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Abstract We consider a Jackson-type network comprised of 2 queues hav-
ing state-dependent service rates, in which the queue lengths evolve peri-
odically, exhibiting noisy cycles. To reduce this noise a certain heuristic,
utilizing regions in the phase space in which the system behaves almost
deterministically, is applied. Using this heuristic, we show that in order to
decrease the probability of a customers overflow in one of the queues in the
network, the server in that same queue - contrary to intuition - should be
shut down for a short period of time. Further noise reduction is obtained
if the server in the second queue is briefly shut down as well, when certain
conditions hold.

Key words Queueing Networks, Oscillations, Fluid Approximation, Con-
trol, Dominant Probability.

1 Introduction

The study of queueing networks usually focuses on the stationary distribu-
tions of such systems, with some attention given to transient behaviours.
There is almost no work dealing with specific time-dependent dynamic be-
haviours, such as oscillations or chaos (for an example of the few exceptions,
see [3]).

In [1], we have presented a 2-queue Jackson-type network with state-
dependent service rates, which roughly exhibits an oscillatory behaviour.
To produce such a network, the functional form of the model rates and
probabilities are chosen so that the fluid approximation of the network is
equivalent to a (deterministic) dynamical system featuring a limit cycle in
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the phase space (the phase space is defined here as the L1 — Lo plane, where
L; is the number of customers in queue ¢ (i = 1,2), including the customer
being served). The extent to which the stochastic queueing network agrees
with this approximation depends, among other things, on the workload in
the system: the more customers present, the closer are the trajectories pro-
duced by the network to that of the fluid approximation, as the change
induced by an event involving a single customer (i.e. arrival, service com-
pletion or movement between queues) is less significant. Therefore, we focus
our discussion on highly-loaded networks.

Our main interest in this paper is in the control of the above network.
More precisely, we aim at reducing the noise, i.e. the variance of the maximal
lengths (amplitudes) obtained for both queues in each cycle, and of the
period (cycle duration) of the actual trajectories. To accomplish this, a
certain heuristic is employed, arising from the observations delineated below.

In each state of the network, several Poisson processes “compete”, each
having a different probability of being the first to produce the next event.
We use the term dominant probability to denote the highest of these prob-
abilities. Since the rates and probabilities defining the network are state-
dependent, the value of the dominant probability varies in the phase space.
In particular, there are regions in the phase space in which the dominant
probability is close to 1. When its trajectories traverse these regions, the sys-
tem behaves almost deterministically, whereas in the other parts of the phase
space, random fluctuations are apparent in its conduct. Throughout this pa-
per, we refer to the former regions using the term nearly-deterministic.

We use control strategies which interfere with the network’s servers ac-
tivity, so that the relative “winning” probabilities of the “competing” pro-
cesses are altered in certain regions of the phase space. The heuristic we
suggest argues that such an interference is mostly effective when employed
to the system just before it visits the nearly-deterministic portions of the
phase space. The reason for this is that changes made in the system in the
midst of the noisier regions are lost shortly after being performed; and, in the
nearly-deterministic regions themselves, one process tends to dominate, re-
gardless of any interference. In contrast, changes made just before the entry
to a nearly-deterministic region can have immediate and significant implica-
tions, as they determine the conduct of the system almost completely, until
the system leaves this region.

The effectiveness of this heuristic is examined through numerical simula-
tions. While the use of the control strategies is limited to a relatively small
region of the phase space, a considerable overall noise-reduction is obtained.
More specifically, we show that:

1. In order to decrease the probability that the length of the first queue
exceeds a certain value, the server in this first queue - contrary to in-
tuition - should be shut down whenever the length of the second queue
reaches some threshold;

2. By employing a strategy in which both servers are shut down for cer-
tain periods of time, depending on the length of the second queue, the
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variance of the maximal lengths reached by the queues, as well as the
variance of the period (i.e., cycle duration), are reduced considerably.

The organization of this paper is as follows. In section 2 we present the
2-node Jackson-type network mentioned above and demonstrate its peri-
odic time evolution. The manner in which this network was constructed is
explained in section 3, as part of a more comprehensive discussion regard-
ing the integration of specific desired dynamic behaviours into generalized
queueing networks. The control strategies are applied to the 2-node network
in section 4, and results confirming their effectiveness are presented.

2 An oscillating Jackson-type network

The network is defined as follows. Let ; denote the external arrival rate to
queue i (i = 1,2), and let p; be the service rate at this queue. The probability
that a customer, upon completing his service at queue ¢, will move to queue
j, is denoted by p;;; the probability that such a customer will leave the
system, is denoted by d; = 1 — p;j,j # ¢ (we set p;; = 0,1 = 1,2). Let L;
denote the number of customers in queue ¢ (including the served customer).

Specifically, with A and B positive constants satisfying B > 1+ A2, set:

n=A m=B+DL pao=F7 d=g5
Yo =0 po=LiLy p21 =1 dy =0

This network is depicted in Figure 1. The results of actual simulation
runs of the network appear in Figure 2. As can be seen, the lengths of the 2
queues oscillate periodically, in a coordinated manner, with some apparent
noise (Figures 2a and 2c¢). This leads to a motion of the system roughly
along a cycle in the L1 — Ly plane (Figure 2e). For example, starting in
a state where the first queue is crowded while the second queue is nearly
empty, the network will witness the graduate passage of customers from
the first queue to the second, reaching a state where most of them wait in
the second queue; this process is then reversed, as the system returns to its
starting point.

The somewhat irregular form of the service rates requires interpreta-
tion. The linear service rate in the first queue suggests an infinite number
of servers in that queue, where each server provides a service lasting an
exponential time, with rate B + 1. More peculiar is the service rate in the
second queue, which increases with the length of the first queue. To explain
this oddity, we suggest the notion of customers acting as servers: customers
waiting in the first queue participate, in the meantime, in the service of cus-
tomers standing in the second queue, enhancing the rate of service there.
Furthermore, this enhancement of service results from connections, or a co-
operation, forming between pairs of customers waiting in the first queue;
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Fig. 1 A Jackson-type queueing network with state-dependent service rates, ex-
hibiting noisy oscillations. Customers completing service in queue 2, return to
queue 1.

hence, the service rate in the second queue increases with L?, rather than
L. Finally, the linear dependence on Ly of this rate implies the presence of
an infinite number of servers in the second facility, utilizing the customers
waiting in the first queue.

Scenarios in which waiting customers supply some service in the mean-
time may actually be quite natural in networks composed of nodes both re-
ceiving and providing service. In computer networks this situation is rather
common. Following is an example illustrating this point.

Consider a hypothetical computer network, capable of handling jobs of
2 types: Type-I jobs, which have a high priority, are composed of a se-
quence of steps, each being either a calculation of some sort, or an access
to a database (DB). Type-II jobs, which have a lower priority, require some
pre-processing, followed by a series of independent calculation steps, which
can be performed in parallel. The network is assumed to consist of 3 types
of nodes: (a) A group of computers capable of performing efficient calcu-
lations (type-A nodes); (b) A DB server (type-B node); and (c) A group
of computers which can handle the pre-processing required by the type-II
jobs (type-C nodes). A type-I job entering the network arrives directly to
a node of type A, which from that point on is responsible for the complete
execution of the job, including sending requests to the DB server, if these
are required. A type-II job entering the network arrives to a node of type
C, which pre-processes it, and then manages its calculation in parallel by
several A-nodes. The queues in front of the A-nodes are managed according
to priority. Furthermore, the steps involving a DB access are considerably
lengthier than the steps involving calculations. It is assumed that the jobs
of type I arrive to the system in a high rate, such that the idle time of nodes
of type A is negligible.

In such a setting, type-II jobs are likely to ”starve” while waiting to be
served in nodes of type A. A reasonable solution to this problem will be to
allow the type-II jobs to be processed by A-nodes waiting for a response
from the DB server. In this case, the effective service rate of type-II jobs
(and hence the effective service rate of each type-C node) will be linear in
the number of A-nodes queueing in front of the DB server. That is, this
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Fig. 2 The behaviour of the 2-node Jackson network defined in the text (left)
alongside the behaviour of its fluid approximation (right, defined in section 3),
as generated by numerical simulations. Figures a) and b) depict the time evolu-
tion of the length of the first queue. Figures c¢) and d) show the time evolution
of the length of the second queue. Figures e) and f) portray the phase space
trajectories of the systems. The occurrence of cycles in the phase space is appar-
ent in both cases. In the trajectories of the stochastic system, noisy regions, as
well as smoother ones, are discernable. Note, in addition, the existence of parallel
paths in these trajectories, on which the length of the second queue decreases
and that of the first queue increases (see section 4). In this and the following
figures, unless stated otherwise, A = 3; B = 10.5;A = 0.05. A video demon-
stration of the cyclic time-dependent behaviour of both systems is available at
http://www.math.tau.ac.il/~uriy /Publications.html.

example shows a situation where the service rate in one server depends on
the length of a queue in front of another server, due to service being supplied
by waiting customers.
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3 Introducing specific dynamic behaviours into queueing
networks

In this section we explain how the functional form of the probabilities and
rates of the network presented in section 2 were chosen. We open, however,
with a general discussion regarding the introduction of specific dynamic
behaviours into queueing networks.

We aim at producing a queueing network in which the time-dependent
queue lengths roughly exhibit a certain dynamic behaviour. Such a be-
haviour may be more precisely defined as a solution of a specific set of de-
terministic differential equations. The goal, therefore, is to present a queue-
ing network whose time-dependent evolution imitates, approximately, this
(deterministic) solution.

One possible way to obtain such a queueing network is to allow the
arrival and service rates defining it, as well as the probabilities which govern
the movement of customers between queues, to be state-dependent. One
should then inspect the fluid approximation of such a queueing network,
expressed as a set of deterministic differential equations, where the variables
approximate the average queue lengths. By comparing the approximation
equations to those of the deterministic dynamic system whose behaviour one
wishes to imitate, it may be possible to map between the terms appearing
in the two sets of equations. Such a mapping points to the proper selection
of the rates and probabilities defining the network, leading to a stochastic
queueing network whose average behaviour is approximated by the imitated
deterministic system. The quality of this approximation depends, among
other things, on the workload present in the queueing network, as indicated
in the introduction.

We'll next derive the fluid approximation of a generalized queueing net-
work (a G-network), where stochastic events other than mere customer ar-
rival or service completion are possible (see [4] for a pioneering work, and
[2] for a review of works dealing with such networks). For the sake of sim-
plicity, the discussion here is limited to the case where each stochastic event
changes the length of a queue by no more than a single customer (a single
event may affect the lengths of several queues, though). In addition, only
the case where all queues are not empty is considered. Since the fluid ap-
proximation serves only as a guide to the choice of rates and probabilities,
and since we focus our discussion on highly-loaded networks, the inspection
of this case only is sufficient for our purposes.

Consider, then, a network of queues, where customers arrive to service
facilities, leave them or move between them due to some stochastic events,
generated by Poisson processes. Let us inspect the j-th queue. Denote the
rates of the events increasing the length of the queue by {r;1(L),,r;r(L)},
and of those decreasing the queue by {g¢;1(L),,q;o(L)}, where L(t) =
(L1(t),, Ly (t)) is the time-dependent vector of queue lengths (including the
customers being served), and R and @ are the numbers of processes produc-
ing the events of each type. The rates are considered to be some functions of
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the state of the system. Note that we refer here to effective rates which are
possibly the product of a rate and a probability (for example, the product
of a service rate in one queue and the probability to move from this queue
to another, representing the effective transition rate from the former queue
to the latter, given that the former queue is not empty).

Since all the inspected events result from Poisson processes, the proba-
bility of an arrival of a customer to queue j during an infinitesimally short
interval of time, (¢,¢+ h] is given by

R
F(L) = ri(L)h+o(h) (1)
=1

and the probability of a departure of a customer from queue j is equal to

ZQN )l + o(h) (2)

The length of the queue at time ¢t + h, given its length at time ¢, is
Li(t+h)=L;(t)+¢&;(L) (3)

where ; is the random variable designating the change in the queue’s length
due to an event occurring in the interval (¢,t + h]. §; can be either 0, —1
or 1, with probabilities depending on PJ-JF(L) and P~ (L); hence, &; depends
indeed on the lengths of the queues in the network.

We are interested in estimating the average behaviour of this system. To
this end, the fluid approximation L= L( ) is presented. The j-th element of
this vector, which approximates the time-dependent evolution of the average
length of queue j, satisfies the equation

Li(t+h) = Lj(t)+1-Pf(L)+ (-1) - P, (L) =
Q

R
t) + h[z Tji(il) - Z jS(fl)} +o(h) (4)

Rearranging equation (4), dividing by h and taking the limit as h — 0,
leads to the following differential equation:

d ij R . Q )

=2 =D ai(L) (5)
i=1 i=1

We now wish to express the fact that the network is highly-loaded. To do
so, we alter the size of a change induced by a single stochastic event. Instead
of assuming that each arrival increments the queue length by 1, and each
departure decrements it by 1, these changes are set to be A, respectively,
where A < 1. The smaller A is, the less significant is the change induced
on the system by an event involving a single customer. Thus, small values
of A imply a crowded queueing network. By varying the size of A, it is
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now possible to study the approximated average behaviour of the queueing
system at different orders of magnitude of workloads. The introduction of
A leads to the following equation:

dL; R & 3
o A[Z rji(L) — Z%(L)] (6)

The multiplication by A implies a mere scaling of the time axis. The ap-
proximated average behaviour itself does not qualitatively change - only the
time it takes for its manifestation changes. However, the divergence of the
actual behaviour from this approximated average does depend on the size
of A. Note also that by introducing A, IA/j(t) ceases to approximate the
average number of customers in queue j, but rather this number multiplied
by 1/A.

As stated above, the fluid approximation equations (6) can now be com-
pared to those of the dynamic system whose behaviour one wishes to im-
itate. This comparison may point, hopefully, to a choice of the rates and
probabilities which will result in equivalent sets of differential equations.

Let us now apply this general procedure to produce the 2-node Jackson-
type queueing network presented in section 2. Following the above consid-
erations, we obtain the fluid approximation of this network, given by the
equations

dL

ditl = Al(n + p2p2,1) — ]

dL

CT; = Al(y2 + p1p1,2) — p2] (7)

where 7;, p; and p;; (i, = 1,2, @ # j) are generally allowed to be some
functions of L(t).

The dynamical system we wish to imitate here is known as the Brusse-
lator model, studied in chemistry (see ref. [5]):

X

Gth =A-(B+1)X+ X%

dy

— = BX-X?% 8
o (8)

This system describes the change in the concentrations of two types of hy-
pothetical molecules, X and Y. A and B are constants. Under the condition
B > 1+ A2, it is possible to show that this system has a stable limit cycle
in the phase space.

Let us associate X and Y with the fluid approximation of the first and
the second queue lengths, respectively. Comparing the fluid approximation
equations (7), and those of the specific dynamic system (8), it’s easy to see
that setting the rates and probabilities to the ones stated in section 2 results
in identical sets of equations (up to a multiplication by A).

The behaviour of the resulting fluid approximation is depicted in Figures
2b, 2d and 2f.
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4 Controlling the network

We now turn to discuss the control of the presented network. In particular,
our aim is to decrease the variance of the maximal lengths reached by the
two queues in each cycle (i.e., the amplitudes), as well as that of the time
required for the completion of each cycle (that is, the period); this time is
measured between consecutive crossings of an arbitrary line in the phase
space.

Inspecting the trajectories produced by the network more closely, we
make two observations (see also Figure 2e):

1. There are regions in the phase space where the trajectories fluctuate
more, and regions where they exhibit a smoother conduct. More pre-
cisely, the system appears to be less noisy during the descent of the
second queue’s length and the concurrent ascent of the first queue’s
length, and noisier in the other parts of its trajectories;

2. As the length of the second queue grows larger, the system will, at one
point, “break to the right”, and start the descent of the second queue’s
length and the ascent of the first queue’s length. The exact position of
this turning point varies from cycle to cycle; this leads to the parallel
paths appearing in the figure.

The reason for the existence of smooth and noisy regions is as follows: As
the system evolves, in each moment several stochastic processes “compete”
- which of them will be the first to produce the next event: the arrival of
a customer to the first queue, the service completion of a customer in the
second queue and his passage to the first queue, etc. At certain regions of the
phase space, this “competition” is close; that is, the probabilities of some of
these processes to “win” are about the same. In these regions, the “winning”
process will alternate frequently, and fluctuations will be observable in the
phase space. On the other hand, in some regions the probability of one of
these processes to “win” is dominantly large; this process will, more often
than not, “win”. In such areas, the system will behave smoothly, advancing
consistently in the phase space.

Figure 3 confirms this postulation, depicting the contours of the domi-
nant probability across the relevant region of the phase space. The correla-
tion between the values of the dominant probability, and the occurrence of
fluctuations in the trajectories exhibited by the system, is apparent (com-
pare with Figure 2e).

These observations lead to the notion of influential regions - areas in the
phase space where the outcome of the random choices have a relatively large
influence on the (short-term) future behaviour of the system. Consider, for
example, the region in the phase space where the length of the second queue
increases. As we have seen, at some point in this region, the trajectory will
“break to the right”, and the length of this queue will start its descent,
while the length of the first queue will increase. It is apparent from the
figures above, as well as from the fact that the system’s behaviour there
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Fig. 3 The dominant probability contours, in the relevant region of the phase
space. The limit cycle exhibited by the fluid approximation is drawn in a dashed
line. During the decrease in the length of the second queue and the concurrent
increase in the length of the first queue, the system traverses through a region
of relatively high dominant probability values; the rest of the trajectory passes
through a “valley” of these values.

is discernibly smoother, that the latter region is governed by a dominant
stochastic process (that of service completion in the second queue, followed
by a passage to the first queue). That is, once the system breaks out of the
noisy area, it enters what we term a “nearly-deterministic” phase, which
lasts until the second queue is almost emptied; this is also the point where
the first queue reaches its maximal length. Thus, the “choice” made in the
noisy region at one end of the phase space - the exact position of the point
in which the second queue starts its decrease - determines almost completely
the maximal length of the first queue, at the other end of the phase space.
Note that, since the system then enters a noisy region again and returns to
a region common to all cycles (low L; values, low Ls values), the effect of
this “choice” is lost shortly after. This is the reason why we’ve stated above
that influential regions affect only the short-term future behaviour of the
system - the duration of the current cycle only.

It stands to reason that influential regions may be quite useful in the
task of controlling the system, that is, decreasing the variability it exhibits.
In the example outlined here, controlling the position of the turning point
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of the system necessarily results in controlling the maximal length of the
first queue. This will now be demonstrated.

We start with the task of decreasing the probability that the length
of the first queue exceeds some value. This goal can be considered quite
reasonable in queueing theory terms: if the capacity of a queue is limited, it is
often desirable to decrease the probability of losing arriving customers, who
cannot join the system while the queue is full. As can be seen in Figure 4, the
distribution of the maximal length reached by the first queue in each cycle
(estimated from the results of numerical simulations) has a relatively heavy
right tail. That is, the ability to predict with high precision the maximal
length reached by the first queue in each cycle is limited.

0.20

0.15

0.10

0.05

0.00 it : — :
3 8 13 18

Max Queue Length in Cycle, Queue no. 1

Fig. 4 The probability density function of the maximal length reached by the
first queue in each cycle. The solid line refers to the case where no control strategy
was applied; the dashed line refers to the case where the control strategy bounds
the maximal length of the second queue.

From what was stated above, it’s clear that in order to limit the length of
the first queue, it is sufficient to limit the length the second queue reaches;
the larger the latter is, the larger the former will be. Note that the second
queue has no inflow of customers from outside the system; all the customers
reaching it arrive from the first queue, after they were served there. There-
fore, one way to limit the length of the second queue, is to shut down the
server in the first queue, when the length of second queue reaches some
threshold, and to turn it on again when the second queue’s length falls
beneath this threshold.

This control strategy was tested, with an arbitrary threshold. As we can
see in Figure 4, the right tail of the distribution of the first queue’s maximal
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length was cut down considerably as a result of applying this strategy, with
a sharp drop of the distribution function at high values. Thus, it turns out
that paradoxically, in order to effectively bound the length the first queue
reaches, one should shut down, for a short period of time, the server in the
very same queue.

So far, we have succeeded in limiting the maximal length of the first
queue. However, the variance of this size is still quite high (see Table 1),
since there are cycles in which the peak of the first queue’s length is rela-
tively small, due to a “premature” appearance of the turning point discussed
above. For the same reason, the variance of the period is still high. One can
think of applications where it may be desirable to lower this variability,
increasing the predictability of the system.

One strategy to obtain this goal, is to impose a lower bound on the
maximal length of the second queue, in addition to the upper bound set
earlier. Thus, we’ll prevent the system from “breaking to the right” too
soon. Note that this “break” actually means switching from a state where
mainly the first service facility feeds the second one, to a state where the
opposite is the common event, due to the work performed by the server in
the second facility. Therefore, in order to avoid the a premature turning
point, we can shut down the server in the second queue when the length
of this queue starts climbing, and turn it on again only when the second
queue’s length surpasses a certain threshold.

This 2-fold strategy was applied and tested using numerical simulations.
The results, suggesting a major drop in the variance of both the maximal

Control Strategy 1°* Queue Amplitude Period
Variation Coefficient ~ Variation Coefficient
None 0.21 0.30
Shut Server 1 when  0.18 0.29
2"? Queue’s Length

Exceeds Threshold

In Addition, Shut 0.05 0.16
Server 2 When 2™¢

Queue’s Length Is

Increasing, and in

Predefined Range

Table 1 The effect of the suggested control strategies on the variance of the max-
imal length exhibited by the first queue, and on the variance of the period time.
Although the first strategy decreases effectively the probability that the length
of the first queue exceeds certain values, it has only a minor effect on the result-
ing variances. On the other hand, the extended strategy induces a considerable
decrease in both variances.
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length of the first queue and the period time, are summarized in Table 1,
and shown in Figures 5 and 6.

We note that the effectiveness of the control strategies employed here
relies on the existence of a nearly-deterministic region in the vicinity of
the trajectories exhibited by the system. To see that this claim is indeed
true, we examine an identical queueing network which does not have such
a region. To accomplish this, we simply alter the parameters of the model
(i.e., A and B). As a result, the system revolves in a different region of
the phase space, exhibiting shorter queues. In these trajectories, the value
of the dominant probability remains relatively low (below 0.4 all along the
fluid approximation trajectory).

Again, we measure the variation coefficient of the maximal length of
the first queue. The results are reported in Table 2. Indeed, when a nearly-
deterministic region does not exist, the proposed strategies are rendered
considerably less effective.

To summarize, we see that by manipulating the system in a relatively
small region of the phase space, we’ve obtained a considerable overall noise-
reduction in the exhibited cycles. The ability to do so effectively stemmed
from the following 2 main reasons:

1. The existence of a nearly-deterministic region in the phase space, in the
vicinity of the trajectories exhibited by the system;

2. The fact that small perturbations in the regions preceding the nearly-
deterministic region induce considerable changes at the exit point from
this region.

Note that we are not aware of previous usages of similar considerations in
the control of queueing networks.

Max Dominant Prob.  Control Strategy 1°* Queue Amplitude
On Trajectory Variation Coeflicient

0.80 None 0.21
Extended Strategy  0.05

0.38 None 0.26
Extended Strategy  0.18

Table 2 The variance reduction obtained by means of employing the extended
control strategy, both in the case where a nearly-deterministic region exists (first
two lines, matching the case A = 3, B = 10.5), and in the case it does not
(next two lines, resulting from setting A = 1, B = 2.05). Only in the first case a
substantial reduction in the variance is observable.
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Fig. 5 The decrease in the variance of the maximal length of the first queue, in
each cycle. The solid line depicts the probability density function of this variable,
when no control strategy is employed. The dashed line describes the case where
the extended control strategy is used.
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Fig. 6 The decrease in the variance of the period. The solid line depicts the
probability density function of this variable, when no control strategy is employed.
The dashed line describes the case where the extended control strategy is used.
Note the existence of extremely short cycles (the occurrence of negative values of
period duration is due to the use of a smoothing procedure in the preparation of
the plot).



Controlling an oscillating Jackson-type network 15

5 Conclusion

The control of an oscillating Jackson-type network with state-dependent
service rates was investigated. A heuristic aiming at the identification of
the most “influential” regions in the phase space was applied. These re-
gions precede the stages in the evolution of the system where one stochastic
process is dominant.

Using this heuristic, we were able to demonstrate that in order to de-
crease the probability of customers overflow in a certain queue, it is some-
times desirable, paradoxically enough, to shut down the server in that same
queue. Furthermore, a control strategy consisting of the shutdown of both
servers in the network for short periods of time can lead to a considerable
stabilization of the system’s behaviour, reducing the variance occurring in
the generated cycles.
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