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1. Introduction.We consider the MX=G=1 queueing system where batches of customers arrive accord-ing to a Poisson process and the order in which batches are admitted to service is the LastIn First Out (LIFO) regime. Service of individual customers is non-preemptive and withina batch customers are served according to their inner order. We study three models, notstudied before under the LIFO regime:(i) MX=G=1 without server vacations; (ii) MX=G=1 with multiple vacations; and (iii)MX=G=1 with single vacations.The regular M=G=1 queue with First In First Out (FIFO) service regime and withmultiple and single vacations was studied by Levy and Yechiali [1975] who also were the �rstto indicate the decomposition phenomenon of waiting times for the M=G=1 process withmultiple vacations. Doshi [1986] and others further studied decomposition properties andextended the results to more general systems. Scholl and Kleinrock [1983] investigatedthe multiple vacation M=G=1 queue and compared the moments of the waiting timesunder the FIFO, LIFO and ROS (Random Order of Service) regimes. Kella and Yechiali[1988] studied various M=G=1 priority queues with FIFO mechanism and derived theLaplace-Stieltjes transform (LST), mean and second moment of the waiting time of aclass-k customer for the multiple and for the single vacations processes, both under thepreemptive and non-preemptive priority disciplines.The batch-arrival single-class (non-priority) MX=G=1 queue without vacations andFIFO regime was analyzed by Burke [1975], and the corresponding queue with multiplevacations by Baba [1986]. A book by Chaudhry and Tempelton [1983] contains manyresults on bulk queues, and recently Takagi and Takahashi [1991] investigated priorityqueues with batch Poisson arrivals under the FIFO service regime, with multiple and withsingle vacations. None of the above works for batch-arrival queues attacks the LIFO servicemechanism.In this paper we investigate the MX=G=1 queue with LIFO service discipline, concen-trating on waiting times analysis. (The distribution of the number of customers present inthe system is the same as the corresponding distribution in the MX=G=1 queue under theFIFO regime). In section 2 we describe the details of the model. In sections 3, 4 and 5 we1



study, respectively, the cases with no vacations, with multiple vacations, and with singlevacations. For each model we derive explicit formulae for the LST, and for the mean andsecond moment of the waiting timeWLIFO of an arbitrary customer in a batch, and comparethese moments with the corresponding moments of the waiting timeWFIFO in an identicalMX=G=1 queue but with FIFO service regime. As expected, E[WLIFO] = E[WFIFO] inall cases. However, considering the second moment, we show explicitly that in all modelsstudied in this work, E[W 2FIFO] = (1��)E[W 2LIFO], thus extending the range of Fuhrmann's[1991] general result for regular M=G=1-type queues.2. The Model.We consider an MX=G=1 queueing system were i.i.d random batches of customersarrive according to a Poisson process with rate �, and the batch-size, X, has a probabilitymass function P (X = n) = fn, with probability generating function (PGF ) FX(z) �1Pn=1 fnzn. We let f � E[X], f (2) = E�X(X � 1)�, and f (3) = E�X(X � 1)(X � 2)�,where f (n) � dndznFX(z)���z=1. Customers are served one at a time by a single server, andservice times, S, of individual customers are i.i.d random variables with LST ~S(�), meanE[S], second and third moments E[S2] and E[S3], respectively. When a batch arrives andthe server is busy, the residual service time of the customer being served, RS , has a LSTeRS(�) = �1 � eS(�)�=��E[S]� with mean E[RS] = E[S2]=�2E[S]�: Batches are admittedto service following the LIFO regime. Within a batch, individual customers are servedaccording to their inner order, and service is non-preemptive.As indicated in the Introduction, we study in this work three models, all under theLIFO service discipline: (i) MX=G=1 with no vacations, (ii) MX=G=1 with multiple vaca-tions, and (iii) MX=G=1 with single vacations.In the vacation models, as soon as the system becomes empty (following a busy pe-riod), the server takes a `vacation', whose length U has LST eU(�), mean, second andthird moments E[U ], E[U2] and E[U3], respectively. The residual vacation time, RU , hasLST eRU (�) = �1� eU(�)�=��E[U ]�. Further vacations depend on whether it is a single, ormultiple, vacation model.Consider a busy period that starts upon an arrival of a random batch of size X to an2



empty system, and denote its length by B. The total service time of this batch, denotedby Y , is Y = XPi=1Si, where Si are i.i.d like S. Thus, E[Y ] = E[X]E[S] = fE[S], and theLST of Y is given byeY (�) = Ehe�� XPi=1Sii = 1Xn=1 fn�eS(�)�n = FX�eS(�)� : (1)Di�erentiating, the second and third moments of Y are calculated: E[Y 2] = f (2)�E[S]�2+fE[S2], and E[Y 3] = f (3)�E[S]�3 + 3f (2)E[S]E[S2] + fE[S3]. Applying standard argu-ments, we readily derive the LST of the duration of a busy period B:eB(�) = eY �� + �� � eB(�)� = FX�eS�� + �� � eB(�)�� ; (2)so that E[B] = E[Y ]�1 + �E[B]�. Letting � � �E[Y ] = �fE[S] we obtainE[B] = E[Y ]1� � = fE[S]1� �fE[S] : (3)Indeed, if we consider a batch as a single `super' customer with mean service time E[Y ],then result (3) is just the mean duration of a busy period in a regular M=G=1 queue with`super' customers and corresponding traÆc intensity � = �E[Y ]. It follows, similarly tothe regular M=G=1 queue, that a necessary and suÆcient condition for steady state is� < 1.The second and third moments of B are derived from (2) asE[B2] = E[Y 2](1� �)3 ; E[B3] = 3��E[Y 2]�2(1� �)5 + E[Y 3](1� �)4 : (4)3. The MX=G=1MX=G=1MX=G=1 Queue with LIFO Service Regime.In this section we analyze the MX=G=1 queue with LIFO service regime and novacations. We will derive the LST ofWLIFO, the waiting time of an arbitrary customer, andcalculate its �rst two moments. We will then compare these moments with the mean andsecond moment of the waiting time, WFIFO, in an identical MX=G=1 system with FIFOservice regime, and will show explicitly that E[WLIFO] = E[WFIFO], while E[W 2LIFO] =E[W 2FIFO]=(1� �). 3



Consider a random batch and select an arbitrary (test) customer C. The probabilitythat C is in the n'th position in his batch is given by (see Burke [1975])gn = 1f 1Xk=n fk n = 1; 2; 3; : : : (5)The PGF of fgng is calculated asG(z) � 1Xn=1 gnzn = 1f 1Xk=1 fk kXn=1 zn = 1f 1Xk=1 fk�z � zk+11� z �= 1f � z1� z h1� FX(z)i : (6)
Suppose C is the n'th in his batch, and denote the �rst n� 1 customers in the batch byC1; C2; : : : ; Cn�1. When Ci starts service, and because of the LIFO regime, he generatesa delay busy period (see e.g. Kella and Yechiali [1988]) of an MX=G=1 queue, denotedby A, where the initial delay is customer's Ci service time, S. Therefore, the LST of A isgiven by eA(�) = eS�� + �� � eB(�)� (7)so that E[A] = E[S]=(1 � �), and E[A2] = �E[S]E[B2] + E[S2](1��)2 . Clearly, after servicestarts for the batch to which C belongs, C has to wait (n � 1) independent delay busyperiods, all distributed like A. Thus, if the batch of C arrives to an empty system (whichoccurs with probability 1 � �) and if C is the n'th in the batch, then his waiting timeequals to n�1Pi=1 Ai, where Ai is distributed like A.Suppose now that C arrives with his batch when the server is busy (this clearly occurswith probability �). The residual service time of the customer being served is RS. DuringRS the number of arriving batches is Poisson with rate �. If there are m such batches,then because of the LIFO regime, C waits for his service to start a period of time equal tothe sum RS + mXj=1Bj + n�1Xi=1 Ai; where Bj are i.i.d like B :4



Thus, E �e��WLIFO ���C's batch arrives to a non-emptysystem and C is n'th in his batch�= Z 10 1Xm=0 e��t (�t)mm! � eA(�)�n�1e��t� eB(�)�mdRS(t)= � eA(�)�n�1 eRS�� + �� � eB(�)� :It follows that the LST of the waiting time, WLIFO, of an arbitrary customer is givenby Ene��WLIFOo � fWLIFO(�) = (1� �)E �e��WLIFO ���the batch of C arrivesto an empty system �++ �E �e��WLIFO ���the batch of C arrivesto a non-empty system�= (1� �) 1Xn=1 gn� eA(�)�n�1 + � 1Xn=1 gn� eA(�)�n�1 bRS�� + �� � bB(�)� :That is,fWLIFO(�) = 1� �eA(�)G� eA(�)�+ �eA(�) �G� eA(�)� � eRS�� + �� � eB(�)� : (8)Now, using (6), G� eA(�)� = 1f � eA(�)1� eA(�)h1� FX� eA(�)�i : (9)Also, using (7),eRS�� + �� � eB(�)� = 1� eS�� + �� � eB(�)��� + �� � eB(�)� �E[S] = 1� eA(�)�� + �� � eB(�)�E[S] :Substituting in (8) and using � = �fE[S], we obtainfWLIFO(�) = 1� �f � h1� FX� eA(�)�i1� eA(�) + �h1� FX� eA(�)�i�� + �� � eB(�)� : (10)By taking derivatives, using L'Hospital rule, and after some tedious algebra, we deriveE[WLIFO] = �fE[S2]2(1� �) + f (2)E[S]2f(1� �) : (11)5



As expected, expression (11) for E(WLIFO) equals the corresponding expression forE(WFIFO)as given by Burke [2] for the MX=G=1 with FIFO regime.The calculation of E(W 2LIFO) requires further endeavor, involving derivation ofE[A3] = �E[B3]E[S] + 3�E[B2]E[S2]1� � + E[S3](1� �)3where E[B3] is given in (4).With these results we �nally obtainE[W 2LIFO] = �fE[S3]3(1� �)2+�2f (2)�E(S2)�22(1� �)3 +f (3)�E[S]�23f(1� �)2 +�[f (2)]2�E[S]�3 + (1 + �)f (2)E[S2]2f(1� �)3 :(12)Comparison with the MX=G=1MX=G=1MX=G=1 Queue under the FIFO Regime.The LST of the waiting time, WFIFO, in an M (X)=G=1 queue with FIFO regime isgiven by (see Baba [1986]) asfWFIFO(�) = (1� �)�h1� FX�eS(�)�ifh� � �+ �FX�eS(��i�1� eS(�)� : (13)The mean is given by equation (11) and the second moment byE[W 2FIFO] = �fE[S3]3(1� �) +�2f (2)�E[S2]�22(1� �)2 +f (3)�E[S]�23f(1� �) +�[f (2)]2�E[S]�3 + (1 + �)f (2)E[S2]2f(1� �)2 :(14)It readily follows that E[W 2LIFO] = E[W 2FIFO]1� � : (15)Relation (15) is well known for the regular M=G=1 queue and was extended by Fuhrmann[1991], using direct arguments, to M=G=1 queue with exceptional �rst service, to M=G=1queue with (multiple) server vacation, to M=G=1 queue with static priorities, and to otherM=G=1-type queues. Indeed, Fuhrmann's assumptions 1, 2 and 3 hold here too, and thevalue of the quantity � (see there) is given by � = E[A] = E[S]=[1� �].We will show in the sequel that the same relation holds true forMX=G=1 queues withsingle or with multiple vacations. 6



4. The MX=G=1 Queue with LIFO Service Regime and Multiple Vacations.In this section we analyze the system studied in section 3, but we let the servertake a `vacation' immediately at the end of a busy period. If the server returns from avacation and the system is still empty (i.e. there were no arrivals during the vacation) heimmediately takes another vacation, and continues in this manner until, upon return, he�nds at least one customer waiting. An (extended) busy period starts right away. Whenthis busy period ends, the process of multiple vacations repeats, and so on. (For moredetails on this process see Levy and Yechiali [1975]). The sequence of vacations fUig areindependent, all identically distributed like U . Consider the test customer C. When hearrives, there is either a customer being served or the server is on vacation. Baba [1986]has shown that the proportion of time that the server is on vacation in an MX=G=1 queuewith FIFO service regime is (1 � �). This holds true for the LIFO regime as well sincethe order of service does not a�ect the above proportion. Thus, letting WMVLIFO denote thewaiting time of an arbitrary customer C when the multiple vacation (MV ) procedure isapplied and the service regime is LIFO, we havefWMVLIFO(�) = (1� �)E he�W ���the server is on vaca-tion when C arrives i+ �E he��W ���server is busywhen C arrivesi= (1� �) 1Xn=1 gn Z 10 1Xm=0 e��t (�t)mm! � eA(�)�n�1e��t� eB(�)�mdRU (t)+ � 1Xn=1 gn Z 10 1Xm=0 e��t (�t)mm! � eA(�)�n�1e��t� eB(�)�mdRS(t)= (1� �) 1Xn=1 gn� eA(�)�(n�1) eRU�� + �� � eB(�)�+ � 1Xn=1 gn� eA(�)�n�1 eRS�� + �� � eB(�)�or,fWMVLIFO(�) = (1� �)G� eA(�)�eA(�) eRU�� + �� � eB(�)�+ �G� eA(�)�eA(�) eRS�� + �� � eB(�)� : (16)Using (9) and eRS(�) = �1� eS(�)�Æ��E[S]�, eRU (�) = �1� eU(�)�=��E[U ]�, we getfWMVLIFO(�) = (1� �)h1� FX� eA(�)�ih1� eU�� + �� � eB(�)�if�1� eA(�)��� + �� � eB(�)�E[U ] + �h1� FX� eA(�)�i�� + �� � eB(�)� : (17)7



Comparing (17) to (10) (or (16) to (8)) we obtain, after di�erentiation,E[WMVLIFO] = E[WLIFO] + E[RU ] = �fE[S2]2(1� �) + f (2)E[S]2f(1� �) + E[U2]2E[U ] : (18)Observe that the mean waiting time in theMX=G=1 queue with LIFO regime and multiplevacations is equal to the mean waiting time in the same system without vacations plus themean residual time, E[RU ], of a vacation. That is, regarding mean waiting times, wereveal here too a decomposition phenomenon for MX=G=1-type queues with LIFO serviceregime.Again, utilizing the calculations when deriving E[W 2LIFO], we obtain, after lengthyalgebra,Eh(WMVLIFO)2i = �fE[S2]E[U2]2(1� �)2E[U ] + f (2)E[S]E[U2]2f(1� �)2E[U ] + E[U3]3(1� �)E[U ] + E[W 2LIFO] (19)where E[W 2LIFO] is given by (12).Using (11), result (19) can also be written asEh(WMVLIFO)2i = E[WLIFO] E[U2](1� �)E[U ] + E[U3]3(1� �)E[U ] +E[W 2LIFO] : (20)Comparison with theMX=G=1MX=G=1MX=G=1 Queue with Multiple Vacations under the FIFORegime.Baba [1986] derived the LST ofWMVFIFO, the waiting time of an arbitrary (test) customerin the MX=G=1 queue with FIFO service regime, and showed thatfWMVFIFO(�) = (1� �)h1� FX�eS(�)�i�1� eU(�)�fh� � �+ �FX�eS(�)�i�1� eS(�)�E[U ]= fWFIFO(�) � �1� eU(�)��E[U ] = fWFIFO(�) eRU(�) : (21)
That is, there exists a complete decomposition: WMVFIFO =WFIFO + RU .He also calculated (see equation (25) there) the mean of WMVFIFO asE[WMVFIFO] = �fE[S2]2(1� �) + f (2)E[S]2f(1� �) + E[U2]2E[U ]= E[WLIFO] +E[RU ] : (22)8



As expected, equations (18) and (22) match, i.e. E[WMVLIFO] = E[WMVFIFO]. The secondmoment of WMVFIFO is calculated while using the decomposition result:Eh(WMVFIFO)2i = 2E[WFIFO]E[RU ] + E[R2U ] + E[W 2FIFO]= �fE[S2]E[U2]2(1� �)E[U ] + f (2)E[S]E[U2]2f(1� �)E[U ] + E[U3]3E[U ] + E[W 2FIFO] ; (23)where E[WFIFO] is taken from (11), E[R2U ] = E[U3]3E[U ] and E[W 2FIFO] is given by (14). Com-paring (20) and (23), while using (15), it follows that in this case too,Eh(WMVFIFO)2i = Eh(WMVFIFO)2i1� � : (24)5. The MX=G=1MX=G=1MX=G=1 Queue with Single Vacations under the LIFO Regime.This section is devoted to the single-vacations process (see Levy and Yechiali [1975])where the server takes only a single vacation at the end of a busy period. If, upon returnfrom a vacation, there are customers present, their service starts, as in the previous model,with no delay, and the server serves exhaustively during the busy period until the systembecomes empty, where he takes another vacation. However, if upon return from a vacationthe server �nds an empty system he waits idle for the �rst batch-arrival, where a busyperiod B starts. When B ends and the system is empty, the server takes another (single)vacation, etc.To calculate the LST of the waiting time, WSVLIFO, of an arbitrary customer C we notethat, in this model, when a batch arrives, the server can be found idle, busy or on vacation.We wish to calculate the probabilities of these three events.Proposition. The probability that the server is idle is given byP0 = (1� �)eU(�)eU(�) + �E[U ] : (25)Proof:Let I denote the interarrival time between two batches. Clearly I is Exponential withLST eI(�) = �=(� + �) and mean 1=�. Let T denote the cycle time, which is the time9



interval between two consecutive (single) vacations. Then, the LST of T is given byE[e��T ] = eT (�) = Z 10 e��tE[e��(t+I+B)]dP (U � t)+ Z 10 1Xi=1 e��t (�t)ii! Ehe��(t+ iPj=1Bj)idP (U � t)= � ��+ �� eB(�)eU(�+ �) + eU�� + �� � eB(�)�� eU(�+ �) : (26)
(For a similar result, see equation (4) in Levy and Yechiali).It follows from (26) that the mean cycle duration isE[T ] = 11� �hE[U ] + eU(�)� i : (27)Clearly, a direct way to get E[T ] is to writeE[T ] = E[U ] + b0h 1� + E[B]i+ 1Xi=1 biiE[B] (28)where bi = R10 e��t (�t)ii! dP (U � t) is the probability that i batches arrive during a vacationperiod. As 1Pi=1 ibi = �E[U ], 1� + E[B] = 1�(1��) , and b0 = eU(�), result (27) follows from(28).Now, P0 is the proportion of time that the server is idle, and hence, from (28)P0 = b0=�E[T ] = (1� �)eU(��E[U ] + eU(�) :The probability that an arriving batch �nds the server on vacation is PU = E[U ]=E[T ] =�(1��)E[U ]�E[U ]+eU(�) , and the probability that the server is busy is 1� P0 � E[U ]=E[T ] = �, as ex-pected. The LST of WSVLIFO is now derived asfWSVLIFO(�) = P0 1Xn=1 gn� eA(�)�n�1 + � 1Xn=1 gn� eA(�)�n�1 Z 10 1Xk=0 e��t (�t)kk! e��t� eB(�)�k � dP (RS � t)+ PU 1Xn=1 gn�A(�)�n�1 Z 10 1Xm=0 e��t (�t)mm! e��t� eB(�)�mdP (RU � t) : (29)10



Using (9),fWSVLIFO(�) = P0 1� FX� eA(�)�f�1� eA(�)� + �1� FX� eA(�)�f�1� eA(�)� eRS�� + �� � eB(�)�+ PU 1� FX� eA(�)�f�1� eA(�)� eRU�� + �� � eB(�)� : (30)
Finally, substituting for eRS(�) and eRU (�) in (30), we obtainfWSVLIFO(�) = P0 h1� FX� eA(�)�if�1� eA(�)� + �h1� FX� eA(�)�i�� + �� � eB(�)�+ PU h1� FX� eA(�)�if�1� eA(�)� � h1� eU�� + �� � eB(�)�i�� + �� � eB(�)�E[U ] : (31)
Note that equation (31) can be written as fWSVLIFO(�) = fWMVLIFO+P0G�eA(�)�eA(�) h1� eRU ��+�� � eB(�)�i.The mean and second moment of WSVLIFO are now calculated from (31) while using(11): E[WSVLIFO] = E[WLIFO] + PU1� �E[RU ]= �fE[S2]2(1� �) + f (2)E[S]2f(1� �) + �E[U2]2��E[U ] + eU(�)� : (32)Similarly to previous calculations, and letting � � �E[U ] + eU(�), we obtainEh(WSVLIFO)2i = E[W 2LIFO] + �f (2)E[S]E[U2]2f(1� �)2� ++ �2fE[S2]E[U2]2(1� �)2� + �E[U3]3(1� �)� ; (33)where E[W 2LIFO] is given in (12).Comparison with the MX=G=1MX=G=1MX=G=1 Queue with Single Vacations under the FIFORegime.This model was studied recently by Takagi and Takahashi [1991]. Applying the methodof delay busy cycle analysis (as in Kella and Yechiali [1988]) they derived the LST and �rst11



two moments of the waiting times for the various classes in non-preemptive and preemptiveresume priority queues.From their equations (18), (20) and (38) we getE[WSVFIFO] = �E[U2]2� + �f (2)E[S]22(1� �) + �fE[S2]2(1� �) + f (2)E[S]2f : (34)Combining the 2nd and 4th terms in the RHS of (34) gives f(2)E[S]2f(1��) , so that, as expected,(34) matches (32). That is, E[WSVFIFO] = E[WSFLIFO].Using equations (18) and (39) from Takagi and Takahashi, and completing the calcu-lations of Eh(WSVFIFO)2i, we �nally obtain (the lengthy derivations are omitted), as in allprevious models: Eh(WSVLIFO)2i = Eh(WSVFIFO)2i1� � : (35)
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