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We propose a novel approach to improve efficiency in service systems. The idea is to utilize the server's idle time
to perform and store “preliminary services” for customers who will arrive in the future. Such a model is relevant to
settings in which service consists of multiple consecutive tasks, some of which are generic and needed by all
customers (and thus can be performed even in their absence), while other require the customer's presence. To
show the model's benefits, we formulate a two-dimensional single-server queueing-inventory system for which we
derive closed-form expressions for the system's steady-state probabilities, as well as for its performance measures.

Assuming linear costs for customers waiting in line and for stored preliminary services, a cost analysis determines
the optimal maximal number of stored preliminary services in the system. Numerical examples illustrated with
graphs demonstrate the advantages of our approach, in terms of cost savings, as compared with the classical M/

M/1 model.

1. Introduction

Operations managers frequently face the difficult challenge of
reducing service systems' “idle” time in order to improve those systems'
efficiency. Two sources of idleness characterize such systems: either
customers wait in line to be served, or servers stay idle while waiting for
customers to arrive. Because of the stochastic nature of queues, neither of
the two sources of idleness can be entirely eliminated. It is estimated that
the annual monetary loss due to idleness of employees in organizations
reaches billions of dollars per year (Malachowski and Simonini, 2006),
which further emphasizes the importance of improving the efficiency of
service systems.

The literature discusses two common approaches that might be used
to mitigate the two sources of idleness. (i) Increasing the number of
servers in order to reduce the waiting times of customers. The drawback
of this approach is that it leads to an increase in the servers' idle time and
thus reduces each server's utilization. (ii) Increasing servers' utilization.
Many studies propose achieving this goal by adopting a so-called
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vacation model, in which, instead of being allowed to remain idle, servers
perform ancillary duties (“vacations”) that are not directly related to
their main task (see, e.g., Levy and Yechiali, 1975, 1976; Doshi, 1986;
Kella and Yechiali, 1988; Takagi, 1991; Rosenberg and Yechiali, 1993;
Boxma et al., 2002; Yechiali, 2004; Jain and Jain, 2010; Wei et al.,
2013b; Yang and Wu, 2015; Mytalas and Zazanis, 2015; and Guha et al.,
2016). However, the need to wait for a server to complete such tasks may
increase customers' waiting times. Thus, each of these two approaches
(more servers or server vacations) improves one source of idleness at the
expense of the other.

Idleness of servers has been analyzed in the literature from addi-
tional perspectives. For example, Armony (2005), Armony and Ward
(2010, 2013), and Mandelbaum et al. (2012) investigated fair routing
of customers to idle servers in large-scale systems with heterogeneous
customers. Cachon and Zhang (2007) investigated allocation of jobs to
strategic servers (state-dependent as well as state-independent pol-
icies) under a capacity choice game played between the servers. They
showed that there are cases in which it is beneficial to allocate a job to
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a busy fast server rather than to an idle slow server. Clearly, these
allocation approaches can serve to mitigate idleness of servers and
customers in multi-server systems, but they are not applicable to
single-server systems.

In this paper we propose a novel approach to improve the perfor-
mance of service systems by utilizing servers' idle time in cases where
the service can be decomposed into two stages. The first stage, denoted
“preliminary service” (PS henceforth), can be performed in the absence
of customers, and its outcome can be preserved until an actual service is
requested. The second stage, denoted “complementary service” (CS
henceforth), requires the presence of the customer to be completed. In
such settings, in contrast to the case of a vacation model, in which
servers are diverted to ancillary duties during their idle time, an idle
server can be utilized to accumulate PSs and store them until customers
arrive and require service. This approach leads to a reduction of cus-
tomers' mean sojourn time, since a certain fraction of the customers
receive only a CS upon arrival (as part of their service was prepared
prior to their arrival), and do not have to wait for the full service (FS
henceforth).

A representative example of an application of our model is a fast food
restaurant in which food, e.g., hamburger patties, can be prepared before
demand occurs, and only upon the arrival of a customer is a hamburger
patty heated up, inserted into a bun and served to the customer. Another
example is a bicycle shop, which can assemble parts of a bicycle before a
purchase occurs, and subsequently assemble the remaining parts in
accordance with the customer's specific requirements and preferences.
Handmade nameplates for doors are another example in which service
can be split up. The server can produce basic (not necessarily identical)
nameplates from wood, clay or glass before an order is placed, and
complete a nameplate for a specific customer upon request (e.g., writing
the name, adding decorations, etc.).

Hypothetically, a server can produce PSs during its entire idle time
to minimize the customers' sojourn time. However, we show, in our
model, that when cost considerations are taken into account—such as
holding costs of PSs in inventory and costs of customers' presence in
the system—there may be a certain number of stored PSs beyond
which it is more beneficial to keep the server idle rather than to
occupy it with producing additional PSs. Herein, we analyze this
innovative queueing-inventory system. Examples of other types of
queueing-inventory systems, in which each customer requires a unit
from inventory when being served, appear in Zhao and Lin (2011), and
in Adacher and Cassandras (2014). We use the classical M/M/1 queue
as a baseline for comparison, which is common practice in the liter-
ature (e.g., Andritsos and Tang, 2013; Wei et al., 2013a; Giiler et al.,
2014).

We can summarize the main contributions of this paper as follows:

e A novel single-server queueing-inventory system is formulated as a

two-dimensional stochastic process, and a method to derive closed-

form expressions for the system's steady-state probabilities and for
its performance measures is provided.

It is shown that under certain conditions related to the duration of the

service stages and the cost structure, the performance of a system that

produces and stores PSs is superior to that of a similar system but
without PSs. Nevertheless, Theorem 1 states that the stability condi-
tions of the two systems (with or without PSs) are the same.

e A condition is established in Proposition 1 under which a server that
utilizes some of its idle time to produce PSs actually remains idle for a
larger fraction of time compared with a server in a similar system that
does not store PSs.

e Assuming linear costs for each waiting customer and each stored PS,
results of a cost analysis are provided, demonstrating how the optimal
maximal number of stored PSs is affected by the model parameters.
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2. Notations and assumptions

The following notations and assumptions are used throughout the
paper:

Notations

FS Full service rendered continuously

PS Preliminary service

CS Complementary service

customers' mean arrival rate

server's mean rate of performing FSs

server's mean rate of producing PSs

server's mean rate of performing CSs

a decision variable denoting the maximal number of stored PSs

number of customers in the system in the long run (a random variable)

number of PSs in the system in the long run (a random variable)

steady-state probability of finding the system in state {L =i, S = j}

rate matrix of the matrix geometric analysis

mean number of customers in the system as a function of n

mean number of customers in queue as a function of n

mean sojourn time of a customer in the system as a function of n

mean waiting time of a customer in queue as a function of n

mean number of PSs in the system as a function of n

mean number of PSs in inventory as a function of n

mean time a PS resides in the system as a function of n

Ty(n) mean time a PS resides in inventory as a function of n

agr(n)  effective production rate of PSs as a function of n

c cost per unit of time per customer in the system

h holding cost per unit of time per inventoried PS

Z(n) total expected cost per unit of time as a function of n

n percentage reduction in total expected cost in comparison to the classical M/
M/1 model

4 percentage reduction in idle time of the server in comparison to the classical
M/M/1 model

m%%ss:%wg%h:kﬁt&
EEzEES

=
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Assumptions

1. We consider a single-server system with a Poisson arrival rate 1 and
exponentially-distributed full-service time with mean 1/u.

2. The service can be split into two consecutive stages. The first stage,
PS, can be performed in the absence of customers, and its outcome
can be preserved until an actual service is requested. The second
stage, CS, requires the actual presence of the customer to be
completed.

3. When the system is empty, the server produces PSs at a Poisson rate a.
The PSs are stored until the arrival of customers, and can be consid-
ered as work-in-process inventory whose aim is to reduce the sojourn
time of customers in the system.

4. When the number of stored PSs reaches the value of n, the server stops
producing PSs and becomes idle.

5. If a customer arrives at the front of the queue and a PS is available, the
server immediately starts rendering a CS for that customer; otherwise,
the customer receives an FS.

6. The CS time is assumed to be exponentially distributed with mean
1/8(< 1/p).

7. The decomposition of service into two separate stages (potentially
with an intermission between them) does not affect service quality,
which implies that customers have no preference between receiving
CS or FS. This assumption suits cases in which the storage time of PSs
is relatively short in comparison to the shelf-life duration of a PS.

We now justify our assumptions regarding the production rates. We
emphasize that although the PSs are standard units, they are not pro-
duced in an automatic process (which implies a deterministic preparation
time). Specifically, the variability of the PS production durations emerges
from three sources: the server, the production process and raw materials.
Variability associated with the human server may stem from external
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interruptions during preparation (e.g., answering phone calls from cus-
tomers and suppliers, drinking a cup of coffee, etc.) or variation over time
in the server's levels of fatigue and concentration. Variability associated
with the production process may stem, for example, from electrical
failure, malfunctioning of a machine part, etc. Variability associated with
raw materials may stem from these materials' non-homogenous quality,
shape or size. These examples imply that, in non-automatic production
processes, the variability of PS durations can be large. In line with prior
works in the domain of production and inventory systems (Benjaafar
et al., 2011; Flapper et al., 2012; Iravani et al., 2012), and in order to
ensure mathematical tractability, we adopt the exponential distribution
to characterize production and serving times. Second, we note that the
actions included in a split service (PS followed by a CS) do not precisely
overlap with the actions in a continuous FS. This difference has two main
sources: operational and behavioral. The operational source includes
additional setup actions, such as PS storage and retrieval, which are not
necessary in a continuous FS. The behavioral source includes adding or
omitting actions to make a present customer more satisfied, such as
explaining the work process to the customer or ignoring phone calls
during work. Thus, the duration of a continuous FS is not necessarily
equal to the sum of two independent random variables exponentially
distributed with parameters a and . Moreover, even in terms of expected
durations, 1/u is not necessarily equal to 1/a + 1/p, since when no PS is
available, the presence of a customer may speed up the work of the
server, by creating a positive supervision effect, or delay it, by creating
negative interference. Our assumption that the service time of an FS, as
well as the service time of each stage in a split service, is exponentially
distributed leads to a two-dimensional continuous-time Markov chain for
which there are probabilistic solution methods available. In what fol-
lows, we use these methods and obtain analytical results for this new
service model, which has not been analyzed before.

S
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3. Model formulation and steady state analysis

We formulate the model as a quasi birth-and-death (QBD) process. At
time t, let L; and S; denote the number of customers and the number of PSs
in the system, respectively. {L;S;} defines the state space of the
queueing-inventory system at time t. Let L = lim,_,o,L; and S = lim,_, .S,
so the steady-state joint probability distribution of the two-dimensional
Markovian process is given by p;j =Pr(L =i,§=j), i=0,1,2,..., 0,
j=0,1,2,...,n. The transition rate diagram is depicted in Fig. 1, and the
steady-state equations of the process are given in Table 1.

Herein, we analyze the behavior of the queueing-inventory system in
its steady state. Specifically, we obtain the condition for system stability
(i.e., for a finite mean queue length), which is required when the popu-
lation and the queue length are unbounded, and investigate which pa-
rameters affect it. Our main goal is calculating performance measures of
the system, as given in the next section, which are based on expected
values, as well as the fraction of time the server is idle. The first step to
achieve this goal is to calculate the steady-state probabilities of the
process in the long run. In what follows we provide methods to do so.

The two-dimensional Markov process defined in the previous section
can be analyzed either by using probability generating functions (PGFs),
as explained and applied in, e.g., Litvak and Yechiali (2003), Perel and
Yechiali (2008, 2014); or by using matrix geometric analysis (Neuts,
1981), as applied in Zhao and Lin (2011). Although the two probabilistic
methods lead to the same analytical results, in this problem their
computational efficiency is not the same, as discussed in Appendix C. In

what follows, we use the notations 0= (0,0,...,0), €=(1,1,...,1)7,
v =(0,1,2,....n) forn>0, 7 = (0,0,1,2,....n—1)" forn > 1, p;
(Pi0sPi1,Di2, ---sPin) fori=10,1,2, ..., 00, and I for the identity matrix.

Define a set of n+ 1 (partial) PGFs as follows: Gj(z) = Y ;opij2’,

Fig. 1. System states and transition-
rate diagram of the two-dimensional
Markovian process.
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Table 1
The steady-state equations.
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j=0 1<j<n-1 j=n
i=0 (a+ A)poo = fp11 + Hp10 (¢ + A)poj = apoj-1 + Pp1ji1 APon = APon-1
i>1 (1 + pio = APi-10 + HPis1,0 + PPir11 (B4 Apij = i1y + PPir1j1 (B + Pin = Pi—1n

j: 0711 () |Z| < 1, Sopi,j :%dlg]zfl)

,i=0,1,...,00,j=0,1,....,n.In
essence, this definition means that fo:;' ; given j, each probability vector
(Poj;P1,: P2y, .‘.,pm_j)T is “zipped” into the PGF Gj(z). Thus, the infinite
number of balance equations given in Table 1 can be replaced with a set
of n+ 1 linear equations, in which Gj(z),j = 0,1, ..., n, are the variables.
Define d(z)=(1—-2)(Az—p),a(z) =41 —2)+p 2(2)
(Go(2),G1(2), ...,Ga(2))". According to a procedure similar to the one
presented in Litvak and Yechiali (2003) and in Perel and Yechiali (2008),

g (2) is the solution of A(z) g (2)

and

N
b (z), where

d(z) —p 0 0 0 0
0 zaz) —-p 0 0 0
ao=| ¢ 0 P
0 0 0 0 za(z) —p
0 0 0 0 0 a(@)/ (i)

(u(z— 1) — az)poo — Ppo.
azpoo — (az — Pz)pos — Ppo2
azpoy — (az — fz)po2 — Ppo3

Azpon—2 — (A2 — P2)Pon-1 — PPon
apo-1 + Ppon

To get ?(z), we have to calculate the vector of boundary probabilities,
Po- The common method of doing so is to characterize and use the roots
of |A(z)|; however, in our problem, this method does not produce suffi-
ciently informative equations to calculate p’,.

Instead, we apply an alternative approach to obtain p,. Let
Y ={(ij):i=0,1,....n—1j=1i+1,i+2,...,n}. Then, the set of N =
n(n + 1)/2 steady-state equations, which correspond to states (i,j) € ¥ in
Table 1, includes N + 1 steady-state probabilities: poo and p;; with
(i,j) € ¥. To obtain an additional independent (normalization) equation
with the same probabilities, we use horizontal and vertical cuts. Let
Die = Z;‘Zopij, i=0,1,2,...,00, and p.j = > 2 oPij>» j = 0, ...,n. Then, as
can be observed in Fig. 1, for all horizontal cuts between row i and row
i+ 1, the equilibrium is obtained by Ap;. = ppii1.0 + S(Pit1,e — Di+1,0)s
i=0,1,2,...,00, and for all vertical cuts between column j and column
j+1, the equilibrium is obtained by apo; = f(Pejr1 —Poj+1)s
j=0,...,n—1. Summing the horizontal equilibrium equations over
i=0,1,2,...,00, and the vertical equilibrium equations over
j=0,...,n—1, yields the following two equations: 1 = (4 — f8)(Peo —
Poo) +A(1 —po.) and a(po. —Pon) = (1 —Peo — (Po. —Poo)), respec-
tively. By extracting p. o from the latter equation, substituting it in the
former, and using algebraic manipulations, we obtain the additional

equation,
A ’ )
- 0,n b
u

S T = 1
@) Sma

which includes only the boundary probabilities poj, j=0,1,2,...,n.
Hence, a set of N + 1 independent linear equations with N + 1 steady-

@

state probabilities exists, from which p’, can be extracted.

In our model, py, expresses the fraction of time during which the
server is idle; this is because, given that there are no customers in the
system, the server stops producing PSs and becomes idle once the number
of stored PSs reaches the value n.

Proposition 1. The fraction of time the server is idle, po n, is smaller than
that in the classical M/M/1 queue (i.e., 1 — A/u) if and only if the total mean
duration of a split service is larger than the mean duration of a continuous FS.

Proof. Since Z;;OIPOJ' > 0and 1> 0, then, by (1), 1 — ﬁ —pon >0 if

and only if L +5— 1> 0,i.e,pon <1 —Z%ifandonly if L +5 > L.

Proposition 1 can be explained as follows: It is likely that, due to loss
of efficiency, the total mean duration of a split service is longer than that
of a continuous FS. In some cases, however, the opposite is true, e.g.,
when a customer interferes with the server or distracts him during the
service and thus slows down the work. The latter case leads to what may
be considered a paradox: utilizing some of the server's idle time to in-
crease productivity actually increases the fraction of time during which
the server is idle.

We turn now to a matrix geometric analysis. Consider a lexicographic
order of the system's states, {(0,0),(0,1),...,(0,n);(1,0),(1,1),...,
(1,n);...;(1,0),(i,1), ..., (i,n);...}. We construct an infinitesimal gener-
ator matrix, denoted Q:

B A 0 O -
A A A O -

2=1y A A A ’

where the matrices B, Ay, A; and Az, each of order (n+ 1) x (n+ 1), are
given by

—(a+12) a 0 0 0
0 —(a+1) «a 0 0
B= ‘. . . . 5 A()
0 0 0 —(a+2) a
0 0 0 0 -1
A0 0 0
0 1 0 0
0 0 A0
0 0 0 1
—(u+ ) 0 0 0
0 —(B+2) 0 0
A= : : , Ay
0 0 —(B+2) 0
0 0 0 —(B+4)
i 0 0 0
g 0 0 0
=0 p 0 0
00 B 0
Theorem 1. The stability condition of the queuing-inventory systemis A < y

(exactly as in the classical M/M/1 queue), and it is independent of the PS
production rate (@) and of the CS production rate ().

Proof. According to Neuts (1981, p. 83), the stability condition is

TAy€ < TAL €, where @ = (1o, 71, ..., ) is the unique solution of the

7e=1.

linear system 7[Ag+A; +Az] = 0 and In our case,
7 = (1,0,...,0), and the stability condition translates into 4 < .
Theorem 1 can be intuitively explained as follows: the CS production

rate /3 is exercised only when there are PSs available in the system. At the
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moment the PSs are exhausted, the service returns to its regular rate, y.
Thus, when the number of customers in the system becomes sufficiently
large, all PSs will be used, and the system will imitate a classical M/M/1
queue, resulting in the stability condition of the latter queue, which is not
influenced either by g or by the production rate of PSs, a.

As before, let D'; = (pio,Pi1s ---»Pin-1,Pin), and let R be a matrix of
size (n+ 1) x (n+ 1) that satisfies
Ao+ RA; + R*Ay = 01001 @
Since there may be several values for each entry in R, only the smallest
positive value should be taken (Neuts, 1981, p. 82). In most cases, the
entries r;; of R can be found only by numerical calculations (see Chapter
8 in Latouche and Ramaswami, 1999). A common method for computing
the entries of R is by successive substitutions (Neuts, 1981, p. 37). For our
problem, however, we have succeeded in obtaining closed-form expres-
sions for all ry; , as given in Theorem 2 below. Such an explicit complete
solution is rare in the literature. The solution is related to Catalan
numbers (Koshy, 2008), which are a sequence of natural numbers (1, 1,
2, 5, 14, 42, 132, 429,..), defined by Cn=(2m)!/((m+ 1)im!),
m=20,1,2,.... These numbers are associated with various counting
problems, often involving recursively-defined objects. An example of C,,,
which is closely related to our problem, is the number of monotonic
lattice paths (Dershowitz and Rinderknecht, 2015) along the edges of a
grid with m x m square cells that do not pass above the diagonal.

International Journal of Production Economics 197 (2018) 174-185

queueing-inventory system. The first type refers to the customers in
the service system, and the second refers to the inventory of PSs. We
present each of these measures as a function of the decision variable n,
which can be used to minimize the total expected cost of the system
(see Section 5). The first type includes the mean number of customers
in the service system, L(n)=);";ip., and in queue,
Lg(n) =32, (i—1)pie=L(n) — (1 — po.), from which we immediately
derive the mean sojourn time, W(n) = L(n)/A, and waiting time in
queue, Wy(n) = Ly(n)/4, by applying Little's law. The second type in-
cludes the mean number of PSs in the system, S(n) = > ;jp., and in
inventory,

Sq(n) = 3234 [fpoj + (= 1)(Pej — Poj)l= S() =1 — Poo + Po. +Peo,
from which we immediately derive the mean durations of time for
which a PS resides in the system, T(n) = S(n)/aey(n), or in inventory,
Ty(n) = Sq(n)/aeg(n), by applying Little's law with the effective pro-
duction rate of PSs, ags(n) = a(po. — pon). Note that we distinguish
between i =0 and i > 1 in the summands of Sy(n), since when cus-
tomers are present, one of the PSs is removed from inventory (becomes
a CS).

When applying PGFs, we use the relations £G;(z)| = >,ip;; and
z=1

Gi(1) = po; to obtain L(n) = Y odGi(z)|  and S(n) = 31jG(1),
respectively. On the other hand, when applying the matrix geometric

analysis approach, we use the relations > °,iR"! = [ —R]® and

Theorem 2. Au i=0 %R =[I—R]™ to obtain
ro=1{ Ccpat L, ph ik and 7y, o . o . s S
’ 4 i Z o 20i-k) kO I<i<n ! L(n) = Zi:ll?['? = Zi:ll(ﬁlR 1) =7 (Zi:llR l)?
w(p+2) = (B+A) N PN
0 0<i<j<n =PoRI—R e 3)
_ i) gijtl . B .
% 0<j<i<n and S(n) = Z?Zo(?i-V) = ?O(ZEORI)V =Dol—R] 'V, respectively.
B+n"" The mean number of PSs in inventory is calculated as
Sy(n) = —1Poi Zj:l [(— Dpes] = Po€ —poo + 220?:7 =70 € —poo+ o (ZZoRi) w 4)
= = — —1—
=Dy € —poo+ Dol —R W.
Proof. The proof is based on calculating the explicit entries of the left- Explicit expressions of the performance measures

hand side of (2) and using induction. The details are given in Appendix A.
Note: The explicit representation of the matrix R for n = 7 is given in
Appendix B.
As a consequence of Theorem 2 and its Proof in Appendix A, we state:

Corollary 1. (i) All the entries of R above the main diagonal are zero. (ii)
Except for the first column, all the entries in any diagonal, whether the main
diagonal or any diagonal below it, are equal to one another.

In order to calculate p;;,i=0,1,...,0,j=0,1,...,n, we first have to

obtain the vector of boundary probabilities p’y. This is accomplished
(Latouche and Ramaswami, 1999, p. 144) by solving the following linear

system: p’y[B + RA,] = 0 and Dol —R]"'¢ = 1. Finally, the rest of the
steady-state probabilities are calculated by p; = poR,i=1,2,...,

4. Performance measures

Two types of measures are used to evaluate the performance of our

L(n),Lq(n),S(n),Sq(n), T(n) and Ty(n) for n = 1 and n = 2 are presented
in Appendix C.

5. Cost analysis: finding the optimal value of n

In this section we provide the results of a numerical study demon-
strating how to determine the optimal value of n, the maximum number
of preliminary services that can be stored at any given time, using a
model that assumes linear costs for each waiting customer and stored
preliminary service. We note that the problem of analytically obtaining
the optimal value of the control parameter n seems to be intractable. We
consider two types of cost rates: one is proportional to the number of
customers in the system, L(n); the other is proportional to the number of
PSs held in inventory, Sy(n). Let ¢ be the cost per unit of time per
customer in the system, and let h be the holding cost per unit of time per
inventoried PS (assuming no holding cost for a PS that moves on to the CS
phase). Note that ¢ takes into account the cost of the space required for a
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customer who is waiting for or currently receiving service, as well as loss
of goodwill due to prolonging the customer's stay in the system. The term
h takes into account only the additional holding cost of a PS beyond the
cost of holding the raw materials used to produce it. For example, in a
bicycle shop, preassembled bicycle parts take up considerably less stor-
age volume than an assembled bike does. In line with the dominant
approach in the domain of inventory systems, we assume that holding
costs are linear in the number of stored units (see, e.g., Avinadav and
Henig, 2015; Avinadav et al., 2016).

The objective is to minimize the total expected cost per time unit by
controlling the maximal number of stored PSs, i.e.,

min {Z(n) = cL(n) + hS,(n)}.

ne{0,12,...}

)

Equations (3) and (4) provide expressions for L(n) and Sq(n), respec-
tively, so a line search can be readily applied to find the optimal value of
nover a closed interval. However, it is difficult to derive the properties of
Z(n) analytically, especially with regard to convexity. Therefore, using an
efficient line-search method, such as the golden section search (see
Bazaraa et al., 2006), does not guarantee finding the global minimum of
Z(n). Since L(n) decreases in n, and Sy(n) increases in n, we conjecture
that Z(n) is convex in n. In this section, we examine this conjecture using

Z(n)
20

18
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Table 2
Parameter values in the examples presented in Fig. 2.
Parameter  Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)
A 57,8,9, 8 8 8
9.5
u 10 10 10 10
a 20 15, 17.5, 20, 20 20
22.5, 25
B 18 18 14, 16, 18, 18
20, 22
c 1 1 1 1
h 0.2 0.2 0.2 0.04, 0.09, 0.2,
0.45,1

numerical examples and conduct a sensitivity analysis. Indeed, the nu-
merical analysis for values of n up to 100 supports our conjecture.

We use the following parameter values as a base-example: 1 =8,
u=10, a=20, =18, c=1 and h = 0.2. These values were chosen
such that (i) 4 < y, (i) 1/a+ 1/ > 1/u, and (iii) h is smaller than ¢ to
reflect the fact that the cost of making a customer wait for service is
higher than the cost of storing a PS. In the case of a bicycle shop, for
example, this assumption seems reasonable, given that such shops are
usually constructed to accommodate numerous new bicycles

Z(n)

2.25

Vv
Higher values of « in the direction of the arrow

n
012 3 456 7 8 91011121314 151617 18 19 20
—a=15 a=17.5 =—a=20 a=22.5 =—a=25

(b) u=10,c=1,1=8, f=18and h=0.2

Higher valuesof hin the direction of the arrow

0.00 n
02 4 6 810121416 18 20 22 24 26 28 30 32 34 36 38 40

—h=0.04 h=0.09 —h=0.2 h=045 —h=1

(d) u=10,¢c=1, 1=8, =20 and f=18

Fig. 2. Total expected cost per time unit, Z(n), as a function of n.
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comfortably, whereas a waiting customer contributes to crowding in the
shop and is likely to grow impatient as time passes. We calculate Z(n) for
n={0,1,2,...,100} and repeat this process for other parameter values as
follows: we keep the values of u and c fixed, and use four additional
values (two above and two below the base value) for each parameter,
where the other parameter values of the base-example are held constant.
Specifically, we use the following additional parameter values:
2 ={5,7,9,95}, a={15,17.5,22.5,25} and f§ = {14,16,20, 22}. For
the holding cost we use h = {0.04,0.09,0.2, 0.45, 1}; these values follow
a logarithmic scale with coefficient /5, to allow ratios of ¢/h to be be-
tween 1 and 25. Since in the numerical examples the difference series
{Z(n+1) — Z(n)} for each value of 4, @, § and h are all monotonic
increasing over the domain n = {0,1,2,...,99}, the objective function
Z(n) is convex on the integers over this domain. In order to emphasize the
differences among the plots for different parameter values, we limit the n
axis in Fig. 2(b) and (c) and (d) to n = 20. In what follows we define n" as
the optimal value of n in each numerical example, and depict the optimal
point (n*,Z(n")) as a triangle on the corresponding curve in Fig. 2. The
parameter values are summarized in Table 2, where each column refers
to a subgraph (a-d) in Fig. 2.

Fig. 2(a) presents Z(n) for five different values of 4, and shows that n*
and Z(n") increase in A, and that when A gets closer to y, Z(n) becomes
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only slightly sensitive to changes in n in the vicinity of n". Fig. 2(b)
presents Z(n) for five different values of @, and shows that n* does not
increase in &, whereas Z(n") decreases in a. Fig. 2(c) presents Z(n) for five
different values of 5, and shows, interestingly, that n", as a function of j3,
first increases from 7 to 8 and then decreases from 8 to 7, whereas Z(n")
decreases in . We investigated the effect of  for additional parameter
values: a = {15,25} and u = {9,12,14}, which are not presented in
Fig. 2(c), and obtained the same qualitative result. Fig. 2(d) presents Z(n)
for five different values of h, and shows that n* decreases in h, whereas
Z(n") increases in h.

The results outlined above point to the following important practical
implications. (i) The observed convexity of the total expected cost in n
implies that the decision maker can use efficient line-search techniques,
characterized by low computational complexity, to find the optimal value
of n. (ii) The faster the server produces PSs (a larger value of ), the
smaller the optimal inventory of PSs. This relationship reflects the fact
that when the server can replenish the PS inventory quickly, even during
brief periods of idle time, there is less of a necessity to store large
numbers of PSs, and by storing fewer PSs the decision maker can benefit
from the savings in holding costs. (iii) When the CS rate () is either low
or high, it is economically beneficial to reduce the maximal number of
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Fig. 3. Plots of 7 and ¢ (the percentage reduction in the total expected cost and in the server's idle time, respectively, compared with an M/M/1 queue) for various

parameter values.
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Table 3
Parameter values in the examples presented in Fig. 3.
Parameter  Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)
A 2, 8 8 8
3,...,9,9.5
u 10 10 10 10
a 20 5,7.5,...,22.5, 20 20
25
B 18 18 10, 12,...,30, 18
32
c 1 1 1 1
h 0.2 0.2 0.2 0.04, 0.09, 0.2,
0.45,1

stored PSs, since, in the first case, the PSs stay a longer time in storage,
thereby accumulating holding costs, and in the second case, the server
has additional idle time, and thus has more opportunities to refill the PSs
inventory. (iv) When the holding cost increases, the optimal maximal
number of stored PSs decreases, as expected.

Clearly, the proposed queuing-inventory model under the optimal
value of n is expected to perform at least as well as the M/M/1 model
(which is equivalent to our model with n = 0), since our approach uti-
lizes the server's idle time to increase productivity. Thus, in what follows,
we investigate how different parameter values affect the extent to which
our approach is advantageous over the M/M/1 model in terms of the
percentage reduction in the total expected cost, denoted as

n= %OZ)('” x 100%. Moreover, we evaluate the extent to which our

model produces a percentage reduction in the server's idle time, denoted

as &= % x 100%. Fig. 3(a)—(d) present 5 and ¢ for different
values of the parameters 4, a,  and h, where the other parameter values
are held constant as in the base-example. The parameter values are
summarized in Table 3, where each column refers to a subgraph (a-d) in
Fig. 3.

Fig. 3(a)—(d) show that our model is always less costly than the M/M/
1 queue (0 < 5 < 100%), whereas the server's fraction of idle time may
be smaller than (0 < £ < 100%), equal to (£ = 0), or larger than (£ < 0)
that in the M/M/1 queue. These results are due to the objective of
minimizing the total expected cost per time unit given in (5). Fig. 3(a)
shows that, for our model, the percentage reduction obtained for either
the total expected cost or the fraction of the server's idle time is higher for
higher values of the customer arrival rate 1. Fig. 3(b) shows that a higher
PS production rate a results in a higher percentage reduction in the total
expected cost, whereas the percentage reduction in the fraction of the
server's idle time decreases. Moreover, as is claimed in Proposition 1, we
see that for « > 1/(1/u —1/p) = 22.5 the fraction of the server's idle
time in our model is even larger than that in the M/M/1 queue, as re-
flected in negative values of ¢. Fig. 3(c) shows that a higher CS produc-
tion rate f results in a higher percentage reduction in the total expected
cost. An interesting observation is that £ is not monotonic in f: first it
increases and then it decreases. Moreover, as is claimed in Proposition 1,
we see that for f > 1/(1/u — 1/a) = 20 the fraction of the server's idle
time in the proposed model is even larger than that in the M/M/1 queue,
as reflected in negative values of £. Fig. 3(d) shows that the percentage
reductions in both the total expected cost and the fraction of the server's
idle time are lower for higher values of the holding cost h. This obser-
vation is explained by the lower incentive to prepare and store PSs, as is
shown in Fig. 2(d). The mechanism at work in our example (in which
%4’/17 > l%) is that as n increases, more jobs have a longer mean total ser-

vice time, and thus the server's idle time decreases.

The practical implications of the above analysis are as follows: (i) The
proposed approach produces greater cost savings when customers' arrival
rate is higher, or when the server produces PSs and/or renders CSs more
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quickly, or when the holding costs are lower. (ii) When the rate at which
the server produces PSs and/or renders CSs exceeds a certain value,
implementing the proposed approach actually gives the server more idle
time than it would have under the M/M/1 approach. The latter result
points to a win-win-win situation, where the service owner, the server
and the customer benefit from implementing the proposed approach.

6. Conclusions

This study investigated an innovative approach to increase the effi-
ciency of queueing systems by utilizing servers' idle time to produce
preliminary services for future incoming customers. In order to investi-
gate such a system, we used a single-server Markovian queue and con-
structed a two-dimensional state space that considers both queue sizes
and inventory levels. Using probabilistic methods, we calculated the
steady-state probabilities of the system states and various performance
measures. Application of the matrix geometric method allowed us to
solve problems for n < 100 within a time frame of few minutes, thereby
enabling us to carry out cost analysis.

We have shown that the stability condition of our model is identical to
that of the classical M/M/1 queue, which means that the maximal arrival
rate of customers that the server can handle does not differ between the
two approaches. Moreover, when the total average duration of a split
service is smaller than that of a full service, the server is idle for a larger
fraction of time than it would be in the classical M/M/1 queue. Nu-
merical examples reveal two major insights: (i) the total expected cost
function is convex over n; thus, efficient line-search methods can be used
to find its optimal value; (ii) in extreme cases in which the duration of a
CS is either very low or very high, it is economically more beneficial to
reduce the maximal number of stored PSs. Specifically, for low CS
rendering rates, the PSs remain in storage for longer periods of time,
thereby accumulating holding costs. For high CS rendering rates, the
server has ample idle time to refill the PSs inventory, so a smaller n is
required.

There are various possible directions for further research in this
domain. For example, it would be interesting to extend the model to
multiple servers or to limited-capacity service systems. Another direction
for future investigation would be to relax the exponential distribution
assumptions. We expect that analyzing such a model will necessitate the
use of simulation-based analysis, and it will be interesting to compare the
results to those obtained in this paper. An important extension of our
model would be to take into account the possibility that PSs can spoil or
deteriorate in quality while being stored. This extension might be ach-
ieved, for example, by assuming that the PS shelf life duration is a
random variable. In addition, we suggest analyzing a service system with
two types of customers: one type that agrees to use a preliminary service
prepared without him or her being present, and another type that insists
on obtaining a continuous full service without any interruption. Another
idea is to investigate how the splitting of the service could be done in
practice, for example, what proportion of the full service should be
allocated to the preliminary service considering the various associated
costs. Finally, our approach has the potential to assist practitioners in
evaluating the benefits (e.g., in terms of return on investment) of modi-
fying certain continuous services such that they can be split up into two
separate components.
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Appendix A. Proof of Theorem 2

The explicit entries of the left-hand side of (2) are:

n n

/1*(ﬂ*’l)ro.oﬁ'ﬂzrn.kVL.0+ﬁZrn.er1 7(ﬁ+l)rﬂ.l+ﬁzrﬂ.kn2 *(ﬂ+’1)rn.z+/jzro.krk.1 o = (B0, 2+ﬂ2rﬂkrk.n 1 —(B+A)ron |+ﬂzr(urk.n —(B+2)r0,
=} =) =0 = =0 =0

—(u+A)r 0+HZV| krA.o+ﬂZr1.ka.| /1*(/’+/1)r1.1+/32"1.xn.: *(/"Jr/l)"l.fr/fzrl.m.s B ails n72+/’lzrl.krk.ufl *(ﬁJr/l)h./H+ﬂzr|ﬂ‘m —(B+2)r1,
=0 =0 =0 =0 = =0

*(M+/1)fzn+MZf2LVko+ﬂZrzm.| —(B+A)r2, +ﬂzfz.m.2 A—(B+A)r2 Jrﬂzfz.kfk.} v = (P22 +ﬂz’”2.kfk.n71 —(B+A)r 21 +ﬂzruﬁ.n —(B+A)r2n
= = = = = =

Ao+RA|+R Ay = : : : g : : :
7(#+A)rth.D‘*’ﬂZran.krk.O+ﬂzrrkZ s 7(ﬁ+i)"n72.l+ﬂzrn72.krk.2 7<ﬂ+l)rr1722+ﬂzrr172.krk.3 ~»1*(ﬂJri)"nfz.nferﬂme: Ken-1 —(B+A)rn2n-1 +ﬂzrn72.krk.n —(B+A)ru2a
=0 =1 =0 =0 =0 =0

n n n n n n
*(llJr/l)rn—l.oJr/inn—x.Ark.u+ﬂzrn—|.krk 1 =(B+A)r-1a +/}Zrz,—x.kh.z *(/Frl)rn—|.z+/32rn—1.kru oo =(BAVTa 102 Jrﬁzrn—l.kh.n—l A=(B+A)ru-101 +/32"n—1.krm —(BH+A) -1
=} =} =) =} =) =)

*(#+1)fu.o+ﬂzfnAVA.oJrﬂzrn.m.l *(ﬂ+1)h1.l+ﬂzrn.krk.z *(ﬁ+/1)fu.z+ﬂzfn.kn.3 7(ﬂ+i)rnr:72+ﬁzrn.krk.wfl *(ﬂ+)~)fu.u4+ﬂzmkn.n A=(B+2)Tun

k=0 k=0 k=0 k=0 k=0 k=0

(A1)

The following Proof of the formulae in Theorem 2 is based on induction. According to the structure of matrix R, as presented in Theorem 2 (and
demonstrated in Appendix B for n=7), we split the proof into three stages, according to the location of the entries (i,j) within R. In stage (i), we deal with
0<i<j<n, where r;;=0. In stage 2, we deal with 0<j<i<n, and finally, in stage 3, we deal with the left column of matrix R.

Stage (i) We first prove by induction thatr;; = 0, 0 <i < j < n. Starting with the last column of (A.1) above, i.e., column j = n, we obtain from (2):

B+ Vrin=0, i=0,1,2,...n—1, (A.2)

implying thatr;, =0 fori=0,1,2,...,.n— 1.

We now assume thatr;j = 0 forall 0 <i<j<n,j>n—m,andshow thatr;;, 1 = 0 for 0 <i<n—m-— 2. By (2) and the entries above the main
diagonal in column j=n—m—1 of equation (A.1), —(8+ )Fin-m-1 + B k_olikTkn-m = 0, i=0,1,2,...,n —m — 2. By the induction assumption,
Tkn-m =0 fork<n—-m-—1, and r;j =0 for k >n—m—1 since i <n—m — 2. Thus, Y y_olikTkn-m = 0. Hence, rip_m1 =0for 0<i<n-m-2,
which proves the claim.

Stage (ii) We now prove by induction that r;j = % 0 < j <i< n, where C,, is the m-th Catalan number. Starting with the main diagonal of
(A.1),ie., i=j> 1, we have from (2):
A= B+Dri+BY riarin =0, i=1,2,.,n—1, and - (B+A)r., =0. (A.3)
=0

By (i), ree1 =0 fork <i,andryx =0 fork >i+1, 50 > i likleis1 = 0. Thus, from (A.3),

Cop°A!

I‘H:ﬂ./(/}+l):77‘ i:l,2,...,n.
(ﬂ +l)2(1 i)+1

Ciijﬁi—j;ti—jérl
(B2
G J/jifj/»‘ifjérl
(/}+A)Z(i—j)+l

Next, we assume that r;; = forall0 <i—j<m,1<j<i<n (ie., expressions for the entries in the main diagonal and in the m — 1 di-

agonals below it) and show that r;; = fori—j=m+1,1 <j <i<n. By(2)and the entries in the diagonal i —j = m+ 1 of (A.1),

—(B+ )i +ﬁ'z TikTeim =0, i=m+2,..,n (A.4)

k=0

From (i), r¢;-m = 0 fork <i—m — 1, so (A.4) can be written as —(f + A)ri;_m-1 + ﬂZi:ifmri,krk_i,m =0, i=m+ 2,...,n. By the induction assumption,

ik jik+1 . . . oo gheitm k—itm+1 . . -
ri_k:M for i—k<m (and thus for i—m <k <1i) and rk_i,m:% for k—i+m<m (and thus for i—m<k<i), so

(ﬂ+4)2(i k)+1 (ﬂ‘#}»
S keimlikTiom = %Zizhmq,kq,im. By modifying the indices in the summation, > ; ,.Ci kCk—t+m = Y j_oCkCnk, and from using the recur-

rence relation of the Catalan numbers, ZZLOC;{C,,,,;( = Cpn11- Thus, (A.4) can be written as

m+1 gm+2
Cm+lﬂ A

—B+Nriiima + B+ A)Z(erl)

=0, i=m+2,..,n, (A.5)

Gy

W,i—j:m‘*'l,lﬁjﬁién-

from which the claim is proved, i.e., r;; =

_ Ci/fifllh»l i-1 Ciik/fifkflﬂiiki»l
P k=1" (31 2)20 P

Stage (iii) Finally, we show roo = 1/u and r; Tk0,1 < i< n. Starting with the top left entry of (A.1) above, we obtain

the following:
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n n
A—(u+ rogp +,uzr0,krk,0 +ﬁ2”0,k"k,1 =0. (A.6)
k=0 k=0

By (i), rox =0 for 1 <k <n, so Zﬁzoro_krkvo = (ro‘o)2 and Zzzoro_rkrk‘l = 0. Thus, (A.6) is reduced to

A= (u+ Moo +,M(”0,0)2 =0. (A7)

The quadratic equation in (A.7) results in two roots, roo = 1 androo = 4/u < 1, where the latter is the relevant root. We continue with calculating r;
fori=1,2,...,n, by solving (see (A.1))

—(u+ A)rip +”Z FikTko +ﬂz i =0, 1<i<n (A.8)
=0 =0

By (i), rix = 0 for k > i+ 1,50 34 _oTikTko = D p_oTirTko and Sp_oTikTk1 = > s 1TirTk1- Thus, (A.8) can be written as

i—1 i
—(u+Arig +M<ri,0ro,o + Zri,krk‘() + ri,iri.0> +,/}Zri,krk‘l =0, 1<i<n (A.9)
k=1 k=1
Since roo = 4/u, ri; = 4/(f+4), 1 <i<n, and, by (i), rix = %, 1<k<iandrg; = C(Z 1; Zkl’} .1 <k < i, then (A.9) can be written as
A kﬂl I\Al —k+1 l l+l i .
ﬂ+/1’m ”Zﬁ+l oo + ﬂ+AZ,ZC1ACA170 1<i<n. (A.10)

Multiplying (A.10) by (B + 4)/(uf) and replacing Zk 1Ci-kCy—1 with Zk 0Ci-1-kCx = C; results in

B C;/f’ Iﬂ“ 1 i—1 C,,k/}‘ k |ll k+1 .
T e TR @10
This completes the Proof.
Appendix B. Explicit calculation of the matrix R forn = 7
By Theorem 2, the explicit representation of the matrix R for n = 7 is:
« 0 0 0 0 0 0 0
"
2 yl
— = 0 0 0 0 0 0
U +4) p+a
3 2 2
£h+A) ’? b . 4 0 0 0 0 0
u(p+2) B+ Pt
2 (58 +4pA+1%) 2822 pr A 0 0 0 0
u(B+2)° B+ (B+a) B
R =
2 (148° + 1454 + 62> + %) 550 2824 pa2 2 0 0 0
u(p+2) B+ B+ (B’ A
M(428 +485° 2 + 218727 + 882° + 1) 14p° % 5601 28°0° pr: 2 0 0
u(p+2) B+ B+ B+ (B A
A (1326 + 16582 + 1108°2% + 445°2° + 1062* + 2°) 20 148 5P 2828 i y)
p(p+)" BN B BN B B BHA
2P (4298° + 572870 + 4298 % + 2088°1° + 654°1% + 12807 + %) 132°07  42p°4°  14p°2° 5P 28°0° pI: y)
pp+2)" B+ B+ B+ B+ B+ B+ A

Appendix C. Explicit expressions for the casesn =1 and n = 2

Here, we apply PGFs to obtain explicit expressions of the performance measures L(n), Lq(n), S(n), Sq(n), T(n) and Ty(n) forn = 1 and n = 2. We omit
the explicit presentation for higher values of n since the expressions are cumbersome. The results are obtained by Maple 2015 software. Although the
two probabilistic methods lead to the same results, in calculations the matrix geometric analysis has a significant advantage in our problem. Whereas the
PGF method allows us to solve problems only up to n = 16, due to computational limitations of the software, the matrix geometric analysis enables us to
solve problems for n < 100 within a time frame of few minutes with the same software. This computational-effort advantage is achieved due to Theorem
2, in which we obtain explicit expressions for all the entries of the matrix R.

The case of n = 1
In order to calculate the boundary probabilities, poo and po;, we solve the balance equation of state (0,1), 4po1 = apoo, combined with the
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normalization equation (1), (}; +% — %) poo =1 (1 - ﬁ — Po,l)- Solving the above set results in pog = 1/ (% + if%ﬁ) andpo1 =1/ (l + m’ﬂ;ﬁ)

Solving A(2)(Go(2) , G1(2))" = ?(z) with A(z) and ?(z) from Section 3, and using algebraic manipulations, results in

10-)(1-450-)9)
Go(z) = Gi(2) = £ .
Tl D)0 T () (-4

Then, according to Section 4, we derive

~ MBulop + pA) — ad(u — A)(B — p)) 2 (pAla+B) + au — 2))

HD =t~ Dtatp) rapu—2) = 5= youa+ p) + apa — D)
P+ _ 1
Vg T

1-2/u
and T,(1) = 1/4, which can be interpreted as follows: the mean time of one unit in inventory equals the mean time between consecutive customer
arrivals, whereas the mean time of one unit in the system includes, in addition, the mean CS production time. Note that when a approaches zero, the
server does not succeed in performing any PS, and the system becomes the classical M/M/1.
The case of n =2
Similarly to the case of n = 1, we obtain the boundary probabilities:

To obtain T(1) and T,(1), we first calculate the effective production rate of PSs, (1) = apoo = 1/ (% + M). Then, we obtain T(1) =1/ +1/4

(4= NBB+a+ )2

PO =) T ap)® + (h— ) + au)(B 1 2002 + ((u — a)f + 2au)pai + @pp’
s — Aap(p +2) (1 — 7)
T (- @B+ a2 + (0= a)f + ap) (B +2a)2° + (4 — @) + 2ap)pad + a2 p”
s — BB+ )~ A)

(n— )+ aw)d* + ((u — a)B + au) (B + 22)2> + ((u — @) + 2ap)par + >’

Then, we obtain

(X (WP +a(p = W) A +3a =+ p) + (8 — 4Pu+3p°) & + pp(2pa + 7)) 2 + pa((3u — 2p)a + pu)pA + w*p*a?)2)
(1 = DB (alu — )+ Pu) (A + f + 2a) + ap((2u — B) + pu)A + up*a?) ’

L2) =

2a(u — 2)(0.52° + (B + 1.52)4> + 0.561(8 + 4a) + ap?)
P(alu—p)+ pu)(A+ B +2a) + p((2u — p)a + pu)ai + a2 fp’

5(2) =

from which it is easy to calculate Ly(2) and S4(2), as well as T(2) and T,(2), by using a.y(2) = a(po,o + Po1)-
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