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Abstract

Data on the Internet is sent by packets that go through a network of routers. A router
drops packets either when its buffer is full or when it uses the Active Queue Management. Up
to the present, majority of the Internet routers use a simple DropTail strategy. The rate at
which a user injects the data into the network is determined by Transmission Control Protocol
(TCP). However, most connections in the Internet consist only of few packets, and TCP does
not really have an opportunity to adjust the sending rate. Thus, the data flow generated by
short TCP connections appears to be some uncontrolled stochastic process. In the present
work we try to describe the interaction of the data flow generated by short TCP connections
with a network of finite buffers. The framework of retrial queues and networks seems to be an
adequate approach for this problem. The effect of packet retransmission becomes essential when
the network congestion level is high. We consider several benchmark retrial network models.
In some particular cases explicit analytic solution is possible. If the analytic solution is not
available or too entangled, we suggest to use a fixed point approximation scheme. In particular,
we consider a network of one or two tandem M/M/1/K queues with blocking and M/M/1/c0
retrial (orbit) queue. We explicitly solve the models with K = 1, derive stability conditions,

and present several graphs based on numerical results.
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1 Introduction

Data on the Internet is sent by packets that go through a network of routers. A router drops
packets either when its buffer is full or when the router uses the Active Queue Management (AQM)
[7]. When the AQM is used, an incoming packet is dropped by the router with probability which
is a function of the average queue size. The dropped packets are then retransmitted by the sender.
The rate at which a user injects the data into the network is determined by Transmission Control
Protocol (TCP) [1, 8]. However, most connections in the Internet consist only of few packets, and
TCP does not get an opportunity to adjust the sending rate. Thus, the data flow generated by
short TCP connections appears to be a stochastic noise that cannot be correctly represented by the
utility function optimization approach [9, 11, 12]. In the present work we try to describe the data
flow generated by short TCP connections with the help of retrial networks. We note that up to the

present most of the work on retrial models has been done on a single retrial queue [2, 3, 5, 6].

Let us model the data network as a set of links L. Let I be a set of major data flows that traverse
the network. These major flows can be interpreted for instance as the aggregation of flows that go
from some Internet Service Provider (ISP) to some major Web site or portal. We assume that each
data flow i € I follows a fixed path m; = {I}, ...,li(i)}. We also define m;(u) = {vi,...,u}, that is,
m;(u) corresponds to the part of the path 7; from the source link Uli up to link u. There is a buffer
of size K associated with each link [ € L, where, if needed, the packets wait for transmission. We
denote the transmission capacity of link [ by p;. We assume that the packet transmission time is
exponentially distributed. Of course, we are aware of the fact that the routing in the Internet is
dynamic and that packets from the same TCP connection may follow different routes if some links
in the network go down. We suppose that these deficiencies are not frequent and that the routing
tables in the Internet routers do not change during long periods of time so that our assumptions
can hold. This has been shown to be the case in the Internet [14] where more than 2/3 of the
routes persist for days or even weeks. If a packet from flow ¢ is lost in some router either because
of the buffer overflow or because of the preventive drop by AQM, it is retransmited by the source
after some random time. This random time can be modelled either by M /M /1/oco or by M /M /oo
queue with retransmission rate pg;. We denote the nominal aggregated sending rate of flow ¢ € I by
Ai. By the nominal aggregated sending rate we mean the rate of flow ¢ not counting retransmited

packets. Of course, the actual sending rate including the rate of retransmited packets is higher



than the nominal rate.

The exact analysis of the above network model does not seem to be feasible for the general case.
Therefore, we propose and study particular cases and approximation schemes. For instance, we
can assume that packets are lost in buffers with some fixed probabilities. These probabilities can in
particular be functions of the buffer length, the average load or the average queue length as is the
case in the AQM routers. We call this approach a fixed point approximation. In the present work
we consider the following two particular cases: (i) a single M /M /1/K retrial queue with M /M /1 /0o
orbit queue, and (ii) two tandem M/M/1/1 queues with M /M /1/oo orbit queue. Even for these
two basic network examples the exact calculations of system characteristics are involved. Having
in hand the exact solutions for the basic network schemes helps us to determine the cases when the

fixed point approximation works well.

In section 2 we study the case with a single M/M/1/K primary queue and a M/M/1/oco orbit
queue. We derive explicit expressions for various key probabilities in the cases where K=1 and K=2,
and derive the stability condition for an arbitrary value of K. We further consider a fixed point
approximation scheme where we assume that the drop probabilities are fixed (yet, depending on
system parameters). We exhibit various graphs showing the regions where the approximation works
well. In section 3 we consider a network with two M/M/1/1 queues in tandem and a M/M/1/oc0
orbit queue. We obtain explicit solutions for certain probabilities, and derive the (involved) stability
condition. We then analyze our fixed point approximation (which coincides with the exact solution
for the single node case with K=1). Finally, we calculate mean queue sizes and present graphs

depicting the dependence of those sizes on system parameters.

2 M/M/1/K primary queue with M/M/1/oo ordit queue

Let us consider a basic single node example of retrial networks. Namely, we consider the case of one
M/M/1/K primary queue with M /M /1/oco ordit queue. Customerss arriving to a full buffer in the
primary queue are blocked and go to the orbit queue. Each orbit customer first waits in the ordit
queue and then retries to enter the primary queue after exponentially distributed time. This models
the process of packet retransmissions by the source after they are lost in the Internet routers. The

transition rate diagram of the associated Markov chain is depicted in Figure 1, where the horizontal



axis depicts the primary queue occupancy and the vertical axis depicts the number of jobs in orbit.
The present model is a particular case of the more general retrial quenve BMAP/PH/N/N + R
analysed in [10]. The authors of [10] use the matrix analytic technique [13]. In order to obtain

explicit analytical results we have decided to perform a more detail analysis of the simpler model.
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Figure 1: Transition rate diagram

We denote the steady state probabilities for this system by P;(n), i =0,1,..., K, n =0,1,..., where
the index ¢ corresponds to the number of jobs in the primary queue and the index n corresponds
to the number of jobs in the orbit queue. Also, we denote the input rate to the system by A, the

service rate of the primary queue by p and the service rate of the orbit queue by pg. We can write

the following sets of balance equations.

e For 7 = 0:
APy(0) = pP1(0),

(A+ po)Po(n) = pPi(n), n=>1,
e For 0 < i< K:
A+ ) Fi(0) = AP—1(0) + pPi41(0) + po -1 (1),
(A4 p+ po)Pi(n) = APi—1(n) + pPipa(n) + poPi-i(n+1), n>1,
e Fori=K:
(A + 1) Pg(0) = APg—1(0) + poPr—-1(1),

(A + )P (n) = APx_1(n) + poPxk—1(n+ 1) + APg(n —1), n>1,



e The set of balance equations for the transitions of the number of jobs in the orbit queue

between levels n and n 4 1 is given by
K—1
APk (n) = o Z Pi(n+1), n>0.
i=0
Using the above sets of balance equations, we derive a system of equations for the generating

functions G;(2) =3 02, 2"P;(n), i =0,1,..., K,

(A + 10)Go(2) — poFo(0) = pGi(2),
(A + p+ p0)Gi(2) — o Pi(0) = AGi—1(2) + pGit1(2) + %(Gi—l('z) —Fi1(0)), 0<i<K,

A+ 0)Gr(2) = A\Gre—1(2) + %(GK_l(z) — Pi_1(0)) + A\2Gk(2),

K-1
MG (=) = B2 3 (Gil) - Pi0)).
=0

In fact, one of the last two equations is redundant.

Next, we study the particular cases of K =1 and K = 2. Consider first K = 1. If we set z =1 in
the first and the last of the above equations for the generating functions, denote P;(-) = G;(1) and

add the normalization condition, we get the following system of equations
(A + o) Po(-) = pPr() = poFo(0),

—poFo() + APL()) = —poFo(0),
By(-) + Pi(-) =1,

which results in

A
Py()=1-72,
0(+) .
A
P() =2,
1(0) .
A A A A A
P0)=1-2- 221242y
1o o fe o

Furthermore, given Py(0), Go(z) and G1(z) are easily calculated from the above set of equations for
the generating functions. Since the empty system is a regeneration point, Py(0) > 0 is a necessary
and sufficient condition for the system stability. Note that the primary queue is always stable. The
stability issue is with regard to the orbit queue. The condition Py(0) > 0 is equivalent to

1
1+ po’

p< (1)
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with p = A/p and pg = A/pp. That is, A < (\/po(po +41) — 1o)/2. One can see that the stability
condition for the system composed of M/M/1/1 retrial queue and M /M /1/oco orbit queue is more
restrictive than the stability condition for the classical queue with infinite buffer. We also note that

as pg — 00, po — 0, and the above stability condition becomes the standard condition p < 1.

Next, let us analyze the case K = 2. Using again the equations for the generating functions and
setting z = 1, we obtain the following system of linear equations for Py(-), Pi(+), P2(-), Po(0) and
P1(0)

A+ 10)Po (1) — poFo(0) = pPi(-),

A+ + o) PL(-) — poPr(0) = AR () + pPa(-) + po(FPo(-) — Po(0)),
APy() = po(Po(-) = Po(0)) + po(Pr(+) = P1(0)),
APy (0) = pP1(0),
Po() + Pi(-) + Py() = 1.

The solution of the above system is given by

Ap(p + po) = A (po — p) = A
P22 + p+ o)

A (X + p+ o)
By() = 2 )
P22\ + p+ o)
— ppro(p + po) = Mpro(po — 1) = 222 g — A3
Py(0) =
o (21 + o+ po)
_ Appo(p+ po) — N po(po — ) = 22 o — X
12002\ + p1 + pao)
As in the case K = 1, the stability condition is given by

Pl(') =

)

Py (0)

Py(0) > 0,

which is equivalent to
pupio(p + po) — Apo(po — 1) — 2X%pg — A° > 0.
Sunstituting into the above inequality © = A/p and po = A/pp, we obtain the stability condition in

terms of p and pg as follows:

—(1+p0)*p* + (1 + po)p + po > 0. (2)



Solving the above quadratic inequality, we get

,0< 1+\/1+4p0

20+ po) ®)

Since 1 + /1 + 4pg > 2, the above condition (3) gives a larger region of stability than the one in
condition (1). As one could expect, the increase of the buffer space in the primary queue improves
the stability of the system. In the case of fast retransmissions (pg — 0), condition (1) can be

approximated as

p <1—po+o(po),

and condition (3) can be approximated as

p <1—pg+o(pp)-

In Figure 2 we plot the values of the right hand sides of conditions (1) and (3) for small and medium
values of py. Clearly, the stability region increases significantly when moving from K =1 to K = 2.
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Figure 2: Comparison of stability conditions for K = 1 and K = 2 (right hand sides of inequalities
(1) and (3)).

Next, let us derive the stability condition for arbitrary K. Let us enumerate the system states (n, )

in lexicographic order. Then, the Markov chain generator for the system has the block structure



Q = {Qij}i,jzo where

0 g 0 -~ 0 0
0 0 u -~ 0 0
00 0 - 0 0 ,
Q= T T s
00 0 0 o
0 0 O 0 O
[ A= (1= o) A 0 0
I —A—p—(1—=3di0)to A 0 0
0 12 —A = o — (1 - 51')0)#0 0 0
Qi = :
0 0 0 “A—p—(1=0diopo A
i 0 0 0 I —u
i>0,
0 0 0 0 0
000 0 0
000 - 00 ,
Qijtr=1| . . . |, 120,
000 --- 00
000 -~ 0 X

and the other blocks are zeros. All blocks are of dimension (K + 1) x (K + 1). Let us denote
Qo = Qii—1, Q1 = Qi 4, and Q2 = Q; ;41 for ¢« > 1. Then, the necessary and sufficient condition for

the system stability is given by the following inequalilty [4, 13]
rQ2e < xQoe, (4)
where z is an 1 x (K + 1) vector which is the unique solution to the system

2(Qo+ Q1+ Q2) =0,

ze =1,

()

and where e is the vector of ones and its dimension is (K + 1) x 1. The system (5) has an explicit

A " 1 "
.157«:33‘0( +,u0> :azopr< +p0> , r=0,.. K, (6)
1 P

solution
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with

w=(505))

Substituting (6) into (4), we obtain the following stability condition in terms of p and py.

Proposition 1 The M/M/1/K retrial queue with M/M/1/oc orbit queue is stable if and only if

K-1 r K
1+ po K (1+po
1+ ) ﬂ( )—ww (——— > 0. (7)
—1 £0 Po

First, we note that the conditions (1) and (2) are indeed particular cases of the above general

condition (7). Then, let us study the limiting case K — oo. Denote £ = p%. Using this new
notation, the condition (7) can be rewritten as follows:
K—1
L+ & —pog™ >0,
r=1
or, equivalently,
-1 5 >0 (8)
§ _ 1 pO *

Next, consider two cases 0 < £ < 1 and £ > 1. We note that the conditions 0 < £ < 1 and £ > 1 are

Lo
1+po

and p > 7 f;opo, respectively. When 0 < ¢ < 1, the condition

equivalent to the conditions p <
(8) is equivalent to

¢ —1—pptf(E—1) <.

Since 0 < £ < 1, one can always find a sufficiently large K such that the above condition is satisfied.

Thus, the system is always stable in the case p < . In the second case £ > 1, the condition (8)

£0o
1+po

is equivalent to
¢ —1—poc" (¢~ 1) >0.

We can rewrite the above condition as follows:

1
(1+Po)—00£—§—K>0-

For the limiting case K — oo, the above condition reduces to

1
¢ < +,00.
Po

or, equivalently,

p <1l



Since 7 i‘;o < 1, we can combine the two separate cases 0 < £ < 1 and £ > 1 to produce a single

stability condition: p < 1. This condition is expected as in the system with large buffer size K the

retrials are seldom and the system behaves similarly to the standard M/M/1 queue.

Now let us consider an approximate model where we assume that packets are dropped with a fixed
probability P. It was shown in [3] that the approximate model with fixed probabilities approximates
well the exact retrial model when the nominal load is small. First, we consider the case of arbitrary

value of K and then we study in more detail the cases K =1 and K = 2.

Taking into account retransmissions, the actual load on the primary queue is given by the following
formula

p=ts (9)
where p = A/u is the nominal load.

Assuming that the packets arrive to the primary queue according to a Poisson process, one can
use for the approximation the classical M/M/1/K queueing model. Thus, the drop probability is
given by

)

D) .

where K is the total buffer size in packets.

Proposition 2 If p < 1, the system of equations (9) and (10) has a unique solution. This solution
can be found by fired point iterations

1— (ﬁ(n))K-i-l

A(n+1)
’ 1= (p0)K

=p (11)

which converges for any initial value p(© e [0,00).

PROOF: We substitute the expression for the packet loss probability (10) into (9) to get

. p(L=p~th
We can rewrite it as follows:
pl—pf)
1— ﬁK+1 =P

p+i2+ . +p
14+ p+p2 4 ...+ pK

)

10



1
1— — — = p.
1+ p+ 2+ 18 °
Now let us consider the left hand side of the above equation. Clearly this function of p is strictly
increasing on the interval [0,00). Moreover, it has a horizontal asymptote y = 1. Hence, if p > 1,

there is no solution and if p < 1 there is a unique solution.

Next we show that the fixed point iterations (11) converge to the solution of (9) and (10). Since
the above considerations demonstrate that there is a unique fixed point (of course, we are now
interested only in the case p < 1), we only need to prove that the fixed point iterations converge.

To prove this, it is enough to show that the derivative of the right hand side of (11) is less than

d 1_[)K+1 d ﬁK
Ev R L R v G e e K1 )| =
dp 1—p dp 1+p+...+p

KﬁK_l —I—(K— 1)ﬁK+ ---+2,52K_3+ﬁ2K_2 _
(14 p+ ...+ pK-1)2
KﬁK_l + (K _ 1)ﬁK T +2,52K—3 _|_[)2K—2
1420+ .. + KpE-1 4+ (K — 1)pK + ... + 2p2K-3 4 j2K=2
This completes the proof.

one.

p <p<l

Let us now consider the particular case K = 1. Solving the system of fixed point equations

p
P= -,
1+p
b P
1—P’
we obtain
P =p,
b P
1—p

Now recall that in the case K = 1 we have P;(-) = p. Hence, in this particular case the approximate

packet drop probability P matches exactly P;(-).

Next, we consider the particular case K = 2. By solving the set of fixed point approximation

equations



we obtain

1
P=2(V1+3p—1-p)*
First, we note that in contrast to the case K = 1 the approximate packet drop probability P does

not match exactly P(-). There are two important limiting cases:

NA+p+po) o
Po(-) =
2() PRAF it o)

’ as o — 00,

NN+ p+ 2(1+
Pg() — 2( o ,U,()) N 4 ( ,0)
P22\ + p+ o) 1+2p

In Figures 3 and 4 we plot the relative error |P — Pa(-)|/P2(-) as a function of p for the limiting

, as puo— 0.

cases g — oo and pg — 0, respectively.
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Figure 3: The relative error |P — P3(-)|/P(-) in the limiting case po — oo.

As one can see, P approximates P5(-) well when p and pg are both small.

3 Two M/M/1/1 queues in tandem with M /M /1/cc ordit queue

As another particular case of the network of finite queues with retrials, let us consider two M/M/1/1
queues in tandem with M/M/1/00 orbit queue. We denote the steady state probabilities for this

system by P;;(n), i,j = 0,1 and n =0, 1,... , where the indicies ¢ and j correspond to the number

12



0.6

0.4

0.2

Figure 4: The relative error |P — Pa(-)|/P2(-) in the limiting case po — 0.

of jobs in the first and the second queues, respectively, and n corresponds to the number of jobs in
the ordit queue. We denote the input rate to the system by A, the service rate of queue k by ug,
k = 1,2, and the service rate of the orbit queue by pg. The transition rate diagram is depicted in

Figure 5. We can write the following five sets of balance equations:

e For the (0,0) column:
APoo(0) = p2Po1(0), (12)

(A =+ o) Poo(n) = p2Por(n), n=1,
e For the (1,0) column:
(A + p1)Pro(0) = APoo(0) + poFPoo(1) + p2P11(0),
(A4 p1)Pro(n) = APy (n) + poPoo(n + 1)APio(n — 1) + poP11(0), n>1,

e For the (0,1) column:

(A + p2) Po1(0) = p1 Pio(0),

(A + p2 + po) Por(n) = p1 Pro(n) + p1Pri(n — 1), n>1,

13



e For the (1,1) column:
(A + p1 + p2) P11(0) = APo1(0) + poPor (1),
(A4 g1 + p2)Pri(n) = APo1(n) + poPor(n + 1) + APii(n — 1), n>1,
e Taking a “cut” between levels n and n + 1 of the number of jobs in orbit yields:

)\Plo(n) + ()\ + /Ll)Pll(TL) = uopoo(n + 1) + /LoPQl (TL + 1), n > 0.

(0,0 (1,0 (0,1 1,0
A My A
0 *—>
w\_pgé—%; N
Mo A Mo U,
Ho Ho
1 4)\ M1 A
e YA W ' A
Ho I Mo
2 & 1 4
A
“.2 )\ uz lJ'l

Figure 5: Transition rate diagram

Using the above sets of balance equations, we derive a system of equations for the

functions Gi;(z) = Y2, 2" Pij(n), i,j =0, 1.
(A + 10)Goo(2) — n2Go1(z) = poFoo(0),

(Az + 10)Goo(2) — 2(AM(1 — 2) + p1)G1o(2) + p22G11(2) = poPoo(0),
—p1G10(2) + (A + p2 + po)Goi(2) — p12G11(2) = poPo1(0),
(A2 + p0)Gor(2) — 2(M1 = 2) + p1 + p2)G11(2) = poFo1(0),

,LL()GO()(Z) — )\ZGlo(Z) + ,LL()G()l(Z) — ()\ + ;Ll)ZGH(Z) = ,UJ()PO()(O) + /L()P()l (0)

14
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Next, we denote Pj;(-) = Gj;(1) for i,j = 0,1, and set z = 1 in equations (13),(14),(15),(17), add
equation (12) and the normalization equation Pyo(-) + Pio(+) + Poi(-) + Pi1(-) = 1. This results in

a system of linear independent equations:
(A4 o) Poo(+) — p2Po1(+) = poFPoo(0),
(A + o) Poo(-) — p1Pro(+) + p2Pra(-) = poFoo(0),
—p1Pro(-) + (A + p2 + po) FPor (1) — paPra () = poFo1(0),
toPoo (") = APro(+) + poPo1(-) — (A + p1) Pria (1) = p0Foo(0) + o Fo1(0),
APyo(0) = p2Fo1(0),
Poo(-) + Pio(-) + Por(-) + Pu(-) = L.

The solution of the above system of linear equations leads to the following result

Proposition 3 The probabilities Pj;(-) and P;;(0) for i,5 = 0,1 are given by

A A
Poo(')zl—z—z
A
P )= —,
10(°) o

. particular, implying that

Pou() + Pu() = %

Mpapa(pr + po + po) — Auo(pr + p2) — pape) — A (p1 + p2))
(1 p3(2X + g+ p2 + fo)

A2 (A1 + p2) + po(ps + p2) + pijn)
p1 3 (2N + pu1 + pi2 + o)

POl(') =

)

Pll(') =

1
Poo(0) =
0 (0) o1 p2(2A + p1 + p2 + o

—N2[1d + 113+ pa gz + 2p0(p1 + p2)] — N[ + pa])

A
Po1(0) = —Poo(0),
12

] (opapa(pn + pr2 + po) — Alpg(pn + p2) + po(pi + 13)]

AN+ p2)
Hip2
A2(A2 + A1 + p2 + po) + po(pa + p2) + pape)
(132X + p1 + po + o)

Pip(0) = Pyo(0),

P11(0) = Py (0).

15



Again, as in the case of a single M /M /1/1 retrial queue, once Pyo(0) and Py;(0) are determined, the

generating functions G;;(z) are uniquely determined by the system of linear equations (13)-(16).

Let us now investigate the stability of the system. We argue that the empty system is a regeneration
point, and hence Py(0) > 0 is a necessary and sufficient condition for the system stability. The

condition Pyp(0) > 0 is equivalent to
prop pa (i + i+ o) — Mg (1 + p2) + po(pf + 13)]

— N[} + 13+ papz + 2p0(p + p2)] — A+ p2] > 0. (18)

As the above expression seems to be too complex to analyse in the general case, we consider two

important particular cases: the case of large po and the case of p1 = ps.

We note that for large values of ug the probability Pyy(0) has a simple asymptotics. Namely, we

have
A A
Pyp(0) -1 — — — —,
Hr o H2
as g — o0o. Thus, if
A A
—+— <1, (19)
YA )

then there always exists a large enough value of iy that ensures the stability of the system.

Next, let us consider the case pu; = po =: p. Without loss of generality, we can take A = 1. The

stability condition (18) becomes

(e = 2)a + 2[p(p = 1) = 2Jpo — 3p — 2> 0. (20)

We first note that if u < 2, then 4 —2 < 0 and pu(p — 1) — 2 < 0, and consequently, the stability
condition cannot be satisfied by any choice of 1. Thus, a necessary condition for stabililty in this
particular case is g > 2. Once this condition is guaranteed, the parameter pg has to be chosen

greater than the positive root of the left hand side of (20). Namely,

o> 1A — Q)M—_[A;(u -1)-2

We note that the right hand side of the above inequality has the asymptotics 3/(2u) as u — oc.
Indeed, when p becomes very large, (almost) every job passes through queues 1 and 2 without
blocking. If there are a few jobs that get blocked, a (very) small value of po > 3/(2u) will ensure
stability.

16



Next, let us analyze the fixed point approximation model which is described by the following set

of equations

A P1
_ , 21
T Ty 2y
N P2
2 = ) 22
2= 0= py (22)
P1
P = —, 23
1= + P (23)
P2
P, = . 24
T 14 p 29
Note that equations (22) and (24) correspond exactly to the single node case with K = 1. Hence,
we have
Py = po,
and
po=—L2
1—py

Then, to get P; and p;, we substitute P» = po and P; from equation (23) into equation (21),

_ P1
T AP p2)

b (25)

which results in

~ P1
PL=7 >
L—p1—p2

and, consequently, we have

P1
P = :
>

Note that the system of equations (21)-(24) has a unique and positive solution if and only if

p1+ p2 < 1. It is interesting that this condition coincides with the stability condition (19) for the

limiting case when pg — oo.

Let us now study the average number of jobs in the system. Differentiating equations (13),(14),(15),

and (17), then setting z = 1 and denoting L;; := ng(l), 1,7 = 0,1, we obtain a system of linear

equations
(A + o) Loo — p2Lor = 0, (26)
(A + po)Loo — paLao + palar = =APyo (1) — (A — p1) Pro(+) — paPra(-), (27)
—p1Lao + (A + p2 + po) Loy — prLar = pa Pra (), (28)
poLoo — Ao + poLor — (A + p1)Lar = APio(+) + (A + p1) Pra(-)- (29)
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Proposition 4 The average number of jobs in orbit is given by
Lorvit = Loo + L1o + Lo1 + L1, (30)
the average number of jobs in the system is given by
Lsystem = Lorbit + P1o() + Po1(-) +2P11(+), (31)
and the average time spent by a job in the system is given by
Tsystem = Lsystem /A, (32)

where Lij, i, = 0,1 are provided by the solution of the system of equations (26)-(29), and the
probabilities P;.y are given in Proposition 3. Moreover, denoting by L1 and Lo the mean queue

size in the first and the second M/M/1/1 queues, respectively, we have
Ly = Pio(-) + Pua(-),

Ly = Pyi(-) + Pi1(+),

and

Lsystem = Lorbit + L1 + Lo.

Let us consider a numerical example. We fix A = 1 and the total network capacity w1 + p2 = 5.
In Figure 6, we plot the average number of jobs in the system Lgysiem as a function of the first
node capacity p1. We study two cases: g =4 and pg = 7. First, we observe that in the middle of
the capacity value range, the value of Lgystem becomes less sensitive when g increases. Second, it
seems that the minimal value of Lgystem is achieved when g1 = po. This fact is further confirmed

by the more detailed Figure 7, but, of course, requires additional analytic investigation.
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