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a b s t r a c t

We study M=M=c queues (c ¼ 1, 1 < c <1 and c ¼ 1Þ in a 2-phase (fast and slow) Markovian random
environment, with impatient customers. The system resides in the fast phase (phase 1) an exponentially
distributed random time with parameter g and the arrival and service rates are k and l, respectively. The
corresponding parameters for the slow phase (phase 0) are c, k0, and l0 ð6 lÞ. When in the slow phase,
customers become impatient. That is, each customer, upon arrival, activates an individual timer, expo-
nentially distributed with parameter n. If the system does not change its environment from 0 to 1 before
the customer’s timer expires, the customer abandons the queue never to return.

We concentrate on deriving analytic solutions to the queue-length distributions. We derive, for each
case of c, the corresponding probability generating function, and calculate the mean queue size. Several
extreme cases are investigated and numerical results are presented.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Models with customers’ impatience in queues have been studied by various authors in the past, where the source of impatience was
either a long wait already experienced in the queue, or a long wait anticipated by a customer upon arrival. There is an extensive literature
on this kind of models and we refer the reader to [3,6,8,10,15,16,18,19] and references there. However, recently, Altman and Yechiali [1,2]
analyzed models where customers become impatient only when the server(s) is (are) on ‘vacation’ and unavailable for service. That is, cus-
tomer’s impatience arises only when, upon arrival, no servers are ready to serve. The M=M=1, M=G=1, M=M=c and M=M=1 queues were
investigated and various performance measures calculated. Yechiali [21] then analyzed M=M=c systems (for 1 6 c 61Þ that suffer disas-
trous breakdowns, resulting in the loss of all customers present (e.g. all running and waiting sessions). While a repair process is taking place,
the flow of new customers continues but they become impatient since no server is available. Recently, Martin and Mitrani [12] studied an
M=M=1 model, with an intermittently available server (the server goes through breakdowns and repairs). While the server is unavailable,
the stream of new arrivals continues while customers may abandon the system. The main difference between [12,21] is that in the former
abandonments occur also when the server is active.

In this work, we examine the case where customers’ impatience is due to a slow service rate. For example, the server might be occupied
with other, higher priority, tasks, but is not totally unavailable. In other words, the server keeps on working but with a slower rate than
before. In order to analyze the model, we consider an M=M=c queue (c ¼ 1; 1 < c <1; c ¼ 1Þ operating in a 2-phase random environ-
ment. That is, the system oscillates between two phases, denoted by 0 and 1, residing in phase (environment) j, j ¼ 0;1, an exponentially
distributed random time with parameters c and g, respectively. Under environment 1, the Poisson arrival rate is k and the service time is
exponentially distributed with parameter l. However, when operating under environment 0, the Poisson arrival rate is k0, the service rate
drops to l0 6 l, and customers become impatient. That is, each customer, upon arrival, activates an individual timer, exponentially dis-
tributed with parameter n. If the system does not change its environment from 0 to 1 before the customer’s timer expires, the customer
abandons the queue never to return.

Queues in random environment have been long studied in the literature. We mention works by Yechiali and Naor [22], Yechiali [20],
Neuts [13], O’Cinneide and Purdue [14], Baykal-Gursoy and Xiao [4] and Gupta et al. [11]. We indicate that, if customers are patient
and do not leave the system when the server becomes slower, the current model reduces to the original M=M=1 queue in 2-phase random
environment studied in [22,11]. All the above random-environment models can be formulated as a level (environment) dependent quasi
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birth-and-death processes. Bright and Taylor [7] presented such a formulation, using Neuts Matrix Geometric approach, and proposed algo-
rithms for computing the equilibrium queue distributions. However, their methods are based on a truncation of the possible number of
levels (=number of customers in the system). In contrast, using classical approach of probability generating functions, we present analytic
formulas for various characteristics of the processes considered.

The paper consists of the following models: In Section 2 we consider the M=M=1 queue. After deriving the system’s steady-state balance
equations we obtain and solve a differential equation for G0ðzÞ, the (partial) probability generating function (PGF) of the queue size when
the server is slow. G0ðzÞ is a function of P00 and P10, the fraction of time the system is empty in each environment, respectively. The cal-
culation of those probabilities completes the derivation of G0ðzÞ. Following that, the PGF of environment j ¼ 1, G1ðzÞ, is derived by using a
direct relation between the two PGFs. The mean total number of customers in the system is then calculated. Various extreme cases, result-
ing when some of the parameters approach 0 or1, are examined, and numerical examples are presented. Section 3 deals with the M=M=c
model, for a finite c. We derive the PGF G0ðzÞ by solving a differential equation and calculating the required 2c boundary probabilities for
the complete representation of G0ðzÞ, and then of G1ðzÞ. Performance measures similar to those of Section 2 are calculated. In Section 4 we
study the M=M=1 case. In order to derive the corresponding PGFs, we utilize the (no abandonment) 2-phase model studied by Baykal-Gur-
soy and Xiao [4], where an M=M=1 queueing system subject to partial failures is investigated.

2. The single server case

2.1. The model

Consider an M=M=1 type queue operating in a 2-phase random environment, where the underlying process is a 2-state continuous-time
Markov chain as described in the introduction. It is assumed that the underlying 2-phase environment Markov process is independent of
the arrival, service and impatience processes, and we investigate the system in steady-state.

Let L denote the total number of customers present in the system and let J denote the server’s environment (0 or 1). Then the pair ðJ; LÞ
defines a continuous-time Markov process with transition-rate diagram as shown in Fig. 2.1.

2.2. Balance equations and generating functions

Let Pjn ¼ PðJ ¼ j; L ¼ nÞ ðj ¼ 0;1;n ¼ 0;1;2; . . .Þ denote the steady-state probabilities of the random process ðJ; LÞ. Then, the set of balance
equations is given by

j ¼ 0
n ¼ 0 : ðk0 þ cÞP00 ¼ gP10 þ ðl0 þ nÞP01;

n P 1 : ðk0 þ cþ l0 þ nnÞP0n ¼ k0P0;n�1 þ gP1n þ ðl0 þ ðnþ 1ÞnÞP0;nþ1;

�
ð2:1Þ

j ¼ 1
n ¼ 0 : ðkþ gÞP10 ¼ cP00 þ lP11;

n P 1 : ðkþ lþ gÞP1n ¼ kP1;n�1 þ cP0n þ lP1;nþ1:

�
ð2:2Þ

For j ¼ 0;1 let Pj� ¼
P1

n¼0Pjn ¼ PðJ ¼ jÞ. Then, by summing (2.2) over n we get

ðkþ gÞP1� þ lðP1� � P10Þ ¼ kP1� þ lðP1� � P10Þ þ cP0�;

which leads to

gP1� ¼ cP0�:

Since P0� þ P1� ¼ 1, we get

P0� ¼
g

cþ g
; P1� ¼

c
cþ g

: ð2:3Þ

Eq. (2.3) can also be obtained by taking horizontal cuts between the two environments in Fig. 2.1. Clearly, (2.3) can be derived directly by
considering the environment fluctuations as an alternating renewal process.

Now, define the (partial) probability generating functions (PGFs)

G0ðzÞ ¼
X1
n¼0

P0nzn; G1ðzÞ ¼
X1
n¼0

P1nzn:

By multiplying each equation for n in (2.1) by zn, respectively, summing over n and rearranging terms we get

1+nn:L

ξμ )1(0 ++ nξμ n+0ξμ 20 +ξμ +0 0λ0λ0λ0λ0λ

γγγγγ

ηηηηη

μμμμλ λλλλ
j=1

j=0

Fig. 2.1. Transition-rate diagram for the M=M=1 case.
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G00ðzÞ½nð1� zÞz� ¼ G0ðzÞ½ðk0z� l0Þð1� zÞ þ cz� � gzG1ðzÞ þ l0ð1� zÞP00; ð2:4Þ

where G00ðzÞ ¼ d
dz G0ðzÞ.

Similarly, using (2.2) we obtain

G1ðzÞ½ðkz� lÞð1� zÞ þ gz� ¼ czG0ðzÞ � lð1� zÞP10: ð2:5Þ

Define

aðzÞ ¼ ðk0z� l0Þð1� zÞ þ cz; bðzÞ ¼ ðkz� lÞð1� zÞ þ gz:

Then, (2.5) can be written as

G1ðzÞ ¼
czG0ðzÞ � lð1� zÞP10

bðzÞ : ð2:6Þ

Substituting (2.6) in (2.4) leads to the following differential equation:

G00ðzÞ �
aðzÞbðzÞ � gcz2

nzð1� zÞbðzÞ G0ðzÞ ¼
glzP10 þ l0bðzÞP00

nbðzÞz : ð2:7Þ

Before solving the differential equation (2.7), let us examine bðzÞ. The roots z1, z2 of the quadratic polynomial bðzÞ ¼ �kðz� z1Þðz� z2Þ are

z1;2 ¼
kþ lþ g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ lþ gÞ2 � 4kl

q
2k

;

where z1 � z2 ¼ l
k and z1 þ z2 ¼ kþlþg

k . Furthermore, z1 as a function of the parameter g represents the Laplace Stieltjes transform of the busy
period in a regular M=M=1 queue with arrival rate k and service rate l. In addition, bð0Þ ¼ �l < 0;bð1Þ ¼ g > 0, and bðþ1Þ < 0. Therefore
z2 > 1 > z1 > 0.

2.3. Solution of the differential equation (2.7)

Define the coefficient of G0ðzÞ in (2.7) as f ðzÞ ¼ � aðzÞbðzÞ�gcz2

nð1�zÞzbðzÞ . f ðzÞ can be represented as f ðzÞ ¼ � k0
n þ

l0
zn þ

c
n

M
z�z1
þ N

z2�z

� �
, where

M ¼
l
k � z1

z2 � z1
¼ z1z2 � z1

z2 � z1
¼ z1ðz2 � 1Þ

z2 � z1
> 0; N ¼

l
k � z2

z2 � z1
¼ z1z2 � z2

z2 � z1
¼ z2ðz1 � 1Þ

z2 � z1
< 0:

In order to solve (2.7), we multiply its both sides by e
R

f ðzÞdz (see [5, p. 30]). Therefore,Z
f ðzÞdz ¼ � k0z

n
þ l0

n
lnðzÞ þ cM

n
ln jz� z1j �

cN
n

lnðz2 � zÞ;

and

e
R

f ðzÞdz ¼ e�
k0z
n z

l0
n jz� z1j

cM
n ðz2 � zÞ�

cN
n : ð2:8Þ

Multiplying both sides of (2.7) by (2.8) gives the following:

d
dz

e�
k0z
n z

l0
n jz� z1j

cM
n ðz2 � zÞ�

cN
n

� �
G0ðzÞ

h i
¼ glP10zþ l0bðzÞP00

nbðzÞz

� �
e�

k0z
n z

l0
n jz� z1j

cM
n ðz2 � zÞ�

cN
n : ð2:9Þ

It seems convenient to split Eq. (2.9) into two intervals, as follows. Define

k1ðzÞ ¼ e�
k0z
n z

l0
n ðz1 � zÞ

cM
n ðz2 � zÞ�

cuN
n ; z 6 z1;

k2ðzÞ ¼ e�
k0z
n z

l0
n ðz� z1Þ

cM
n ðz2 � zÞ�

cN
n ; z P z1;

then Eq. (2.9) can be written as a set of two equations,

d
dz ½k1ðzÞG0ðzÞ� ¼ glP10zþl0bðzÞP00

nbðzÞz

� �
k1ðzÞ; z 6 z1;

d
dz ½k2ðzÞG0ðzÞ� ¼ glP10zþl0bðzÞP00

nbðzÞz

� �
k2ðzÞ; z P z1:

8><
>: ð2:10Þ

Integrating the upper part of (2.10) from 0 to z ðz 6 z1Þ and the lower part from z1 to z and rearranging terms gives

G0ðzÞ ¼

gl
n P10

R z
0

k1ðxÞ
bðxÞ dxþ l0

n P00
R z

0
k1ðxÞ

x dx

k1ðzÞ
; z 6 z1;

gl
n P10

R z
z1

k2ðxÞ
bðxÞ dxþ l0

n P00
R z

z1

k2ðxÞ
x dx

k2ðzÞ
; z P z1:

8>>>><
>>>>:

ð2:11Þ

Eq. (2.11) expresses G0ðzÞ in terms of G0ð0Þ ¼ P00 (the proportion of time the server is in environment 0 and there are no customers in the
system) and in terms of G1ð0Þ ¼ P10 (the proportion of time the server is in environment 1 and the system is empty). Thus, once P00 and P10

are calculated, G0ðzÞ is completely determined, and G1ðzÞ is obtained by using Eq. (2.6).

N. Perel, U. Yechiali / European Journal of Operational Research 201 (2010) 247–258 249
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2.4. Derivation of P00; P10; E½L0� and E½L1�

We write

g
gþ c

¼ P0� ¼ G0ð1Þ ¼
gl
n P10

R 1
z1

k2ðxÞ
bðxÞ dxþ l0

n P00
R 1

z1

k2ðxÞ
x dx

k2ð1Þ
:

This gives

gnk2ð1Þ
gþ c

¼ glP10

Z 1

z1

k2ðxÞ
bðxÞ dxþ l0P00

Z 1

z1

k2ðxÞ
x

dx: ð2:12Þ

Next, by setting z ¼ z1 in the upper part of Eq. (2.11), we get

gl
n

P10

Z z1

0

k1ðxÞ
bðxÞ dxþ l0

n
P00

Z z1

0

k1ðxÞ
x

dx ¼ 0: ð2:13Þ

Since both numerator and denominator vanish at z ¼ z1.
Define

S ¼
Z z1

0

k1ðxÞ
bðxÞ dx; T ¼

Z z1

0

k1ðxÞ
x

dx; U ¼
Z 1

z1

k2ðxÞ
bðxÞ dx; V ¼

Z 1

z1

k2ðxÞ
x

dx;

then, by the definitions of k1ðzÞ, k2ðzÞ and bðzÞ, it follows that T;U;V > 0 and S < 0.
From (2.13) we get

P10 ¼ �
l0P00T
glS

: ð2:14Þ

Substituting (2.14) in (2.12) yields

P00 ¼
gnk2ð1ÞS

l0ðgþ cÞðSV � TUÞ : ð2:15Þ

Finally, from (2.14) we get

P10 ¼ �
nk2ð1ÞT

lðgþ cÞðSV � TUÞ : ð2:16Þ

Notice that S < 0 and SV � TU < 0, so P00 and P10 are positive.
One can show formally that the system is ergodic. Intuitively, we indicate that the system is always stable since, with any set of param-

eters k > 0;l > 0; k0 P 0;l0 P 0; c > 0;g > 0; n > 0, the abandonment process, whose overall rate increases with L, prevents explosion.
Alternatively, the system is stable if and only if P00 and P10 are positive, which always holds for the above set of parameters.

We now calculate mean queue sizes. Employing vertical cuts in Fig. 2.1 gives

k0P0n þ kP1n ¼ lP1;nþ1 þ ðl0 þ ðnþ 1ÞnÞP0;nþ1; n P 0: ð2:17Þ

Summing (2.17) over n yields

k0P0� þ kP1� ¼ lðP1� � P10Þ þ l0ðP0� � P00Þ þ n
X1
n¼0

ðnþ 1ÞP0;nþ1: ð2:18Þ

Define G0jðzÞjz¼1 ¼ E½Lj� ¼
P1

n¼0nPjn; j ¼ 0;1. Then, Eq. (2.18) is written as

k0P0� þ kP1� ¼ lðP1� � P10Þ þ l0ðP0� � P00Þ þ nE½L0�: ð2:19Þ

Eq. (2.19) simplify testifies that the mean arrival rate (left hand side) equals the sum of the effective service rate and the abandonment rate.
Thus

E½L0� ¼
k0P0� þ kP1� � lðP1� � P10Þ � l0ðP0� � P00Þ

n
: ð2:20Þ

By defining k̂ ¼ k0P0� þ kP1�, l̂ ¼ l0P0� þ lP1�, Eq. (2.20) can be written as

E½L0� ¼
k̂� l̂þ lP10 þ l0P00

n
: ð2:21Þ

Differentiation of G1ðzÞ in (2.6), setting z ¼ 1 and using (2.21) give

E½L1� ¼
cðk̂� l̂Þ þ nðk� lÞP1� þ cl0P00 þ lP10ðcþ nÞ

ng
: ð2:22Þ

The mean number of customers in the system, E½L�, is given by E½L� ¼ E½L0� þ E½L1�.

2.4.1. Numerical examples

Example 1. Consider the following set of parameter values:
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k ¼ 4 < l ¼ 7; k0 ¼ 2 < l0 ¼ 5; c ¼ 2; g ¼ 2; n ¼ 1:

With the aid of ‘‘Maple”, we get

T ¼ 0:0019837; S ¼ �0:0008534; U ¼ 0:00473321; V ¼ 0:00687647; k2ð1Þ ¼ 0:05479;

resulting in

P00 ¼ 0:3064; P10 ¼ 0:2544; P0� ¼ P1� ¼ 0:5; E½L0� ¼ 0:3131; E½L1� ¼ 0:4536; E½L� ¼ 0:7667:

Example 2. Next consider the values k ¼ 7 > l ¼ 4; k0 ¼ 5 > l0 ¼ 2; c ¼ 5;g ¼ 2 and a small abandonment rate n ¼ 0:1. The calculations
lead to

T ¼ 5:724� 10�21; S ¼ �4:881� 10�22; U ¼ 5:035� 10�27; V ¼ 8:735� 10�27; k2ð1Þ ¼ 5:854� 10�38;

P00 ¼ 1:234� 10�14; P10 ¼ 3:617� 10�14; P0� ¼
2
7
; P1� ¼

5
7
; E½L0� ¼ 30; E½L1� ¼ 76:0714; E½L� ¼ 106:0714:

That is, even with k > l, k0 > l0, and with small n, the system does not explode.

2.5. Extreme cases

We denote by GðiÞj ðzÞ; P
ðiÞ
jn ; P

ðiÞ
j� ; E½L

ðiÞ
j �; E½L

ðiÞ�; kðiÞj ðzÞ for j ¼ 0;1 the PGFs, steady-state probabilities, expected values and the functions kj cor-
responding to the following extreme cases, where i ¼ 1;2; . . . ;7.

Since it is not a straightforward procedure to derive the results for the following extreme cases directly from the general case, we treat
each case by itself.

1. l0 ! 0.
Assume that l0 ! 0. That is, when j ¼ 0, no service is rendered. The system in this case alternates between a regular M=M=1 queue and

an M=M=1-type queue in which the service rate is replaced by the abandonment rate.
In this case, bðzÞ; z1; z2;M and N are as given in Sections 2.2 and 2.3, and

kð1Þ1 ðzÞ ¼ e�
k0z
n ðz1 � zÞ

cM
n ðz2 � zÞ�

cN
n ; kð1Þ2 ðzÞ ¼ e�

k0z
n ðz� z1Þ

cM
n ðz2 � zÞ�

cN
n :

Solving a differential equation similarly as in Section 2.3 gives

Gð1Þ0 ðzÞ ¼

glPð1Þ10

R z
0

kð1Þ1 ðxÞ
bðxÞ dxþ nPð1Þ00 z

cM
n

1 z
�cN

n

2

nkð1Þ1 ðzÞ
; z 6 z1;

glPð1Þ10

R z
z1

kð1Þ
2
ðxÞ

bðxÞ dx

nkð1Þ2 ðzÞ
; z P z1:

8>>>>>><
>>>>>>:

To obtain the probabilities Pð1Þ00 and Pð1Þ10 we repeat the process from Section 2.4 and derive two equations connecting Pð1Þ00 and Pð1Þ10 ,

Pð1Þ10 ¼ nkð1Þ2 ð1Þ � lðcþ gÞ
Z 1

z1

kð1Þ2 ðxÞ
bðxÞ dx

" #�1

;

Pð1Þ00 ¼ �gkð1Þ2 ð1Þ
Z z1

0

kð1Þ1 ðxÞ
bðxÞ dx � ðcþ gÞz

cM
n

1 z
�cN

n

2

Z 1

z1

kð1Þ2 ðxÞ
bðxÞ dx

" #�1

:

Now, knowing Pð1Þ00 and Pð1Þ10 , any probability Pð1Þ0n and Pð1Þ1n , for n P 1, can be calculated progressively by using the balance equations, or by dif-
ferentiating Gð1Þ0 ðzÞ and Gð1Þ1 ðzÞ, respectively.

For the set of parameters k ¼ 4;l ¼ 7; k0 ¼ 2; c ¼ 2;g ¼ 2 and n ¼ 1 we get

Z z1

0

kð1Þ1 ðxÞ
bðxÞ dx ¼ �0:072553;

Z 1

z1

kð1Þ2 ðxÞ
bðxÞ dx ¼ 0:010429; Pð1Þ00 ¼ 0:12983; Pð1Þ10 ¼ 0:18762:

2. c! 0;g > 0.
With c! 0 we have Pð2Þ1� ¼ 0, and therefore Pð2Þ1n ¼ 0 for all n.
The model now transforms into a state independent M=M=1-type queue augmented with state-dependent abandonment rates.
In this case, since c! 0, kð2ÞðzÞ ¼ e�

k0z
n z

l0
n and therefore, utilizing (2.11), we can write Gð2Þ0 ðzÞ as

Gð2Þ0 ðzÞ ¼
l0

n
Pð2Þ00 e

k0z
n z�

l0
n

Z z

0
e�

k0x
n x

l0
n �1dx:

We write

Z z

0
e�

k0x
n x

l0
n �1 dx ¼ k0

n

� ��l0
n

Gamma
l0

n

� �
� Gamma

l0

n
;
k0z
n

� �� �
;

where GammaðzÞ ¼
R1

0 tz�1e�t dt, and Gammaða; zÞ ¼
R1

z ta�1e�t dt is the incomplete Gamma function (see [9, p. 47]).
The above gives
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Z z

0
e�

k0x
n x

l0
n �1 dx ¼ k0

n

� ��l0
n
Z k0z

n

0
e�tt

l0
n �1 dt;

and therefore

Gð2Þ0 ðzÞ ¼ e
k0z
n l0ðk0zÞ�

l0
n n

l0
n �1Pð2Þ00

Z k0z
n

0
e�tt

l0
n �1 dt: ð2:23Þ

By setting z ¼ 1 in (2.23) (using Gð2Þ0 ð1Þ ¼ 1Þ we get Pð2Þ00 . That is,

Pð2Þ00 ¼ e�
k0
n k

l0
n

0 n1�l0
n l0

Z k0
n

0
e�tt

l0
n �1 dt

" #�1

;

and therefore

Gð2Þ0 ðzÞ ¼ e�
k0
n ð1�zÞz�

l0
n

Z k0
n

0
e�tt

l0
n �1 dt

" #�1 Z k0z
n

0
e�tt

l0
n �1 dt: ð2:24Þ

Once Pð2Þ00 is known, we can derive Pð2Þ0n for all n by using the formula

Pð2Þ0n ¼ Pð2Þ00 ðk0Þn
Yn

j¼1

1
l0 þ jn

; n ¼ 1;2; . . . ;

where

Yn

j¼1

1
l0 þ jn

¼ n � Gamma 1þ l0

n

� �
nnþ1 � Gamma 1þ nþ l0

n

� �� ��1

:

We thus have

Pð2Þ0n ¼ Pð2Þ00 ðk0Þnn � Gamma 1þ l0

n

� �
nnþ1 � Gamma 1þ nþ l0

n

� �� ��1

; n ¼ 1;2; . . .

3. c > 0;g! 0.
In this case we have Pð3Þ0� ¼ 0, and therefore Pð3Þ0n ¼ 0 for all n P 0, resulting in Gð3Þ0 ðzÞ ¼ 0. Our system then becomes a regular

MðkÞ=MðlÞ=1 system.
4. n!1.
This system can be described as an M=M=1-type queue, where the system suffers disastrous breakdowns, occurring when the server is at

its functioning phase. A failure of the system rejects all customers present, and a repair process starts immediately. There are no arrivals
during the repair process.

A transition-rate diagram for this case is depicted in Fig. 2.2.
With n!1, the differential equation (2.7) gives Gð4Þ

0

0 ðzÞ ¼ 0. Also, Gð4Þ0 ðzÞ ¼ Pð4Þ00 for all 0 6 z 6 1. Substituting z ¼ 1 gives

Gð4Þ0 ð1Þ ¼ Pð4Þ0� ¼ Pð4Þ00 ¼
g

cþ g
:

To calculate Pð4Þ10 we use Eq. (2.6) and get

Gð4Þ1 ðzÞ ¼
cPð4Þ00 z� lð1� zÞPð4Þ10

bðzÞ : ð2:25Þ

By setting z ¼ z1 in (2.25) we get

cPð4Þ00 z1 ¼ lð1� z1ÞPð4Þ10 ;

and therefore

Pð4Þ10 ¼
cgz1

lðcþ gÞð1� z1Þ
:

1+nn:L

γ

ηηηηη

μμμμλ λλλλ
j=1

j=0

Fig. 2.2. Transition-rate diagram when n!1.
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With known Pð4Þ00 and Pð4Þ10 , Gð4Þ1 ðzÞ is obtained in a closed form as follows:

Gð4Þ1 ðzÞ ¼
zgc
cþg� lð1� zÞ cgz1

lðcþgÞð1�z1Þ

� �
bðzÞ ¼ cg

kðcþ gÞðz2 � zÞð1� z1Þ
;

since bðzÞ ¼ �kðz� z1Þðz� z2Þ.
Gð4Þ1 ðzÞ can also be represented as a power series in the following way:

Gð4Þ1 ðzÞ ¼
cg

kðcþ gÞð1� z1Þ
� 1

z2 1� z
z2

� � ¼X1
n¼0

cg
kðcþ gÞð1� z1Þznþ1

2

� zn:

Since Gð4Þ1 ðzÞ ¼
P1

n¼0Pð4Þ1n zn, it follows that Pð4Þ1n ¼
cg

kðcþgÞð1�z1Þznþ1
2

for all n P 0.

As an illustration we take the set k ¼ 2;l ¼ 2;g ¼ 1 and c ¼ 3. Then, z1 ¼ 0:5, z2 ¼ 2; Pð4Þ00 ¼ 0:25 and Pð4Þ10 ¼ 0:375.
Comparing to the general model, we use Eqs. (2.15) and (2.16) with k0 ¼ 3, l0 ¼ 0:5 and n ¼ 10;000, and get

T ¼ 20000:69; S ¼ �3332:6613; U ¼ 3332:892; V ¼ 0:6928888; k2ð1Þ ¼ 0:99963; P00 ¼ 0:249873; P10 ¼ 0:374898:

5. n! 0.
Assume n! 0. Then the system reduces to the model described in Yechiali and Naor [22]. The condition for stability is l̂� k̂ > 0 (l̂ and k̂

are as defined before).
In this case no differential equations are involved and one has to solve two algebraic equations, (2.4) and (2.5), connecting Gð5Þ0 ðzÞ and

Gð5Þ1 ðzÞ. The solution gives

Gð5Þ0 ðzÞ ¼
ð1� zÞ½glPð5Þ10 zþ l0bðzÞP

ð5Þ
00 �

cgz2 � aðzÞbðzÞ ; Gð5Þ1 ðzÞ ¼
ð1� zÞ½cl0Pð5Þ00 zþ laðzÞPð5Þ10 �

cgz2 � aðzÞbðzÞ :

Defining

hðzÞ ¼ �kk0z3 þ ðkk0 þ lk0 þ kl0 þ gk0 þ ckÞz2 � ðlk0 þ kl0 þ ll0 þ gl0 þ clÞzþ ll0;

we get

Gð5Þ0 ðzÞ ¼
glPð5Þ10 zþ l0bðzÞP

ð5Þ
00

hðzÞ ; Gð5Þ1 ðzÞ ¼
cl0Pð5Þ00 zþ laðzÞPð5Þ10

hðzÞ :

By using the single root of hðzÞ in (0,1), denoted as z0, Pð5Þ00 and Pð5Þ10 are obtained:

Pð5Þ00 ¼
gðl̂� k̂Þz0

l0ð1� z0Þðl� kz0Þ
; Pð5Þ10 ¼

cðl̂� k̂Þz0

lð1� z0Þðl0 � k0z0Þ
:

6. Both c and g tend to 0.
Assume c! 0;g! 0, while g

c ! r for some constant r > 0. Then,

Pð6Þ0� ¼
g

cþ g
! r

1þ r
; Pð6Þ1� ¼

c
cþ g

! 1
1þ r

:

The overall generating function, Gð6ÞðzÞ ¼ Gð6Þ0 ðzÞ þ Gð6Þ1 ðzÞ, can be expressed as a probabilistic mixture between cases 2 and 3 as follows:

Gð6ÞðzÞ ¼ Pð6Þ0� � G
ð2Þ
0 ðzÞ þ Pð6Þ1� � G

ð3Þ
1 ðzÞ

implying that

Gð6ÞðzÞ ¼ r
1þ r

� e�
k0
n ð1�zÞz�

l0
n

Z k0
n

0
e�tt

l0
n �1 dt

" #�1 Z k0z
n

0
e�tt

l0
n �1 dt þ 1

1þ r
� l� k
l� kz

:

Also, in this case we have Pð6Þ00 ¼ r
1þr � P

ð2Þ
00 , and Pð6Þ10 ¼ 1

1þr � P
ð3Þ
10 .

Define Gð6Þð0Þ ¼ Pð6Þ�0 as the proportion of time the system is empty. Then, Pð6Þ�0 ¼ Pð6Þ00 þ Pð6Þ10 ¼ r
1þr Pð2Þ00 þ 1

1þr Pð3Þ10 . That is,

Pð6Þ�0 ¼
r

1þ r
e�

k0
n k

l0
n

0 n1�l0
n l0

Z k0
n

0
e�tt

l0
n �1 dt

" #�1

þ 1
1þ r

1� k
l

� �
:

As an illustration, take k ¼ 4;l ¼ 8; k0 ¼ 3;l0 ¼ 3 and n ¼ 2. Pð2Þ00 ¼ 0:507, and Pð3Þ10 ¼ 0:5. Now, for r ¼ 2 Pð6Þ�0 ¼ 2=3 � 0:506859þ
1=3 � 0:5 ¼ 0:50457.

7. Both c and g tend to 1.
Assume c!1;g!1, such that g=c! r for some constant r > 0. That is, the system oscillates rapidly between phases 0 and 1. It

follows that

Pð7Þ0n ¼ rPð7Þ1n 8n P 0:

That is, the fraction of time where there are n customers in the system is divided between the phases by the ratio r, implying that

Gð7Þ0 ðzÞ ¼ rGð7Þ1 ðzÞ ð2:26Þ

and
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Pð7Þ0� ¼ rPð7Þ1� :

Alternatively,

Pð7Þ0� ¼
g

cþ g
! r

1þ r
; Pð7Þ1� ¼

c
cþ g

! 1
1þ r

:

Now, in order to calculate Gð7Þ0 ðzÞ and Gð7Þ1 ðzÞ we utilize Eq. (2.7), which transforms into

Gð7Þ
0

0 ðzÞ �
k0 þ k=r

n
� l0 þ l=r

zn

� �
Gð7Þ0 ðzÞ ¼

lPð7Þ10 þ l0Pð7Þ00

zn
: ð2:27Þ

The solution of Eq. (2.27) is

Gð7Þ0 ðzÞ ¼
lPð7Þ10 þ l0Pð7Þ00

� �
n

e
ðk0þk=rÞz

n z�
l0þl=r

n

Z z

0
e�
ðk0þk=rÞu

n u
l0þl=r

n �1du: ð2:28Þ

Note that, as opposed to Eq. (2.23) (which describes Gð2Þ0 ðzÞ when c! 0 and g > 0), in (2.28) the parameters k and l play a role.
Finally, for deriving Pð7Þ00 and Pð7Þ10 , we use the following two equations:

The first equation results from substituting z ¼ 1 in (2.28) and using Gð7Þ0 ð1Þ ¼ r=1þ r.
The second equation relating Pð7Þ00 and Pð7Þ10 is Pð7Þ00 ¼ rPð7Þ10 .

3. The c-server case

3.1. The model

Consider now the multi-server case with 1 6 c <1 servers. As before, the system alternates between phases 0 and 1, as described in
Section 2.1. When the system operates in phase 0, each and every server becomes slower with the same rate l0. A transition-rate diagram
is depicted in Fig. 3.1.

3.2. Balance equations and generating functions

The set of balance equations is given by

j ¼ 0

n ¼ 0 : ðk0 þ cÞP00 ¼ gP10 þ ðl0 þ nÞP01;

1 6 n 6 c � 1 : ðk0 þ cþ nðl0 þ nÞÞP0n ¼ k0P0;n�1 þ gP1n þ ðnþ 1Þðl0 þ nÞP0;nþ1;

n P c : ðk0 þ cþ cl0 þ nnÞP0n ¼ k0P0;n�1 þ gP1n þ ðcl0 þ ðnþ 1ÞnÞP0;nþ1;

ð3:1Þ

j ¼ 1

n ¼ 0 : ðkþ gÞP10 ¼ lP11 þ cP00;

1 6 n 6 c � 1 : ðkþ nlþ gÞP1n ¼ kP1;n�1 þ cP0n þ ðnþ 1ÞlP1;nþ1;

n P c : ðkþ clþ gÞP1n ¼ kP1;n�1 þ cP0n þ clP1;nþ1:

ð3:2Þ

Clearly, the proportions of time the system stays in each of the two levels remain unaffected and are given by Eq. (2.3).
Using the same procedure as in Section 2.1, we get an algebraic equation for G1ðzÞ and a differential equation for G0ðzÞ, given by

G1ðzÞ ¼
czG0ðzÞ � lð1� zÞA1ðzÞ

bcðzÞ
;

and

G00ðzÞ �
acðzÞbcðzÞ � gcz2

nzð1� zÞbcðzÞ
G0ðzÞ ¼

glzA1ðzÞ þ l0bcðzÞA0ðzÞ
nzbcðzÞ

; ð3:3Þ

1+cc:L

ξμ )1(0 ++ ccξμ cc +0ξμ 22 0 +ξμ +0 0λ0λ0λ0λ0λ

γγγγγ

ηηηηη

μcμcμ2μλ λλλλ
j=1

j=0

Fig. 3.1. Transition-rate diagram with c servers.
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where AjðzÞ ¼
Pc�1

n¼0ðc � nÞPjnzn for j ¼ 0;1; acðzÞ ¼ ðk0z� cl0Þð1� zÞ þ cz and bcðzÞ ¼ ðkz� clÞð1� zÞ þ gz. The roots z1;c and z2;c of bcðzÞ are

kþclþg�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþclþgÞ2�4kcl
p

2k , where z2;c > 1 > z1;c > 0.

3.3. Solution of the differential equation (3.3)

The similarity of Eq. (3.1) to Eq. (2.7) implies that the former’s solution is given by Eq. (2.11) with the modifications: A0ðzÞ replacesP00;
A1ðzÞ replacesP10; zj;c replaces zj for j ¼ 1;2, and bcðzÞ replaces bðzÞ. We thus get

G0ðzÞ ¼

gl
n

Pc�1

n¼0
ðc�nÞP1n

R z

0

k1;c ðxÞx
n

bc ðxÞ
dxþl0

n

Pc�1

n¼0
ðc�nÞP0n

R z

0

k1;c ðxÞx
n

x dx

k1;cðzÞ
; z 6 z1;c;

gl
n

Pc�1

n¼0
ðc�nÞP1n

R z

z1;c

k2;c ðxÞx
n

bc ðxÞ
dxþl0

n

Pc�1

n¼0
ðc�nÞP0n

R z

z1;c

k2;c ðxÞx
n

x dx

k2;cðzÞ
; z P z1;c;

8>>><
>>>:

ð3:4Þ

where

k1;cðzÞ ¼ e�
k0z
n z

cl0
n ðz1;c � zÞ

cMc
n ðz2;c � zÞ�

cNc
n ;

k2;cðzÞ ¼ e�
k0z
n z

cl0
n ðz� z1;cÞ

cMc
n ðz2;c � zÞ�

cNc
n ;

Mc ¼
z1;cðz2;c � 1Þ

z2;c � z1;c
; Nc ¼

z2;cðz1;c � 1Þ
z2;c � z1;c

:

Eq. (3.4) expresses G0ðzÞ in terms of 2c boundary probabilities P00; P01; . . . P0;c�1; P10; P11; . . . P1;c�1. Those 2c probabilities are required in order
to completely determine G0ðzÞ.We derive these probabilities in the next section.

3.4. Derivation of the probabilities P00; P01; . . . ; P0;c�1; P10; P11; . . . ; P1;c�1

At z ¼ 1, G0ð1Þ ¼ g
gþc, thus from (the lower part of) Eq. (3.4) we get

gnk2;cð1Þ
gþ c

¼ gl
Xc�1

n¼0

ðc � nÞP1n

Z 1

z1;c

k2;cðxÞxn

bcðxÞ
dxþ l0

Xc�1

n¼0

ðc � nÞP0n

Z 1

z1;c

k2;cðxÞxn

x
dx:

For z ¼ z1;c , k1;cðz1;cÞ ¼ 0, implying that the numerator in the upper part of (3.4) vanishes. That is,

gl
n

Xc�1

n¼0

ðc � nÞP1n

Z z1;c

0

k1;cðxÞxn

bcðxÞ
dxþ l0

n

Xc�1

n¼0

ðc � nÞP0n

Z z1;c

0

k1;cðxÞxn

x
dx ¼ 0:

The above gives two equations in the boundary probabilities. The remaining 2c � 2 equations connecting P00; P01; . . . P0;c�1; P10; P11; . . . P1;c�1

are taken from the balance equations (3.1) and (3.2) for j ¼ 0;1 and n ¼ 0;1; . . . ; c � 2 (each phase contributes c � 1 equations).
In order to derive the mean queue sizes, E½L0� and E½L1�, one can use a direct approach. By taking vertical cuts in Fig. 3.1 we get

kP1n þ k0P0n ¼ ðnþ 1ÞlP1;nþ1 þ ðnþ 1Þðl0 þ nÞP0;nþ1; 0 6 n 6 c � 1;
kP1n þ k0P0n ¼ clP1;nþ1 þ ðcl0 þ ðnþ 1ÞnÞP0;nþ1; c 6 n:

Summing over n gives

kP1� þ k0P0� ¼ lðcP1� �
Xc�1

n¼0

ðc � nÞP1nÞ þ l0ðcP0� �
Xc�1

n¼0

ðc � nÞP0nÞ þ nE½L0� ¼ lðcP1� � A1ð1ÞÞ þ l0ðcP0� � A0ð1ÞÞ þ nE½L0�:

That is,

E½L0� ¼
k̂� cl̂þ lA1ð1Þ þ l0A0ð1Þ

n
:

The derivation of E½L1� is done similarly as in Eq. (2.22)

E½L1� ¼ G01ðzÞjz¼1 ¼
cðk̂� cl̂Þ þ nðk� clÞP1� þ cl0A0ð1Þ þ lA1ð1Þðcþ nÞ

gn
:

Finally, the mean total number of customers in the system is E½L� ¼ E½L0� þ E½L1�.

Numerical Example. We consider the case c ¼ 2. The probabilities P00; P01; P10; P11 are needed in order to completely determine G0ðzÞ.
From Section 3.4, the set of four equations connecting these four probabilities is

ngk2;2ð1Þ
gþ c

¼ gl2P10

Z 1

z1;2

k2;2ðxÞ
b2ðxÞ

dxþ glP11

Z 1

z1;2

k2;2ðxÞx
b2ðxÞ

dxþ l02P00

Z 1

z1;2

k2;2ðxÞ
x

dxþ l0P01

Z 1

z1;2

k2;2ðxÞx
x

dx;

gl
n

2P10

Z z1;2

0

k1;2ðxÞ
b2ðxÞ

dxþ gl
n

P11

Z z1;2

0

k1;2ðxÞx
b2ðxÞ

dx ¼ �l0

n
2P00

Z z1;2

0

k1;2ðxÞ
x

dx� l0

n
P01

Z z1;2

0

k1;2ðxÞx
x

dx;

ðk0 þ cÞP00 ¼ gP10 þ ðl0 þ nÞP01; ðkþ gÞP10 ¼ lP11 þ cP00:

In Table 3.2 we compare numerically the values of the boundary probabilities when c ¼ 1 and when c ¼ 2, where
k ¼ 3;l ¼ 3; k0 ¼ 2;l0 ¼ 1; c ¼ 2;g ¼ 1 and n ¼ 1.
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Remark. Extreme cases, similar to those studied in Section 2.5, can be analyzed for the many-server case. We skip those derivations.

4. Infinite number of servers

4.1. The model

We now consider a service system with an infinite number of servers. That is, we deal with customers’ abandonments occurring in an
M=M=1 queueing system operating in a 2-phase random environment. As in Sections 2 and 3, when the system switches to phase j ¼ 0, the
service rate of all servers decreases to l0. The Transition-rate diagram is given in Fig. 4.1. It follows that, from analytic point of view, one
can consider a combined slow service rate and abandonment rate, l0 þ n, as a global departure rate for each individual customer when the
system is in phase j ¼ 0.

A related model has been fully investigated by Baykal-Gursoy and Xiao [4], and further studied by Paz and Yechiali [17]. In [4], a service
system with an infinite number of servers subject to random interruptions of exponentially distributed durations is considered. During
interruptions, all servers work at lower efficiency, compared to their normal functioning rate. However, the Poisson arrival rate in both
environments remains the same, where in our work the Poisson arrival rate changes with the change of environment. Nevertheless, a solu-
tion for our model can be obtained from [4] with only a few modifications. For the sake of completeness in the next section we present the
balance equations and exhibit a closed-form formula for the partial generating functions, G0ðzÞ and G1ðzÞ. We also calculate, by a slightly
different approach than the one described in [4], the values of E½L0� and E½L1�, which gives us a formula for E½L�, the mean total number of
customers in the system.

4.2. Balance equations and generating functions

As in Sections 2 and 3, Pjn denotes the steady-state probability of the system being in state ðj;nÞ if the system is in environment j, j ¼ 0;1,
and n customers are present.

The steady-state balance equations are

j ¼ 0
n ¼ 0 : ðk0 þ cÞP00 ¼ gP10 þ ðl0 þ nÞP01;

n P 0 : ððk0 þ cþ nðl0 þ nÞÞP0n ¼ k0P0;n�1 þ gP1n þ ðnþ 1Þðl0 þ nÞP0;nþ1;

�
ð4:1Þ

j ¼ 1
n ¼ 0 : ðkþ gÞP10 ¼ cP00 þ lP11;

n P 0 : ðkþ gþ nlÞP1n ¼ kP1;n�1 þ cP0n þ ðnþ 1ÞlP1;nþ1:

�
ð4:2Þ

Multiplying both sides of (4.1) and (4.2) by zn and summing over all n yield the differential equations

G00ðzÞ �
c

ðl0 þ nÞð1� zÞ þ
k0

l0 þ n

� 	
G0ðzÞ ¼ �

g
ðl0 þ nÞð1� zÞG1ðzÞ; ð4:3Þ

G01ðzÞ �
g

lð1� zÞ þ
k
l

� 	
G1ðzÞ ¼ �

c
lð1� zÞG0ðzÞ: ð4:4Þ

Before presenting the solution of Eqs. (4.3) and (4.4), we notice that P0� and P1� are the same as in Sections 2 and 3, and are given in (2.3).
Furthermore, (4.3) and (4.4) yield, respectively

G00ðzÞ ¼
k0

l0 þ n
G0ðzÞ þ

cG0ðzÞ � gG1ðzÞ
ðl0 þ nÞð1� zÞ ; ð4:5Þ

and

G01ðzÞ ¼
k
l

G1ðzÞ þ
gG1ðzÞ � cG0ðzÞ

lð1� zÞ : ð4:6Þ

Table 3.2
Boundary probabilities and mean queue sizes.

P00 P01 P10 P11 E½L0� E½L1� E½L�

c ¼ 1 0.0689 0.0749 0.1258 0.1218 0.7796 1.9366 2.7162
c ¼ 2 0.1147 0.1157 0.2276 0.2270 0.3917 0.8300 1.2217

1+nn210:L

)( 0 ξμ +n)(2 0 ξμ +ξμ +0 0λ0λ0λ0λ0λ

γγγγγ

ηηηηη

μ)1( +nμnμ2μλ λλλλ
j=1

j=0
))(1( 0 ξμ ++n

Fig. 4.1. Transition-rate diagram for the M=M=1 case.
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Substituting z ¼ 1 in results (4.5) and (4.6), using G0ð1Þ ¼ g
cþg, G1ð1Þ ¼ c

cþg, and applying L’Hopital rule, gives two equations with the two vari-
ables, G00ð1Þ and G01ð1Þ, resulting in

G00ð1Þ ¼ E½L0� ¼
gðkcþ k0ðgþ lÞÞ

ðcþ gÞðclþ ðgþ lÞðl0 þ nÞÞ ;

G01ð1Þ ¼ E½L1� ¼
cðk0gþ kðcþ l0 þ nÞÞ

ðcþ gÞðclþ ðgþ lÞðl0 þ nÞÞ :

Hence,

E½L� ¼ E½L0� þ E½L1� ¼
kc2 þ k0gðgþ lÞ þ cðgðkþ k0Þ þ kðl0 þ nÞÞ

ðcþ gÞðclþ ðgþ lÞðl0 þ nÞÞ : ð4:7Þ

Setting k0 ¼ k reduces (4.7) to Eq. (3.6) in [4].
Note that, in this case ðc ¼ 1Þ, it is possible to derive the mean total number of customers in the system without actually calculating the

PGFs.
To get G0ðzÞ and G1ðzÞ we repeat the process described in [4], with a few modifications. We write

G0ðzÞ ¼
g

cþ g
� e�

kð1�zÞ
l �Mðaþ 1; bþ 1;2~qð1� zÞÞ; ð4:8Þ

G1ðzÞ ¼
gðl0 þ nÞ þ cl
ðcþ gÞl � e�

kð1�zÞ
l � Mða; b;2~qð1� zÞÞ � a

b
Mðaþ 1; bþ 1;2~qð1� zÞÞ

h i
; ð4:9Þ

where

a ¼ g
l
; b ¼ g

l
þ c

l0 þ n
; ~q ¼ 1

2
k
l
� k0

l0 þ n

� �
;

and Mða; b; zÞ is the Kummer function with the following power series representation:

Mða; b; zÞ ¼
X1
n¼0

aðnÞ
bðnÞ

zn

n!
;

where

aðnÞ ¼ aðaþ 1Þðaþ 2Þ � � � ðaþ n� 1Þ and að0Þ ¼ 1;
bðnÞ ¼ bðbþ 1Þðbþ 2Þ � � � ðbþ n� 1Þ and bð0Þ ¼ 1:

Now, with known G0ðzÞ and G1ðzÞ, P00 and P10 can be calculated directly by substituting z ¼ 0 in the generating functions. The rest of the
probabilities may be calculated progressively from the balance equations or by repeated differentiation of the PGFs.

Numerical Example. With the same values used in Section 3.4, we get

P00 ¼ G0ð0Þ ¼ 0:12262; P10 ¼ G1ð0Þ ¼ 0:24524; E½L0� ¼
1
3
; E½L1� ¼

2
3
; E½L� ¼ 1:

As expected, P00 and P10 in the c ¼ 1 case are greater then in the c ¼ 2 case, and E½L� for c ¼ 1 is smaller than when c ¼ 2.

We note that those neat numerical results for E½L0� and E½L1� are a consequence of the following:

Theorem. (Proved in [17]) In an M=M=1 queue in a m-phase random environment, with arrival and service rates kj and lj in phase j,
1 6 j 6 m, the steady-state probabilities satisfy Pjn ¼ Pj� � P�n (where Pj� ¼

P1
n¼0Pjn and P�n ¼

Pm
j¼1PjnÞ, if and only if kj=lj=constant for all j.

Furthermore, if kj=lj=constant, E½L� ¼ kj=lj.

Indeed, for this example, k
l ¼

k0
l0þn ¼ 1 ¼ E½L�.

4.3. Extreme cases

Clearly, when considering the cases when l0 ! 0, or when n! 0, we get the same representations for G0ðzÞ and G1ðzÞ as in (4.8) and
(4.9), respectively, with only a simple modification. It is also easy to verify, again by utilizing (4.8) and (4.9), that for the cases
c! 0;g > 0 or g! 0; c > 0, we get the generating function of an Mðk0Þ=Mðl0 þ nÞ=1 system or MðkÞ=MðlÞ=1 system, respectively.

A more interesting case is when n!1. A transition rate diagram for this would look similar to Fig. 2.2 with service rates nl for all
n P 0.

Clearly, G0ðzÞ ¼ P00 ¼ P0� ¼ g
cþg. Substituting this result in Eq. (4.6) leads to a differential equation for G1ðzÞ as follows:

G01ðzÞ �
k
l
þ g

lð1� zÞ

� 	
G1ðzÞ ¼ �

cg
lðcþ gÞð1� zÞ : ð4:10Þ

The solution of (4.10) is

G1ðzÞ ¼
cg

lðcþ gÞ e
kz
l ð1� zÞ�

g
l

Z 1

z
e�

ku
l ð1� uÞ

g
l�1du:

Another interesting extreme case arises when both c and g tend to1, with a constant ratio g=c ¼ r > 0. Similarly to case 7 in Section 2.5, we
get that G0ðzÞ ¼ rG1ðzÞ. To derive G0ðzÞ we use Eq. (4.8) and let c and g tend to 1, with ratio r > 0. We thus get,
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a
b
! ðl0 þ nÞr

lþ ðl0 þ nÞr ;

implying that, for all n,

aðnÞ
bðnÞ

!
g=c!r

ðl0 þ nÞr
lþ ðl0 þ nÞr

� �n

;

and therefore

lim
c;g!1
g=c¼r

Mðaþ 1; bþ 1;2~qð1� zÞÞ ¼
X1
n¼0

ðl0 þ nÞr2~qð1� zÞ
lþ ðl0 þ nÞr

� �n 1
n!
¼ exp

ð1� zÞrðkðl0 þ nÞ � k0lÞ
l2 þ lðl0 þ nÞr

� 	
:

Finally,

G0ðzÞ ¼
r

r þ 1
� exp �ð1� zÞ kþ k0r

lþ ðl0 þ nÞr

� �� 	
;

and

G1ðzÞ ¼ 1=rG0ðzÞ:

We also have

E½L� ¼ G0ðzÞjz¼1 ¼ ðG
0
0ðzÞ þ G01ðzÞÞjz¼1 ¼

k̂
l̂
! kþ k0r

lþ ðl0 þ nÞr ;

which can be obtained directly from (4.7), when c;g!1 while g=c! r.

5. Conclusions

We have introduced and analyzed customers’ impatience that arises as a result of a slowdown in the servers’ service rate. We studied
three Markovian models: the single server case, the multiple server case and the infinite-server case. For each model we derived explicit
expressions for the PGF of the number of customers in the system, both when the servers are slow and when the system functions nor-
mally. We also calculated the mean total number of customers in the system. In the M=M=1 and M=M=c (c <1Þ queues we solved a dif-
ferential equation in order to derive the PGFs. When analyzing the M=M=1 queue, we made use of a related model studied in [4]. Several
extreme cases were examined and numerical results were presented.
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