuous time, in which the only possible jumps are to
the next higher state. A Poisson process may also be viewed as a counting
process that has particular, desirable, properties. In this text we shall first
give a few equivalent definitions of the Poisson process (Section 2). Subse-
quently, we describe the relation between the Poisson process and the (neg-
ative) exponential distribution (Section 3); we then show relations between
the Poisson process and the uniform distribution (Section 4), and between
the Poisson process and the binomial distribution (Section 5). In Section 6
we discuss a few ”Poisson conservation” results that are extremely useful
in, e.g., analyzing queueing networks in which customers arrive according
to a Poisson process. Section 7 is devoted to the uniformization principle,
a useful principle in studying the transient behavior of Markov processes.
Finally, Section 8 considers a generalisation of the Poisson process, viz., the
Compound Poisson process.

2 Definitions of the Poisson process

A counting process {C(t), t ≥ 0} is a stochastic process that keeps count
of the number of events that have occurred up to time t. Obviously, C(t)
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is non-negative and integer-valued for all t ≥ 0. Furthermore, C(t) is non-
decreasing in t. C(t)−C(s) equals the number of events in the time interval
(s, t], s < t.

C(t) could, e.g., denote the number of arrivals of customers at a railway
station in (0, t], or the number of accidents on a particular highway in that
time interval, or the number of births of animals in a particular zoo in
(0, t], or the number of calls to a telephone call-center during that period.
A Poisson process is a counting process that has the desirable additional
properties that the number of events in disjoint intervals are independent
(”independent increments”) and that the number of events in any given
interval depends only on the length of that interval, and not on its particular
position in time (”stationary increments”). In the case of the arrivals at the
railway station, the stationarity assumption is clearly not fulfilled; there will
be many more arrivals between 5 P.M. and 6 P.M. than between, say, 5 A.M.
and 6 A.M. Still, one might wish to study the arrival process at the railway
station during the rush hour. Restricting oneself to subsequent working days
between 5 P.M. and 6 P.M. does allow one to use the stationary increments
assumption.

Similarly, the independent increments assumption may be violated in the
zoo example, but it will be a reasonably accurate representation of reality
in many cases. From the viewpoint of mathematical tractability, these two
properties are extremely important. We refer to Feller [3] for an extensive
and lucid discussion of stochastic processes with stationary and independent
increments. In the sequel we make an additional assumption, which reduces
counting processes with stationary and independent increments to Poisson
processes.

Definition 2.1
A Poisson process {N(t), t ≥ 0} is a counting process with the following
additional properties:
(i) N(0) = 0.
(ii) The process has stationary and independent increments.
(iii) P(N(h) = 1) = λh + o(h) and P(N(h) ≥ 2) = o(h), h ↓ 0, for some
λ > 0.

Above, the o(h) symbol indicates that the ratio P(N(h)≥2)
h tends to zero for

h ↓ 0.

An equivalent definition is:
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Definition 2.2
A Poisson process {N(t), t ≥ 0} is a counting process with the following
additional properties:
(i) N(0) = 0.
(ii) The process has stationary and independent increments.
(iii) P(N(t) = n) = e−λt (λt)n

n! , n = 0, 1, 2, . . . .

Of course, the last property states that the number of events in any inter-
val of length t is Poisson distributed with mean λt. λ is called the rate
of the Poisson process. It readily follows that the Probability Generating
Function of N(t) is given by E[zN(t)] =

∑∞
n=0 znP(N(t) = n) = e−λ(1−z)t.

Differentiation yields E[N(t)] = λt, E[N(t)(N(t) − 1)] = (λt)2, and hence
Var(N(t)) = λt.

The last property of Definition 2.1 may look awkward at first sight, but
is insightful. It states that having two or more events in a small time interval
is extremely unlikely, while the probability of a single event is approximately
proportional to the length of that small interval.

Remark 2.1
A Poisson process arises naturally in large populations. Consider such a
population of size n, and observe the number of events of a certain type,
occuring during a unit time interval. For example, if the probability of an
individual calling a call-center between, say, 9.00 and 9.01 is p, then the
total number of calls during that minute is binomially distributed with pa-
rameters n and p. If n becomes large and p gets small such that np → λ > 0,
the result is a Poisson process with rate λ of calls per minute.

We close this section by giving yet another, equivalent, definition of the
Poisson process.

Definition 2.3
A Poisson process {N(t), t ≥ 0} is a counting process with the following
additional properties:
(i) N(0) = 0.
(ii) The only changes in the process are unit jumps upward. The intervals
between jumps are independent, exponentially distributed random variables
with mean 1/λ, λ > 0.

Notice that Part (iii) of Definition 2.2 indeed implies that P(N(t) = 0) = e−λt,
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i.e., that the interval until the first event is exponentially distributed with
mean 1/λ, denoted exp(λ). The exponential distribution has the memory-
less property (uniquely among all continuous distributions): If T ∼ exp(λ),
then P(T > s + t|T > s) = P(T > t). It should also be noted that the
memoryless property of the exponential distribution and the independence
of successive jump intervals indeed imply that increments are stationary and
independent.

Each of the above equivalent definitions has features that make it useful
for deriving particular properties, as we shall see in the sequel.

3 Relation between the Poisson process and the
exponential distribution

There is an intimate relation between the Poisson process and the expo-
nential distribution, as is already being revealed by Definition 2.3. In this
section we go somewhat deeper into this relation.

Let T1 denote the time of the first event of a Poisson process and let
Tn denote the time between the (n − 1)st and nth event, n = 2, 3, . . . .
Let Sn =

∑n
i=1 Ti denote the instant of the nth event. An important

observation is that
N(t) ≥ n ↔ Sn ≤ t.

That is, the number of events during (0, t] is at least n iff the time until the
nth event is no larger than t. Hence

P(N(t) ≥ n) = P(Sn ≤ t), n = 1, 2, . . . , t ≥ 0.

Definition 2.2 implies that P(N(t) ≥ n) =
∑∞

j=n e−λt (λt)j

j! , and hence

P(Sn ≤ t) = 1−
n−1∑
j=0

e−λt (λt)j

j!
, n = 1, 2, . . . , t ≥ 0. (1)

This is the well-known result that the sum of n independent, exp(λ) dis-
tributed, random variables is Erlang(n;λ) distributed. In particular, T1 =
S1 is exp(λ). The density of this Erlang distribution equals λe−λt (λt)n−1

(n−1)! ,
n = 1, 2, . . . , t > 0, which also follows from the reasoning below:

P(t < Sn ≤ t + h) = P(N(t) = n− 1, one event in (t, t + h]) + o(h)
= P(N(t) = n− 1)P(one event in (t, t + h]) + o(h)

= e−λt (λt)n−1

(n− 1)!
λh + o(h). (2)
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Now divide by h and let h ↓ 0.

A well-known property of the exponential distribution is that it has constant
failure rate equal to λ: if T is exp(λ) distributed, then

P(T ≤ t + h|T ≥ t) = λh + o(h), h ↓ 0,

implying that limh↓0P(T ≤ t + h|T ≥ t)/h = λ. We have also seen this
property in Definition 2.1 of the Poisson process.

To illustrate the concept of failure rate, consider a probability distribu-
tion function F (·) describing the life time of a device, and denote its density
by f(·). Then the failure rate of F (·) is defined as r(t) = f(t)/[1 − F (t)];
r(t)dt gives the probability that the device fails during (t, t+dt], given that
it is ‘alive’ at time t.

4 Relations between the Poisson process and the
uniform distribution

In this section we discuss a property of the Poisson process that often is
very useful in applications. If exactly one event of a Poisson process has
occurred in (0, t], then the time of that occurrence is uniformly distributed
on (0, t). The informal explanation is that, because of the stationary and
independent increments, each subinterval of equal length in (0, t) has the
same probability to contain that event. The formal derivation is:

P(T1 ≤ s|N(t) = 1)

=
P(one event in (0, s], no event in (s, t])

P(N(t) = 1)

=
P(N(s) = 1)P(N(t− s) = 0)

P(N(t) = 1)
=

s

t
, 0 ≤ s ≤ t. (3)

More generally, the following can be proved for a Poisson process: If N(t) =
n, then the event times S1, . . . , Sn are distributed like the order statistics of
n independent random variables that are uniformly distributed on (0, t).

The property that a Poisson arrival ”is just as likely to occur in any
interval” has proved to be extremely useful in, e.g., queueing theory. Firstly,
it forms the basis of the well-known PASTA property: Poisson Arrivals
See Time Averages. In queueing terms this property states that an outside
observer, arriving to a queue according to a Poisson process, sees the system
as if it were in steady state. Consider, e.g., an M/G/s queue. This is a
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queueing model in which arrivals occur according to a Poisson process (M),
requiring a generally distributed (G) service time at one of s servers. The
PASTA property implies for the M/G/s queue that the number of customers
seen by an arriving customer has the same distribution as the steady-state
number of customers. The PASTA property was first rigorously proved by
R.W. Wolff [11].

Another well-known application of the property that Poisson arrivals
are uniformly distributed over an interval is provided by the M/G/∞ queue
[9]. This is an M/G/s queue with an ample (s = ∞) number of servers.
The M/G/∞ system may be used, e.g., to model certain production or
transportation systems; the customers might then be pallets moving on a
conveyor belt, or cars on a road. Given that n arrivals have occurred in
the M/G/∞ system up to t, the above property specifies the distribution
of the arrival epochs. One can then easily determine the probability that
such a customer, who has arrived in (0, t], is still present at t. Thus one
can obtain the distribution of the number of customers L(t) in the M/G/∞
system at t, starting from an empty system at 0 (cf. Chapter 3 of Takács
[9]). It turns out that L(t) has a Poisson distribution with time-dependent
rate λ

∫ t
0 P(B > y)dy, B denoting service time. When t → ∞, one gets

the so-called stationary distribution of L(t), which is Poissonian with rate
λEB. Furthermore, the number of customers served in (0, t] is also Poisson
distributed, with rate λ

∫ t
0 P(B ≤ y)dy, and it is statistically independent of

the process {L(t), t ≥ 0}.

5 Relations between the Poisson process and the
binomial distribution

Two important consequences of the stationary and independent increments
properties are the following.
(i) For any t > u ≥ 0 and integers n ≥ k,

P(N(u) = k|N(t) = n) =
(

n

k

)
(
u

t
)k(1− u

t
)n−k, k = 0, 1, . . . , n.

That is, given that n events occured in (0, t], the probability that k of them
occured in (0, u] is given by the binomial distribution with parameters n and
‘success’ probability p = u/t.

(ii) For two independent Poisson processes N1(t) and N2(t), having rates λ1
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and λ2, respectively,

P(N1(t) = k|N1(t)+N2(t) = n) =
(

n

k

)
(

λ1

λ1 + λ2
)k(

λ2

λ1 + λ2
)n−k, k = 0, 1, . . . , n.

This result implies, in particular, that if two such processes ‘compete’ on
which one will be the first to occur, the probability that Ni(t) is ‘quicker’ is
given by λi

λ1+λ2
, i = 1, 2.

See Remark 2.1 for yet another relation between the Poisson process and
the binomial distribution.

6 Conservation properties

The Poisson process satisfies some conservation properties that greatly en-
hance its applicability. In particular, random splitting of a Poisson process
results in independent Poisson processes; similarly, merging independent
Poisson processes again produces a Poisson process. We now formalize these
statements, without proof.

Proposition 5.1
Suppose that events occur according to a Poisson process {N(t), t ≥ 0} of
rate λ. Further, suppose that each event is classified as a type i event with
probability pi ∈ (0, 1), i = 1, . . . ,K. Let Ni(t) denote the number of type-i
events in (0, t]. Then {N1(t), t ≥ 0}, . . . , {NK(t), t ≥ 0} are independent
Poisson processes with corresponding rates λp1, . . . , λpK .

Indeed, it is easy to see that an arbitrary interval of length h will contain
a type-i event with probability λpih + o(h), h ↓ 0. The independence of
the various Poisson processes is less obvious. But remember that the knowl-
edge that, say, N1(t) = j just implies that j out of the t/h intervals of
length h contain a type-1 event; it does not really imply anything about the
occurrence of events of other types.

Now consider the dual situation, in which there are K independent Pois-
son processes {N1(t), t ≥ 0}, . . . , {NK(t), t ≥ 0} with corresponding rates
λ1, . . . , λK , and in which we count together all events of all these processes.

Proposition 5.2
The sum process {N(t), t ≥ 0} of K independent Poisson processes {Ni(t), t ≥
0}, i = 1, . . . ,K, with N(t) =

∑K
i=1 Ni(t), t ≥ 0, is a Poisson process with

rate equal to the sum
∑K

i=1 λi of the rates of the individual processes.
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This proposition can be easily proved using any of the three Definitions 2.1,
2.2 or 2.3. E.g., it is straightforward (and intuitive) to verify the following
property of Definition 2.1: P(N(h) = 1) = λh+o(h), from the similar prop-
erty of the individual Poisson processes. The proposition also follows using
the multiplication property of Probability Generating Functions of indepen-
dent random variables and using the fact that the PGF of Ni(t) equals
e−λi(1−z)t. Alternatively, Definition 2.3 also works well here; use the fact
that the minimum of K independent exp(λi) distributed random variables
is exp(

∑K
i=1 λi) distributed, combined with the memoryless property of the

exponential distribution.

Networks of queues
In 1956 Paul Burke [2] proved the Output Theorem, a result that plays
a crucial role in the study of networks of queues. This theorem states the
following: Consider an M/M/s queue, viz., a queueing system with s servers,
First-Come-First-Served service operation, a Poisson(λ) arrival process of
customers, and independent exp(µ) distributed service times. Assume that
λ < sµ, implying that the process of number of customers in the system
reaches an equilibrium distribution. Then the output process of the M/M/s
queue, counting the number of departures in (0, t], is a Poisson process with
rate λ. It can be shown that, when s < ∞, the above ”conservation of
Poisson flows” property only holds for the multiserver queue when service
times are exponential. However, when s = ∞, it holds for general service
times.

In 1957 Reich [7] provided an extremely elegant proof of the Output The-
orem. He observed that the process constituted by the number of customers
in the M/M/s system is a reversible stochastic process. Viewed backward in
time, this process is statistically indistinguishable from the original process.
The output process of the reversed-in-time M/M/s queue coincides with the
Poisson input process of the original M/M/s queue, and hence is also Pois-
sonian. Using once more the reversibility property leads to the conclusion
that the output process of the original M/M/s queue is a Poisson process.

The above discussed properties of conservation of Poisson flows under merg-
ing, splitting and passing through an M/M/s system allows one to analyze
the queue length process in a network of queues Q1, . . . , QK , all having ex-
ternal Poisson arrival processes, exponential service times, possibly multiple
servers, and with Markovian routing of customers from queue to queue. In-
deed, the output of an M/M/si queue Qi is Poisson. If a fraction pij is routed
to Qj , then the resulting flow is again Poisson; and if it merges with another,
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independent, Poisson process, the resulting process is also Poisson. This is
only part of the explanation why such networks of exponential multiserver
queues have a joint queue length distribution that exhibits a product-form,
the ith term of the product corresponding to an M/M/si queue Qi in iso-
lation. For an excellent exposition of the theory of product-form queueing
networks we refer to Kelly [5].

7 Uniformization

In many application areas it is important to determine the transient behav-
ior of a Markov process. Consider a Markov process {X(t), t ≥ 0}, with
transition probabilities Pij and visit times to all states being exponentially
distributed with the same mean 1/λ. Hence the number of transitions in
(0, t] is Poisson distributed with mean λt. Denoting the corresponding Pois-
son process by {N(t), t ≥ 0} we have:

P(X(t) = j|X(0) = i) =
∞∑

n=0

P
(n)
ij e−λt (λt)n

n!
, (4)

where P
(n)
ij denote the n-step transition probabilities between the states; put

differently,these are the n-step transition probabilities of the discrete-time
Markov chain underlying the Markov process. The above formula is derived
by conditioning on the number of transitions in (0, t].

Formula (4) is computationally advantageous, as the infinite sum can be
truncated while the P

(n)
ij can be evaluated efficiently. An interesting idea,

apparently due to A. Jensen [4], allows extension of this principle to the case
of unequal mean visit times. Let us assume that the mean visit time to state
i is 1/λi. Let λ be such that λ ≥ λi for all i. Consider a Poisson process with
rate λ. Now consider a Markov process that spends exp(λ) in any state i
and then jumps with probability P̂ij = λi

λ Pij to j and with probability P̂ii =
1− λi

λ back to i; one might call this a fictitious transition. Remember that
a sum of a geometrically distributed number of independent exponentially
distributed random variables is again exponentially distributed; hence the
sum of consecutive visit times to state i, before another state is visited,
is exp(λi). A little thought now shows that this new Markov process is
really the same as the original Markov process. The transient behavior of
the original Markov process can hence be inferred from that of the new
Markov process, by using Formula (4), with P

(n)
ij being replaced by the n-

step transition probabilities of the new discrete-time Markov chain that has
transition probabilities P̂ij .
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As an application of this uniformization technique, consider a system
that alternates between up and down periods, up (down) periods being
exponentially distributed with parameter µu (µd). We leave it to the reader
to verify that by taking λ = µu + µd as uniformization parameter, one gets
new transition probabilities P̂uu = P̂du = µd

µu+µd
, and hence P̂

(n)
uu = P̂

(n)
du =

µd
µu+µd

, n = 1, 2, . . . , leading to

P (X(t) = u|X(0) = u) =
µd

µu + µd
+

µu

µu + µd
e−(µu+µd)t,

and by symmetry,

P (X(t) = d|X(0) = d) =
µu

µu + µd
+

µd

µu + µd
e−(µu+µd)t.

There is a large variety of other applications of the uniformization prop-
erty in stochastic analysis and simulation, that may be found in various
textbooks; the present example is taken from Ross [8], Section 5.8.

8 The compound Poisson process

A limitation of the Poisson process is that the jumps are always of unit size.
A stochastic process {X(t), t ≥ 0} is called a Compound Poisson Process if
it can be represented by

X(t) =
N(t)∑
i=0

Yi, t ≥ 0,

where {N(t), t ≥ 0} is a Poisson process and Y1, Y2, . . . are indepen-
dent, identically distributed random variables that are also independent of
{N(t), t ≥ 0}. X(t) could, e.g. represent the accumulated workload input
into a queueing system in (0, t]: Customers arrive according to a Poisson pro-
cess {N(t), t ≥ 0}, and the ith customer requires a service time of length
Yi. Alternatively, the Poisson arrival process might represent the number
of insurance claims in (0, t], while the Yi represent independent claim sizes.
X(t) is then the total amount of monetary claims up to time t.

As another example one can vision a device subject to a series of inde-
pendent random shocks. If the damage caused by the i-th shock is Yi and
the number of shocks in (0, t] is N(t), then the total accumulated damage
up to time t is given by X(t).
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It is easily seen that, if the rate of the Poisson process equals λ and the
Yi have a common Laplace-Stieltjes transform β(s) = E[e−sYi ], then

E[e−sX(t)] = e−λ(1−β(s))t.

Differentiation then readily yields that E[X(t)] = λtEY1 and Var[X(t)] =
λtE[Y 2

1 ].
Compound Poisson processes are an important subclass of Lévy pro-

cesses [ref. to Kella contribution in this volume]. We refer to Bertoin [1] for
a detailed account of the theory of Lévy processes.

Epilogue
The Poisson process is a stochastic counting process that arises naturally
in daily-life situations in which there is a large population of individuals
who, more or less independently of each other, have a small probability of
contributing to the count in the next small time interval. The (compound)
Poisson process has beautiful mathematical properties which make it a very
powerful tool for stochastic modeling and analysis. We’d like to refer the
interested reader to the monograph of Kingman [6]. Excellent textbook
treatments can be found in, a.o., the books of Ross [8] and Tijms [10].
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