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Abstract

The MX /G /1 queue without server vacations, with multiple vacations and
with single vacations is studied under the LIFO service regime. For each model
we derive explicit formulae for the Laplace-Stieltjes transform, mean and second
moment of the waiting time Wy ro of an arbitrary customer, and extend the range

of Fuhrmann’s general result, showing directly that for each case, E[Wfgpo] =

E[WFZIFO]/(l —p).
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1. Introduction.

We consider the M /G /1 queueing system where batches of customers arrive accord-
ing to a Poisson process and the order in which batches are admitted to service is the Last
In First Out (LIFO) regime. Service of individual customers is non-preemptive and within
a batch customers are served according to their inner order. We study three models, not
studied before under the LIFO regime:

(i) MX/G/1 without server vacations; (ii) M*X /G /1 with multiple vacations; and (iii)
M™X/G/1 with single vacations.

The regular M/G/1 queue with First In First Out (FIFO) service regime and with
multiple and single vacations was studied by Levy and Yechiali [1975] who also were the first
to indicate the decomposition phenomenon of waiting times for the M/G/1 process with
multiple vacations. Doshi [1986] and others further studied decomposition properties and
extended the results to more general systems. Scholl and Kleinrock [1983] investigated
the multiple vacation M/G/1 queue and compared the moments of the waiting times
under the FIFO, LIFO and ROS (Random Order of Service) regimes. Kella and Yechiali
[1988] studied various M/G/1 priority queues with FIFO mechanism and derived the
Laplace-Stieltjes transform (LST), mean and second moment of the waiting time of a
class-k customer for the multiple and for the single vacations processes, both under the
preemptive and non-preemptive priority disciplines.

The batch-arrival single-class (non-priority) M%X /G /1 queue without vacations and
FIFO regime was analyzed by Burke [1975], and the corresponding queue with multiple
vacations by Baba [1986]. A book by Chaudhry and Tempelton [1983] contains many
results on bulk queues, and recently Takagi and Takahashi [1991] investigated priority
queues with batch Poisson arrivals under the FIFO service regime, with multiple and with
single vacations. None of the above works for batch-arrival queues attacks the LIFO service
mechanism.

In this paper we investigate the MX /G /1 queue with LIFO service discipline, concen-
trating on waiting times analysis. (The distribution of the number of customers present in
the system is the same as the corresponding distribution in the M* /G//1 queue under the

FIFO regime). In section 2 we describe the details of the model. In sections 3, 4 and 5 we
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study, respectively, the cases with no vacations, with multiple vacations, and with single
vacations. For each model we derive explicit formulae for the LST, and for the mean and
second moment of the waiting time Wrro of an arbitrary customer in a batch, and compare
these moments with the corresponding moments of the waiting time Wgpo in an identical
MX/G/1 queue but with FIFO service regime. As expected, E[Wiro] = E[Wrro] in
all cases. However, considering the second moment, we show ezplicitly that in all models
studied in this work, E[Wgipo] = (1—p) E[W#ipe], thus extending the range of Fuhrmann’s
[1991] general result for regular M /G /1-type queues.

2. The Model.

We consider an MX /G /1 queueing system were i.i.d random batches of customers
arrive according to a Poisson process with rate A, and the batch-size, X, has a probability
mass function P(X = n) = f,, with probability generating function (PGF) Fx(z) =
iojlfnz". We let f = E[X], f® = E[X(X —1)], and f® = E[X(X — 1)(X — 2)],

where f(7) = d‘fn Fx(z) . Customers are served one at a time by a single server, and
z=1

service times, S, of individual customers are i.i.d random variables with LST S(f), mean

E[S], second and third moments E[S?] and E[S3], respectively. When a batch arrives and

the server is busy, the residual service time of the customer being served, Rg, has a LLST

Rs(0) = [1— S(0)]/[0E[S]] with mean E[Rs] = E[S?]/[2E[S]]. Batches are admitted
to service following the LIFO regime. Within a batch, individual customers are served
according to their inner order, and service is non-preemptive.

As indicated in the Introduction, we study in this work three models, all under the
LIFO service discipline: (i) M /G/1 with no vacations, (ii) M* /G/1 with multiple vaca-
tions, and (iii) M* /G/1 with single vacations.

In the vacation models, as soon as the system becomes empty (following a busy pe-
riod), the server takes a ‘vacation’, whose length U has LST 6(9), mean, second and
third moments E[U], E[U?] and E[U3], respectively. The residual vacation time, Ry, has
LST Ry (6) = [1- ﬁ(@)]/[@E[U]] Further vacations depend on whether it is a single, or
multiple, vacation model.

Consider a busy period that starts upon an arrival of a random batch of size X to an
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empty system, and denote its length by B. The total service time of this batch, denoted
X
by V,is Y = > S;, where S; are i.i.d like S. Thus, F[Y]| = E[X|E[S] = fFE[S], and the

i=1
LST of Y is given by

) eys, e .
Vo) =Ele = | =3 £[50)]" =Fx(S0) . (1)

Differentiating, the second and third moments of Y are calculated: E[Y?] = f(2) [E[S]]Z +

fE[S?], and E[Y?3] = f©) [E[SHS + 3fP E[S|E[S?] + fE[S®]. Applying standard argu-
ments, we readily derive the LST of the duration of a busy period B:

Bwy:?w+x—xéw»:z&(ﬂ9+A—A§wn), 2)

so that E[B] = E[Y](1 + AE[B]). Letting p = AE[Y] = AfE[S] we obtain

_ BlY] _ JE[S]
E[B]il—pil—)\fE[S] ' )

Indeed, if we consider a batch as a single ‘super’ customer with mean service time E[Y],
then result (3) is just the mean duration of a busy period in a regular M/G/1 queue with
‘super’ customers and corresponding traffic intensity p = AE[Y]. It follows, similarly to
the regular M/G/1 queue, that a necessary and sufficient condition for steady state is
p <1

The second and third moments of B are derived from (2) as
CA(BYY)) B[V

E[Y2] E[B3] — (1 - p)5 (1 - p)4 )

E[B% =

3. The MX/G/I Queue with LIFO Service Regime.

In this section we analyze the M /G/1 queue with LIFO service regime and no
vacations. We will derive the LST of Wy, 1ro, the waiting time of an arbitrary customer, and
calculate its first two moments. We will then compare these moments with the mean and
second moment of the waiting time, Wgrro, in an identical MX /G /1 system with FIFO

service regime, and will show ezplicitly that E[Wiipo] = E[Wriro], while E[Wiige] =
E[Wgipol/ (1 = p).



Consider a random batch and select an arbitrary (test) customer C. The probability

that C' is in the n’th position in his batch is given by (see Burke [1975])
1 (o.0)
gn==> fx n=123, ... (5)
f k=n
The PGF of {g,} is calculated as

00 i} 1 0o k . o0 _ Sk+1
G(Z)E;gnz':}szzz': ka(%)

z

1-F } .
1—2z { x(2)
Suppose C' is the n’th in his batch, and denote the first n — 1 customers in the batch by
C1,Cy,...,C, 1. When C} starts service, and because of the LIFO regime, he generates
a delay busy period (see e.g. Kella and Yechiali [1988]) of an M /G/1 queue, denoted
by A, where the initial delay is customer’s C; service time, S. Therefore, the LST of A is

given by

A() = S(6+ X —AB(9)) (7)

so that E[A] = E[S]/(1 - p), and E[A?] = AE[S]E[B] + L. Clearly, after service

starts for the batch to which C belongs, C' has to wait (n — 1) independent delay busy

periods, all distributed like A. Thus, if the batch of C arrives to an empty system (which
occurs with probability 1 — p) and if C' is the n’th in the batch, then his waiting time
n—1
equals to > A;, where A; is distributed like A.
i=1

Suppose now that C' arrives with his batch when the server is busy (this clearly occurs
with probability p). The residual service time of the customer being served is Rg. During
Rs the number of arriving batches is Poisson with rate A. If there are m such batches,

then because of the LIFO regime, C' waits for his service to start a period of time equal to

the sum
m n—1
Rs+>» Bj+ Y _ A;, where B; areiidlike B.
j=1 i=1



Thus,
C’s batch arrives to a non-empty
system and C is n’th in his batch

E |: —OWLIFO

= 7S e ) e o) sty

n—1

:[A(e)] Rs(0+ X —AB(9)) .

It follows that the LST of the waiting time, Wriro, of an arbitrary customer is given

by

E{e_GW”FO} _ WLIFO(Q) —(1-p)E |:e_9W”FO the batch of C arrives}

to an empty system

et T
—<1m§iﬁﬁﬁwn”+p§j%z Rs(0+ 2 AB(O))
That is

Wiaro(6) %if (A0) + 50 GLA) s (042 AB(O)) (®)

Now, using (6)
a(im) =+ 01 (i) )

Also, using (7),

~S(0+X—AB®) 1- A(f)

Rs(0+ )~ AB(0)) = W+A AB(6)) - E[S]  (0+A—AB(0))E[S]

Substituting in (8) and using p = Af E[S], we obtain

1p_ﬁFk@WD] A1 Fx (4(9))]

f 1— A(6) *'W+A—xmm] (10)

WLIFO(Q) =

By taking derivatives, using L’Hospital rule, and after some tedious algebra, we derive

AE[S®] fPE[S]
2(1-p)  2f(1-p)
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As expected, expression (11) for F(Wiiro) equals the corresponding expression for F(Wgiro)
as given by Burke [2] for the MX /G /1 with FIFO regime.

The calculation of E(Wgo) requires further endeavor, involving derivation of

E[A%] = AE[B*|E[S] + 3AE[13]§[S Ly (1E[Sp13
where E[B3] is given in (4).

With these results we finally obtain

MESY  XIOEES)] (OS] ASCPES] + (L p) [P B[S

E[Wiipo] = 3(1— p)? 2(1 - p)3 3f(1— p)2 + 2f(1— p)3

(12)

Comparison with the MX /G/1 Queue under the FIFO Regime.
The LST of the waiting time, Wgpo, in an MX) /G /1 quene with FIFO regime is
given by (see Baba [1986]) as

(1 - p)o[1 - Fx(3(0))]

Wriro (0) = = — :
Flo- X+ AP (S@)| 1 S0)]

The mean is given by equation (11) and the second moment by

_ MBS N[BT OB ASPPIES] + (14 p) [P B

E[W2 = 4
Wewrol = 5= ) 50— 2 3f(1—p) 2f(1 - p)? »
14
It readily follows that
EWZiwo)
BWeiro = 2y rol (15

Relation (15) is well known for the regular M/G/1 queue and was extended by Fuhrmann
[1991], using direct arguments, to M /G /1 queue with exceptional first service, to M/G/1
queue with (multiple) server vacation, to M/G/1 queue with static priorities, and to other
M /G /1-type queues. Indeed, Fuhrmann’s assumptions 1, 2 and 3 hold here too, and the
value of the quantity A (see there) is given by A = E[A] = E[S]/[1 — p].

We will show in the sequel that the same relation holds true for M /G//1 queues with

single or with multiple vacations.



4. The M*/G/1 Queue with LIFO Service Regime and Multiple Vacations.
In this section we analyze the system studied in section 3, but we let the server
take a ‘vacation’ immediately at the end of a busy period. If the server returns from a
vacation and the system is still empty (i.e. there were no arrivals during the vacation) he
immediately takes another vacation, and continues in this manner until, upon return, he
finds at least one customer waiting. An (extended) busy period starts right away. When
this busy period ends, the process of multiple vacations repeats, and so on. (For more
details on this process see Levy and Yechiali [1975]). The sequence of vacations {U;} are
independent, all identically distributed like U. Consider the test customer C. When he
arrives, there is either a customer being served or the server is on vacation. Baba [1986]
has shown that the proportion of time that the server is on vacation in an MX/G/l queue
with FIFO service regime is (1 — p). This holds true for the LIFO regime as well since
the order of service does not affect the above proportion. Thus, letting W%, denote the
waiting time of an arbitrary customer C' when the multiple vacation (MV') procedure is

applied and the service regime is LIFO, we have

WG(0) = (1= p) B |7

the server is on vaca—} 4 oE {efgw‘server is busy }
tion when C arrives when C arrives

-9 0, / e OO o)) e B0)) "k 1)
+pzqn / e O G0 e B(6)) " as (1)

Zgn )" YRy (6+ 1 — AB(6) +ngn "'Rs(0+ - AB())

or,

G(A(e))RU(9+)\ AB(9)) + GlA©)

DR pWRS (0 +A=AB()) . (16)

WLIFO(H) (1-p)
Using (9) and Rs(0) = [1 — S(0)]/[0E[S]], Ry (9) = [1 — U(0)]/[0E[U]], we get

(1 p) [1 Py (Z(e))] [1 U0+ )\E(Q))] A[l Py (2(9))}

Wiiio (0) = L= A@)](6+X - AB()) B[] (0+A— AB(0))

(17)
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Comparing (17) to (10) (or (16) to (8)) we obtain, after differentiation,

2 (2) 2
EW{{so] = E[Wuiro] + E[Ry] = ;\{IE_[Sp)] + gff(lE_[i]) + ;EE[([JU]] : (18)

Observe that the mean waiting time in the M*X /G /1 queue with LIFO regime and multiple
vacations is equal to the mean waiting time in the same system without vacations plus the
mean residual time, E[Ry], of a vacation. That is, regarding mean waiting times, we
reveal here too a decomposition phenomenon for MX/G/l—type queues with LIFO service
regime.

Again, utilizing the calculations when deriving E[W#po], we obtain, after lengthy

algebra,

wy o] _ APBISEWY | fOESIEY B ,
BlViRo?] = 5w * sy pemio) * s g Pl (19

where E[W3po] is given by (12).

Using (11), result (19) can also be written as

E[U?] E[U?]
(1-p)E[U]  3(1 - p)EU]

E|(WiH6)?| = EWiiro] +EWirol - (20)

Comparison with the MX/G/I Queue with Multiple Vacations under the FIFO
Regime.
Baba [1986] derived the LST of W, the waiting time of an arbitrary (test) customer

in the MX /G /1 queue with FIFO service regime, and showed that

(- p)[1- Fx(50)|[1 - T®)]

WMV

FIFO(Q) =
fl (21)

~ Werrol0) - 1

That is, there exists a complete decomposition: WFA{F‘/O = Wgiro + Ry.

He also calculated (see equation (25) there) the mean of WY, as

_ MBS’ fPE[S] | E[U?
E[Wgipo = 21— p) T 2f(1_p) " 2E[0) (22)

= E[WLIF()] + E[RU] .
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As expected, equations (18) and (22) match, i.e. E[WMYo] = E[WME]. The second

moment of Wé\{FVO is calculated while using the decomposition result:

E|(Wfi6)?| = 2BWewo] B[R] + B[R} + EWiro]

_ ME[SEU?]  fPE[SIE[U?] | E[U] (23)

- 20 -pEU]  2f(0-pEU]  3E[U]

+ E[Wipo) »

where E[Wgiro] is taken from (11), E[R%] = fé?;% and E[Wkro) is given by (14). Com-

paring (20) and (23), while using (15), it follows that in this case too,

v a1 E|WH)?]
Bl = —4— (24)
5. The MX/G/I Queue with Single Vacations under the LIFO Regime.

This section is devoted to the single-vacations process (see Levy and Yechiali [1975])
where the server takes only a single vacation at the end of a busy period. If, upon return
from a vacation, there are customers present, their service starts, as in the previous model,
with no delay, and the server serves exhaustively during the busy period until the system
becomes empty, where he takes another vacation. However, if upon return from a vacation
the server finds an empty system he waits idle for the first batch-arrival, where a busy
period B starts. When B ends and the system is empty, the server takes another (single)
vacation, etc.

To calculate the LST of the waiting time, WEI‘IQO, of an arbitrary customer C' we note

that, in this model, when a batch arrives, the server can be found idle, busy or on vacation.

We wish to calculate the probabilities of these three events.

Proposition. The probability that the server is idle is given by

py— (L=PUN) (25)
U(A) + AE[U]

Proof:

Let I denote the interarrival time between two batches. Clearly I is Exponential with

LST I(f) = A\/(A+ 60) and mean 1/X. Let T denote the cycle time, which is the time
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interval between two consecutive (single) vacations. Then, the LST of T is given by

Ele *T|=T(0) = /OOO e ME[e B Ip(U < t)

/ =M At) E[ee(H; Bj)}dP(U <) (26)

_ (HQ)B(e)U(He) +UO+A—ABO) —UNA+0) .

(For a similar result, see equation (4) in Levy and Yechiali).

It follows from (26) that the mean cycle duration is

1 U(N)
ET| =—|F — .
T)= [+ = (27)
Clearly, a direct way to get E[T] is to write
1
E[T] = E[U] + bo[ E[B]| + Zb iE[B (28)

where b; = fo e~ ()‘t) dP(U < t) is the probability that i batches arrive during a vacation
period. As Y ib; = AE[U], 5 + E[B] = ﬁ, and by = U(X), result (27) follows from
i=1

(28).

Now, Py is the proportion of time that the server is idle, and hence, from (28)

bo/A _ (1= p)U(A

P() = = = .
E[T]  XE[U]+ U

The probability that an arriving batch finds the server on vacation is Py = E[U|/E[T] =

>\(1 p)E[U]
E[UI+U(\)’
pec‘red. The LST of WY, is now derived as

LIFO Pozgn ni +ngn n 1/ Z _M

+PUZgn[ n 1/ e At )\t) e~ 0t [é(@)]mdP(RU < t) )

, and the probability that the server is busy is 1 — Py — E[U]|/E[T] = p, as ex-

k

i [B(A)]" - dP(Rs < t)

(29)
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—sv o o 1 Fx(A@®) 1 Fx(A®)) s
Wiaro @) = 0 R, T Ay OO (30)
1— Fx (A®9)) ~ -
+ Py A Y (60 +X—AB(9)) .
Finally, substituting for és() and EU() in (30), we obtain
1— Fx (A0 A1 — Fy(A(0
o) = L XN | A1 Pe(H0)
fl1—A()] [0+ X—AB(0)] 1)

1 F(A@)] [1- T+ 2 rB)]

fl1—A®)] [0+ — AB(0)] E[U]

Note that equation (31) can be written as WEI‘EO(H) = Wﬁ\f[g/o -I-PO% {1 —Ry (0+
A )\E(G))} .
The mean and second moment of WY, are now calculated from (31) while using

(11):

W io] = EWaro] + — = B[Ry
_MEIS? | fOELS AE[U?) (82)
S 2(1-p)  2f(1—p) 2DE[UI+UMN)]
Similarly to previous calculations, and letting A = AE[U] + (7()\), we obtain
SV _ AP E[SIE[U?]
B(Wiko)?| = BWiivol + =577~ g -

N2 FE[S2E[UY]  AE[UY
2(1 - p)2A 3(1—p)A

where E[Wipo] is given in (12).

Comparison with the MX/G/l Queue with Single Vacations under the FIFO
Regime.

This model was studied recently by Takagi and Takahashi [1991]. Applying the method
of delay busy cycle analysis (as in Kella and Yechiali [1988]) they derived the LST and first
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two moments of the waiting times for the various classes in non-preemptive and preemptive
resume priority queues.

From their equations (18), (20) and (38) we get

2 (2) 2 2 (2)
E[WFsl‘]é‘O] = )‘E2[[ij ] + )\5(1 l_;[ps)] + ;\{1E_[Sp)] + f 2?[8] : (34)

Combining the 2nd and 4th terms in the RHS of (34) gives %, so that, as expected,
(34) matches (32). That is, E[W3ko] = E[WSko]-

Using equations (18) and (39) from Takagi and Takahashi, and completing the calcu-
lations of F {(WFSI‘EO)Z}, we finally obtain (the lengthy derivations are omitted), as in all

previous models:

E|(WgYo)?]
El(WSY )2 = —— 4| 35
(Wio)?| —, (35)
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