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ien
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t. We 
onsider two-queue polling models with the spe
ial feature thata timer me
hanism is employed at Q1: whenever the server polls Q1 and �nds itempty, it a
tivates a timer and remains dormant, waiting for the �rst arrival. If su
han arrival o

urs before the timer expires, a busy period starts in a

ordan
e withQ1's servi
e dis
ipline. However, if the timer is shorter than the interarrival timeto Q1, the server does not wait any more and swit
hes ba
k to Q2. We 
onsiderthree 
on�gurations: (i) Q1 is 
ontrolled by the 1-limited proto
ol while Q2 isserved exhaustively. (ii) Q1 employs the exhaustive regime while Q2 follows the 1-limited pro
edure. (iii) Both queues are served exhaustively. In all 
ases, we assumePoisson arrivals and allow general servi
e and swit
hover time distributions. Ourmain results in
lude the queue length distributions at polling instants, the waitingtime distributions and the distribution of the total workload in the system.Keywords: Two queues, alternating servi
e, polling, 1-limited, exhaustive, timer,patient server. 1. Introdu
tionA single server attends two queues, denoted Q1 and Q2, by alternatingits servi
e among them. The servi
e dis
ipline in ea
h queue is eitherexhaustive or 1-limited. In the exhaustive regime, the server keepsserving a queue until it is empty. For the 1-limited poli
y, at mostone 
ustomer is served. However, regardless of its spe
i�
 regime, Q1exer
ises an extra priority over Q2 by virtue of a timer me
hanism,operating as follows. Whenever the server polls Q1 and �nds it empty,it a
tivates a timer and remains dormant, waiting for the �rst arrival. Ifsu
h an arrival o

urs before the timer expires, a busy period starts ina

ordan
e with Q1's servi
e dis
ipline. However, if the timer is shorterthan the interarrival time to Q1, the server does not wait any moreand swit
hes ba
k to Q2. This 'wait and see' poli
y is 
ommon inhuman behaviour and is employed in many real-life operations (road
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2traÆ
 interse
tions; a ma
hine that 
an pro
ess several 
lasses of jobs,requiring 
hange-over times between 
lasses for tool swit
hing; et
.).In spite of its importan
e, it has been studied only re
ently [9℄ in the
ontext of a single queue with va
ations. A variant of this 'wait andsee' poli
y is studied in Pek�oz [19℄, where during a visit to a queue andafter the queue be
omes empty, the server always stays idle there for adeterministi
 amount of time.In this work we extend the analysis of [9℄ to two-queue pollingmodelsin whi
h the server exer
ises the wait option in Q1. We 
onsider three
on�gurations: (i) Q1 is 
ontrolled by the 1-limited proto
ol while Q2is served exhaustively. (ii) Q1 employs the exhaustive regime while Q2follows the 1-limited pro
edure. (iii) Both queues are served exhaus-tively. In all 
ases, we assume that 
ustomers arrive at the queuesa

ording to independent Poisson pro
esses, with servi
e requests thatare independent and follow general distributions.We 
onsider both zeroand nonzero swit
hover times; in the latter 
ase, their distributions aregeneral. Our main results in
lude the queue length distributions atpolling instants, the waiting time distributions and the distribution ofthe total workload in the system.Let us brie
y review the relevant literature; for extensive surveys onpolling systems the reader is referred to Takagi [22, 23℄ and Ye
hiali[24℄. Two-queue alternating-servi
e systems without timers have beentreated by many authors in the literature, under various assumptionson their operating s
hemes. Avi-Itzhak, Maxwell and Miller [1℄ werethe �rst to study su
h a 
on�guration, assuming the exhaustive servi
edis
ipline in ea
h queue and zero swit
hover times. They derived themean queue size and expe
ted waiting time, as well as the �rst two mo-ments of the busy period, in ea
h queue. Tak�a
s [21℄ studied the samemodel, obtaining Lapla
e-Stieltjes transforms (LST) and probabilitygenerating fun
tions (PGF) of key variables. Eisenberg [12℄ investigatedthe same model but with nonzero swit
hover times.The two-queue polling model with exhaustive servi
e at one queueand 1-limited servi
e at the other queue has been analysed in detailby Groenendijk [16℄ and Ibe [17℄. The two-queue polling model with1-limited servi
e at both queues is intrinsi
ally more diÆ
ult thanthose with exhaustive servi
e at both queues or those with exhaustiveservi
e at one queue and 1-limited at the other. The joint queue lengthdistribution at both 1-limited queues 
an be obtained via a translationto a boundary value problem (see e.g. Boxma and Groenendijk [6℄), butextension of the results to more than two queues seems out of rea
h.Instead of timers, additional priorities 
an also be implemented usingthresholds. Threshold servi
e dis
iplines, where Q1 is served exhaus-tively whileQ2 is served only until either the work there is 
ompleted or
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3the queue size in the other (`primary') queue rea
hes a given threshold,were studied by Lee [18℄, Boxma, Koole and Mitrani [7, 8℄ and Boxmaand Down [4℄. In [7℄ the servi
e times are exponentially distributed andservi
es at Q2 are preemptively interrupted when the threshold at Q1 isrea
hed, while in [8℄ the servi
e pro
ess at Q2 is nonpreemptively inter-rupted when the threshold at Q1 is rea
hed. [4℄ extends the analysis in[8℄ to the 
ase where servi
e times are generally distributed, and treatsboth 
ases of zero and nonzero swit
hover times. Exa
t expressions forthe joint queue-length distributions at 
ustomer departure epo
hs andfor the steady-state queue length and sojourn time distributions arederived. Lee [18℄ deals with a similar model and gives light and heavytraÆ
 analyses.Eliazar and Ye
hiali [14℄ re
ently studied a 
ommuni
ation multi-plexer problem, analyzing it as two alternating queues with dependentrandomly-timed gated regime [13℄. The primary queue is served exhaus-tively, whereas the duration of time the server resides in the se
ondaryqueue is determined by the dynami
 evolution in Q1. They derivednumerous performan
e measures, ea
h expressed as a fun
tion of anundetermined PGF of the number of messages at polling instants of Q2,and obtained expli
it approximated values for all performan
e measuresthat depend on the above PGF.The paper is organized as follows. Se
tion 2 
ontains a detailedmodel des
ription. In Se
tion 3 we study queue lengths and derivemulti-dimensional PGFs of the system's state at polling instants. InSe
tion 4 we 
al
ulate the LST of the workload in the system, derivede
omposition results and obtain expressions for pseudo
onservationlaws, from whi
h mean waiting times are determined. Waiting timedistributions are 
onsidered in Se
tion 5. Various possible extensionsare mentioned in Se
tion 6.2. Model Des
ription and NotationWe 
onsider a polling system 
onsisting of two queues Q1 and Q2 within�nite bu�er 
apa
ity ea
h, attended by a single server that alternatesbetween the queues. Customers arrive at Qi, i = 1; 2, a

ording to aPoisson pro
ess {Ai(t); t ≥ 0} with intensity �i, and require a servi
etime Bi with distributionBi(·), mean �i, se
ond moment �(2)i , and LST~Bi(·). Su

essive i.i.d. servi
e times are denoted by Bik, k = 1; 2; : : :,i = 1; 2. A similar notation is used for other random variables to be in-trodu
ed below. Let � = �1+�2 denote the total arrival rate, �i = �i�ithe traÆ
 intensity at Qi, and � = �1+�2 the total traÆ
 intensity. ByB(·) we denote the servi
e time distribution of an arbitrary (arriving)
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4
ustomer: B(t) = �1�1 + �2 B1(t) + �2�1 + �2 B2(t) :Customers at Q1 have some priority in the sense that on �ndingQ1 empty the server waits there for a pre-spe
i�ed duration of time T(whi
h may be random or 
onstant and whi
h we 
all a timer), hopingfor an arrival during that time. If the timer expires before an arrivalo

urs, the server swit
hes to Q2. We 
onsider both zero and nonzeroswit
hover times. In the latter 
ase, swit
hing from Qi to the otherqueue, i = 1; 2, takes a random duration Di with distribution Di(·),mean di and LST ~Di(·); d = d1+d2. We deal with two servi
e dis
iplinesat the two queues, namely, the exhaustive and 1-limited regimes.We restri
t ourselves to the stationary situation. The stability 
ondi-tion depends on the 
hosen servi
e dis
iplines. We will dis
uss them atthe appropriate pla
es; for extensive dis
ussions of stability 
onditionsin polling systems see Borovkov [2℄ and Fri
ker and Jaibi [15℄.Let Xji be the number of 
ustomers at Qj when Qi is polled (i.e., isvisited by the server), with joint PGF Fi(z1; z2) = IE[zX1i1 zX2i2 ℄. Let IA1be the interarrival time at Q1, M1 = min{IA1; T} with LST ~M1(·) andmean IEM1 = a1=�1, where a1 = IP(IA1 ≤ T ) = 1− ~T (�1), where ~T (·)denotes the LST of T . Moreover,Bi(z1; z2) = IE hzA1(Bi)1 zA2(Bi)2 i = ~Bi(�1(1− z1) + �2(1− z2)) ;Di(z1; z2) = IE hzA1(Di)1 zA2(Di)2 i = ~Di(�1(1− z1) + �2(1− z2)) ;fi(z) = ~�i(�j(1− z)) ; i; j = 1; 2 ; i 6= j ; z ≥ 0 ;where ~�i(·) is the LST of a generi
 busy period �i at Qi, i = 1; 2, withmean IE�i = �i=(1 − �i) and IE(�2i ) = �(2)i =(1 − �i)3. We only dealwith busy periods at queues with exhaustive servi
e. Note that Bi(·; ·)(Di(·; ·)) is the joint PGF of the number of arrivals at ea
h of the queuesduring a servi
e (swit
hover time) at (from) Qi. Further, f1(z) is thePGF of the number of arrivals at Q2 during one generi
 busy period atQ1, and similar for f2(z):f1(z) = IE[zA2(�1)℄; f2(z) = IE[zA1(�2)℄: (1)Finally, de�ne the 
y
le time C as the time between two su

essivepolling instants by the server of Q1. By an easy balan
e argument, themean 
y
le time isIEC = (d+ IEM1IP(X11 = 0))=(1 − �) : (2)
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53. Queue LengthsIn this se
tion we 
onstru
t the evolution equations for the queuelengths at polling instants for various 
ombinations of servi
e dis
i-plines at the two queues. We 
onsider the following 
ombinations: (i)Q1 follows the 1-limited rule while Q2 is 
ontrolled by the exhaustiveregime. (ii) Q1 is served exhaustively while Q2 employs the 1-limitedpoli
y. (iii) Both queues operate under the exhaustive regime. Re
allthat the timer is initiated only ifQ1 is empty at a polling instant. Basedon the evolution equations we derive the PGF's of the queue lengthsfor ea
h 
ombination.3.1. Q1: 1-limited; Q2: exhaustiveIn this model, though 
ustomers at Q1 have some priority re
e
ted bythe timer at Q1, there is a trade-o� for this preferen
e by serving atmost one 
ustomer during the 
ourse of a server's visit to Q1.The stability 
ondition in this 
ase must be the same as in the1-limited/exhaustive polling model without a timer [16, 17℄, namely�+�1d < 1. We refrain from a proof (for proof te
hniques, see [2, 15℄).An intuitive argument is the following. Sin
e Q1 
an serve at most one
ustomer per 
y
le, the bottlene
k is at Q1, and the stability 
onditionis �1IEC < 1, where IEC is given by (2). However, given that Q1 is inheavy traÆ
, the server never �nds Q1 empty, and thus we get indeed�+ �1d < 1.We derive the joint PGFs of the queue lengths at polling instants; 
f.(9), (10). From these we obtain mean queue lengths at polling instants;
f. (13), (14).The queue length X11 is given by the queue length at Q1 when Q2was polled for the last time, i.e. X12 , plus the arrivals to Q1 during theserver's stay at Q2 plus the arrivals to Q1 during the swit
hing from Q2to Q1. Note that servingQ2 exhaustively means that if at the beginningof servi
e at Q2 the number of jobs is X22 > 0, the server stays there X22regular busy periods of an M=G=1 queue having Poisson arrival rate�2 and servi
e requirements B2. Arguing in the same way, we get theevolution equations for the queue lengths at polling instants:X11 = X12 +A1�X22Xk=1 �2k�+A1(D2) ; X21 = A2(D2) ;X12 = �X11 − 1 +A1(B1) +A1(D1) ; if X11 > 0,A1(B1)1I(IA1 ≤ T ) +A1(D1) ; if X11 = 0,X22 = �X21 +A2(B1) +A2(D1) ; if X11 > 0,X21 +A2(M1) +A2(B1)1I(IA1 ≤ T ) +A2(D1) ; if X11 = 0,
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6where 1I(A) is the indi
ator fun
tion of the event A. Note that M1and 1I(IA1 ≤ T ) are dependent. From this we obtain the generatingfun
tionsF1(z1; z2) = IEhzX111 zX212 i = IEhzX12+A1(PX22k=1 �2k)1I(X22>0)+A1(D2)1 zA2(D2)2 i= D2(z1; z2)�IEhzX12+A1(PX22k=1 �2k)1 1I(X22 > 0)i+ IEhzX121 1I(X22 = 0)i�= D2(z1; z2)F2(z1; f2(z1)) ; (3)andF2(z1; z2) = IEhz(X11−1+A1(B1))1I(X11>0)+A1(B1)1I(IA1≤T )1I(X11=0)+A1(D1)1
× zX21+A2(B1)1I(X11>0)+(A2(M1)+A2(B1)1I(IA1≤T ))1I(X11=0)+A2(D1)2 i= D1(z1; z2)�B1(z1; z2) 1z1 IEhzX111 zX212 1I(X11 > 0)i+ IEhzA1(B1)1I(IA1≤T )1 zX21+A2(M1)+A2(B1)1I(IA1≤T )2 1I(X11 = 0)i�=D1(z1; z2)hB1(z1; z2) F1(z1; z2)− F1(0; z2)z1 + F1(0; z2) r(z1; z2)i; (4)where r(z1; z2) = IEhzA1(B1)1I(IA1≤T )1 zA2(M1)+A2(B1)1I(IA1≤T )2 iis a known fun
tion that 
an be spe
i�ed expli
itly for given distribu-tions of B1 and T . With 
1 = F2(0; ~�2(�1)) (5)we have from (3) F1(0; z2) = 
1D2(0; z2) ; (6)and thus substituting (3) into (4) yieldsF2(z1; z2) = F2(z1; f2(z1)) D1(z1; z2)D2(z1; z2)B1(z1; z2)z1+
1D2(0; z2)D1(z1; z2)�r(z1; z2)− B1(z1; z2)z1 � : (7)Putting z2 = f2(z1) in (7) and solving for F2(z1; f2(z1)) givesF2(z1; f2(z1)) == 
1D2(0; f2(z1))D1(z1; f2(z1))�z1r(z1; f2(z1))−B1(z1; f2(z1))�z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1)) : (8)
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7Therefore, by plugging (8) into (3) and (7), respe
tively, we �nally getF1(z1; z2) = 
1D1(z1; f2(z1))D2(z1; z2)D2(0; f2(z1))
×

z1r(z1; f2(z1))−B1(z1; f2(z1))z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1)) (9)andF2(z1; z2) == 
1D2(0; f2(z1))D1(z1; f2(z1))�z1r(z1; f2(z1))−B1(z1; f2(z1))�z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1))
×
D1(z1; z2)D2(z1; z2)B1(z1; z2)z1+
1D2(0; z2)D1(z1; z2)�r(z1; z2)− B1(z1; z2)z1 � : (10)To determine the 
onstant 
1, we put z1 = z2 = 1 in (9) to obtain1 = F1(1; 1)= 
1D2(0; 1) limz1→1 z1r(z1; f2(z1))−B1(z1; f2(z1))z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1))= 
1 ~D2(�1) 1 + �1(�2IE�2IEM1 − (1− a1)(�2IE�2 + 1)�1)1− �1(�2IE�2 + 1)(d1 + d2 + �1)= 
1 ~D2(�1) 1− �+ �1�2IEM1 + a1�11− �− �1d = 
1 ~D2(�1) 1− �+ �1�IEM11− �− �1d ;where we employed l'Hospital's rule for the lim operation, usedddz1Di�z1; f2(z1)����z1=1 = �1di=(1 − �2) ;ddz1B1�z1; f2(z1)����z1=1 = �1�1=(1− �2)and a1 = �1IEM1. Finally,
1 = 1− �− �1d~D2(�1)�1− �+ �1�IEM1� : (11)Remark 3.1 Noti
e that 
1 > 0 sin
e the stability 
ondition � +�1d < 1 holds. A more dire
t approa
h to determine 
1, whi
h exploitsthe 1-limited proto
ol at Q1, is the following. Sin
e in steady-state themean number of arrivals per 
y
le at one of the queues equals the meannumber of servi
es there, we have�1IEC = 0 · IP(no servi
e atQ1) + 1 · IP(there is a servi
e atQ1)= IP(X11 > 0) + IP(X11 = 0; IA1 ≤ T ) = 1− IP(X11 = 0)(1 − a1) :
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8Now, by substituting the value of IEC from (2) in the left-hand-side ofthe above, solving for IP(X11 = 0), using (6) with z2 = 1, and re
all-ing that D2(0; 1) = ~D2(�1), we get (11). Noti
e also that F1(0; 1) =IP(X11 = 0) and thusIP(X11 = 0) = 1− �− �1d1− �+ �1�IEM1 : (12)Now, the PGF's of X1i and X2i (i = 1; 2) are given by, respe
tively,IEhzX1i1 i = Fi(z1; 1) ; IEhzX2i2 i = Fi(1; z2) ;from whi
h, by di�erentiation, we obtain after a lengthy 
al
ulationIEhX11 i = �21(d+ IEM1(1− �1d))1− �+ �1�IEM1 �1�(2)1 + �2�(2)22(1 − �2)(1− �− �1d)+ �21(1− �2)(1− �− �1d)  d(2)2 + �1d!− �1 �21− �2  ~D′2(�1)~D2(�1) − d1!
−
�1�(d+ IEM1(1− �1d))1− �+ �1�IEM1 + �1�IEM11− �+ �1�IEM1+ �21��2IEM212(1− �2)(1− �+ �1�IEM1) + �1(d+ �IEM1)1− �+ �1�IEM1 ; (13)and IEhX22 i = �2 (d+ IEM1(1− �1d))(1 − �2)1− �+ �1�IEM1 ; (14)where the latter one is also easily obtained dire
tly from the evolutionequations or by the following argument: due to exhaustive servi
e atQ2, X22 is the number of arrivals to Q2 during the total swit
hover timeand the server's stay at Q1. Thus,IEhX22i = �2�d+ �1IP(X11 > 0) + (IEM1 + a1�1)IP(X11 = 0)� :Using the expression for IP(X11 = 0) given in (12), this gives (14).To obtain (13), we have used that IEM1 − R∞0 te−�1tdIP(T ≤ t) =�1IEM21 =2, whi
h follows fromIEM1 = Z ∞0 e−�1tIP(T > t)dt and IEM21 = Z ∞0 2te−�1tIP(T > t)dt :Remark 3.2 The 
ase of zero swit
hover times 
auses no diÆ
ulty asit does in some other polling models. This is due to the presen
e of the
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9timer. Thus, for zero swit
hover times all expressions above simplify bysetting ~Di(·) ≡ 1 and di = 0. In parti
ular,
1 = F1(0; 1) = IP(X11 = 0) = 1− �1− �+ �1�IEM1 :Note that in this 
ase X21 = 0 due to exhaustive servi
e at Q2 andtherefore F1(z1; z2) is 
onstant in z2.3.2. Q1: exhaustive; Q2: 1-limitedWe now 
onsider the 
ase of exhaustive servi
e at Q1 and 1-limitedservi
e at Q2 and again derive the joint PGFs Fi(z1; z2); 
f. (20), (15).As before, the timer is at Q1. That is, Q1 gets an extra priority overQ2 by exer
ising the timer pro
edure when Q1 is empty, in addition toits being served exhaustively.Sin
e Q2 
an serve at most one 
ustomer per 
y
le, the stability
ondition in this 
ase is �2IEC < 1, where IEC is given by (2). WhenQ2 is in heavy traÆ
, i.e., there is one servi
e at Q2 in ea
h 
y
le,then the term IP(X11 = 0) in (2) be
omes ~D1(�1) ~D2(�1) ~B2(�1). Indeed,Q1 is left behind empty be
ause of the exhaustive servi
e dis
ipline,and ~D1(�1) ~D2(�1) ~B2(�1) is the probability of no arrival at Q1 in thesubsequent swit
hovers and serv
ie at Q2. Then the stability 
ondition�2IEC < 1 redu
es to �+ �2d+ �2IEM1 ~D1(�1) ~D2(�1) ~B2(�1) < 1.The evolution equations of the queue lengths at polling instants forthis model are given byX11 = �X12 +A1(B2) +A1(D2) ; if X22 > 0,X12 +A1(D2) ; if X22 = 0,X21 = �X22 − 1 +A2(B2) +A2(D2) ; if X22 > 0,A2(D2) ; if X22 = 0,X12 = A1(D1) ;X22 = (X21 +A2�PX11k=1 �1k�+A2(D1) ; if X11 > 0,X21 +A2(M1) +A2(�1)1I(IA1 ≤ T ) +A2(D1) ; if X11 = 0.From this we obtain the generating fun
tionsF2(z1; z2) = D1(z1; z2)hF1�f1(z2); z2�+ F1(0; z2)(h(z2)− 1)i ; (15)where h(z2) = IEhzA2(M1)+A2(�1)1I(IA1≤T )2 i ; (16)
pollkluwfinal.tex; 25/01/2002; 12:02; p.9



10andF1(z1; z2) = D2(z1; z2)hB2(z1; z2) F2(z1; z2)− F2(z1; 0)z2 + F2(z1; 0)i :(17)Note that h(·) 
annot be fa
torized sin
e M1 and 1I(IA1 ≤ T ) aredependent. Substituting (15) into (17) yieldsF1(z1; z2) = F1(f1(z2); z2) D1(z1; z2)D2(z1; z2)B2(z1; z2)z2+F1(0; z2)(h(z2)− 1) D1(z1; z2)D2(z1; z2)B2(z1; z2)z2+
2D1(z1; 0)D2(z1; z2)�1− B2(z1; z2)z2 � ; (18)where 
2 = F1(~�1(�2); 0) + F1(0; 0)(h(0) − 1)and h(0) = IP(A2(M1) +A2(�1)1I(IA1 ≤ T ) = 0) :Put z1 = f1(z2) in (18) and solve for F1(f1(z2); z2) to getF1(f1(z2); z2) = D2(f1(z2); z2)z2 −D1(f1(z2); z2)D2(f1(z2); z2)B2(f1(z2); z2)
×
nF1(0; z2)(h(z2)− 1)D1(f1(z2); z2)B2(f1(z2); z2)+ 
2D1(f1(z2); 0)(z2 −B2(f1(z2); z2))o : (19)We use the following shorthand notation, for i = 1; 2:D̂i = Di(z1; z2) ; D∗i = Di(f1(z2); z2) ;B̂2 = B2(z1; z2) ; B∗2 = B2(f1(z2); z2) :Plugging (19) into (18) then yieldsF1(z1; z2) = F1(0; z2)(h(z2)− 1)z2 −D∗1D∗2B∗2 D̂1D̂2B̂2 + 
2D1(z1; 0)D̂2(1− B̂2=z2)+ 
2D1(f1(z2); 0)D∗2(1−B∗2=z2)z2 −D∗1D∗2B∗2 D̂1D̂2B̂2 ; (20)and it remains to determine F1(0; z2) and 
2. Setting z1 = 0 in (20)gives, for z2 6= 0,F1(0; z2) = 
2z2 −D∗1D∗2B∗2 − (h(z2)− 1)D∗∗1 D∗∗2 B∗∗2
×
nD1(0; 0)D∗∗2 (1−B∗∗2 =z2)(z2 −D∗1D∗2B∗2)+ D1(f1(z2); 0)D∗2(1−B∗2=z2)D∗∗1 D∗∗2 B∗∗2 o ; (21)
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11where D∗∗i = Di(0; z2), i = 1; 2, and B∗∗2 = B2(0; z2). Now, (20) givesF1(z1; z2), while F2(z1; z2) follows from (15) and (19). Further, from(15) we get 
2 = F2(z1; 0)=D1(z1; 0). Put z1 = z2 = 1 in (20) todetermine this 
onstant. Sin
e Di(1; 1) = B2(1; 1) = 1, i = 1; 2,1 = F1(1; 1) = limz2→1F1(1; z2) = limz2→1F1(0; z2) limz2→1 h(z2)− 1z2 −D∗1D∗2B∗2+ 
2D1(f1(1); 0) limz2→1 D∗2z2 limz2→1 z2 −B∗2z2 −D∗1D∗2B∗2 : (22)Remember that f1(1) = 1. A

ording to (21),limz2→1F1(0; z2) = 
2 ~D1(�) ~D2(�1)
× limz2→1 z2 −D∗1D∗2B∗2z2 −D∗1D∗2B∗2 − (h(z2)− 1)D∗∗1 D∗∗2 B∗∗2 limz2→1 z2 −B∗∗2z2+ 
2 ~D1(�2) limz2→1 (z2 −B∗2) ~D1(�1) ~D2(�1) ~B2(�1)z2 −D∗1D∗2B∗2 − (h(z2)− 1)D∗∗1 D∗∗2 B∗∗2 :Thus, by using l'Hospital's rule,F1(0; 1) = 
2 ~D2(�1) (23)

×
~D1(�)(1 − �− �2d)(1− ~B2(�1)) + ~D1(�1) ~D1(�2) ~B2(�1)(1 − �)1− �− �2d− �2IEM1 ~D1(�1) ~D2(�1) ~B2(�1) :Further,limz2→1 h(z2)− 1z2 −D∗1D∗2B∗2 = �2(IEM1 + a1IE�1)1− �2(�1IE�1 + 1)(d + �2) = �2IEM11− �− �2d (24)andlimz2→1 z2 −B∗2z2 −D∗1D∗2B∗2 = 1− �2(�1IE�1 + 1)�21− �2(�1IE�1 + 1)(d+ �2) = 1− �1− �− �2d :(25)Thus, we �nally get from (22), (23), (24) and (25):
2 = 1− �− �2d− �2IEM1 ~D1(�1) ~D2(�1) ~B2(�1)�2IEM1 ~D1(�) ~D2(�1)(1− ~B2(�1)) + (1− �) ~D1(�2) : (26)Remark 3.3 Noti
e that 
2 > 0 sin
e the stability 
ondition �2IEC <1 holds. Again, exploiting the 1-limited servi
e yields a more dire
tapproa
h to determine 
2. We have�2IEC = IE[number of servi
es atQ2 per 
y
le℄ = IP(X22 > 0) :Substituting (2) and using (15) with z1 = 1, z2 = 0, and (23) to expressIP(X22 = 0) and IP(X11 = 0) in terms of 
2, respe
tively, yields (26).
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12 F1(z1; z2) is determined by substituting the value of 
2 into (20) and(21) and then substituting (21) into (20). F2(z1; z2) is then determinedfrom (15), (19) and (21). Queue length moments 
an now be obtainedin a similar manner as in Subse
tion 3.1.Remark 3.4 As before, for zero swit
hover times all expressionssimplify by setting ~Di(·) ≡ 1 and di = 0.3.3. Exhaustive regime in both queuesIn this se
tion both Q1 and Q2 are assumed to be served exhaustivelyand, as before, the timer is at Q1. Again we derive the joint PGFsFi(z1; z2); 
f. (31), (27). It is easily seen that the stability 
onditionnow is �1 + �2 < 1. For the system under 
onsideration the evolutionequations of the queue lengths at polling instants are given byX12 = A1(D1) ; X21 = A2(D2) ; X11 = X12 +A1�X22Xk=1 �2k�+A1(D2) ;X22 = (X21 +A2�PX11k=1 �1k�+A2(D1) ; X11 > 0 ;X21 +A2(M1) +A2(�1)1I(IA1 ≤ T ) +A2(D1) ; X11 = 0 :From this we obtain the generating fun
tionsF1(z1; z2) = D2(z1; z2)F2�z1; f2(z1)� ; (27)andF2(z1; z2) = D1(z1; z2)hF1�f1(z2); z2�− F1(0; z2) + F1(0; z2)h(z2)i ;(28)where h(z2) is given by (16). With the notationk(z2) = h(z2)− 1 ; g(z2) = ~�2��1(1− f1(z2))� = f2(f1(z2)) ; (29)substituting (27) into (28) yieldsF2(z1; z2) = D1(z1; z2)D2(f1(z2); z2)F2�f1(z2); g(z2)�+D1(z1; z2)D2(0; z2)F2�0; ~�2(�1)� k(z2) :With D(z1; z2) = D1(z1; z2)D2(f1(z2); z2) ;E(z1; z2) = D1(z1; z2)D2(0; z2) k(z2) ;
3 = F2�0; ~�2(�1)� ; (30)
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13we get by iteration, after K steps,F2(z1; z2) = D(z1; z2)
×

K−1Yk=0 D�f1(g(k)(z2)); g(k+1)(z2)�× F2�f1(g(K)(z2); g(K+1)(z2)�+ 
3D(z1; z2) K−1Xk=0 E�f1(g(k)(z2)); g(k+1)(z2)�
×

k−1Yj=0D�f1(g(j)(z2)); g(j+1)(z2)�+ 
3E(z1; z2) ;where g(0)(z) = z ; g(k)(z) = g(g(k−1)(z)) ; k ≥ 1 :LettingK → ∞ (for 
onvergen
e see Boxma, S
hlegel and Ye
hiali [10℄)givesF2(z1; z2) = D(z1; z2)
×

∞Yk=0D�f1(g(k)(z2)); g(k+1)(z2)�× F2�f1(g(∞)(z2)); g(∞)(z2)�+ 
3D(z1; z2) ∞Xk=0E�f1(g(k)(z2)); g(k+1)(z2)�
×

k−1Yj=0D�f1(g(j)(z2)); g(j+1)(z2)�+ 
3E(z1; z2) ; (31)and it remains to determine g(∞) and 
3. By de�nitiong(k)(z2) = ~�2��1(1− f1(g(k−1)(z2)))�and thus g(∞)(z2) = ~�2��1(1− f1(g(∞)(z2)))�whi
h is solved by g(∞) ≡ 1. Sin
e ~�2��1(1−f1(x))� is a 
onvex fun
tionof x with��x ~�2��1(1− f1(x))������x=1 = �1IE�2 �2IE�1 = �1 �21− �2 �2 �11− �1 < 1under the stability 
ondition �1+�2 < 1, there is no other solution. Toget 
3 we put z1 = 0 and z2 = ~�2(�1) in (31) (
f. (30)):
3 = D(0; z) ∞Yk=0D�f1(g(k)(z)); g(k+1)(z)�× h1−E(0; z) −D(0; z)
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14
×

∞Xk=0E�f1(g(k)(z)); g(k+1)(z)� k−1Yj=0D�f1(g(j)(z)); g(j+1)(z)�i−1���z=~�2(�1);and F2(z1; z2) is determined. Finally, F1(z1; z2) is obtained by substi-tuting (31) with z2 = f1(z2) into (27).4. Total Workload and a Pseudo
onservation LawWe now investigate the total workload in the system. We show that theamount of work in the system 
an be de
omposed into the amount ofwork in the '
orresponding' M=G=1 model (the model without timerand swit
hover times) and the amount of work in the system at anarbitrary epo
h in a non-serving interval, i.e. in a timer period or aswit
hover period; 
f. (34), (38). The fa
t that the total workload 
analso be expressed in terms of mean waiting times then allows us toobtain a pseudo
onservation law for the mean waiting times, i.e., anexa
t expression for a parti
ular weighted sum of the mean waitingtimes at Q1 and Q2; 
f. (37) and Theorem 4.1. It should be noted thatthe results obtained in this se
tion hold for general servi
e dis
iplinesand a timer at Q1.Zero swit
hover timesWe �rst 
onsider the 
ase of zero swit
hover times but a nonzero timer.Then, whenever the system is empty, the server stays at Q1 waiting.Indeed, if there are no arrivals, neither to Q1 nor to Q2, while the timerat Q1 is a
tive, then, after expiration of the timer, the server swit
hesto Q2 and immediately ba
k to Q1, where a new timer starts.In order to derive the LST '(s) = R∞0− e−sydV (y) of the (total)workload distribution V (·) with density v(·) we use the argument thatin steady state the probability for down
rossing a level x is the same asthat for up
rossing it. In our model a down
rossing is only possible if thetimer is o�. Denoting v0(x) = ddx IP(V ≤ x; timer on), [v(x) − v0(x)℄dtis the probability of down
rossing x in the next dt. Hen
ev(x)− v0(x) = � Z x0−(1−B(x− y))dV (y) : (32)Multiplying both sides of (32) by e−sx and integrating over the positivereal line yields, noti
ing that V (0) = IP(V = 0) = IP(V = 0; timer on),'(s)− IEhe−sV 1I(timer on)i= � Z ∞0 e−sx Z x0−(1−B(x− y))dV (y) dx = � �e(s)'(s) ;
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15where �e(s) is the LST of the residual servi
e time distributionBe(x) =R x0 (1−B(y))dy=� with � = (�1�1 + �2�2)=�. Thus,'(s) = 1− �1− ��e(s) IEhe−sV | timer oni ; (33)sin
e, with zero swit
hover times, IP(timer on) = 1 − �. From (33) weimmediately get the following work de
omposition:V d= VM=G=1 + V |timer on ; (34)where the distribution of VM=G=1 is the stationary distribution of theworkload in an M=G=1 queue with arrival rate � and servi
e timedistribution B(·) having LST (1− �)=(1− ��e(s)), see Cohen [11℄, andV |timer on is independent of VM=G=1 and has the stationary workloaddistribution in our model given that the timer at Q1 is a
tive. We nowstudy this quantity more 
losely.First we introdu
e the following quantities:M (∗)i denotes the amountof un�nished work left by the server atQi, andM (1)2 denotes the amountof un�nished work left by the server atQ2 on 
ondition thatQ1 is emptyat that moment. When the timer starts, Q1 is empty whereas in Q2 theworkload 
onsists of the un�nished work left behind when the serverleaves this queue. Moreover, while the timer is a
tive, only arrivals toQ2 may o

ur. When the timer is on, as soon as there is an arrival atQ1 or the timer expires, whi
hever o

urs �rst, the timer is swit
hedo�. Sin
e {V |timer on(t); t ≥ 0} is a regenerative pro
ess, we get for itsLST: IE�e−sV |timer on� = 1IEM1 IE Z M10 e−sV |timer on(t)dt= 1IEM1 IE Z ∞0 1I(M1 > t)e−s(M(1)2 +PA2(t)k=1 B2k)dt= IEe−sM(1)2IEM1 Z ∞0 IP(M1 > t)e−�2(1−�2(s))t dt= IEe−sM(1)2 1− ~M1(�2(1− �2(s)))IEM1�2(1− �2(s)) : (35)From (34) and (35) we getIEV = IEVM=G=1 + IEV |timer on = P2i=1 �i�(2)i2(1 − �) + IEM (1)2 + �2IEM212IEM1 :
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16In the spe
ial 
ase of a timer that is exponentially distributed withparameter �, we getIE�e−sV |timer on� = IEe−sM(1)2 (� + �1)� + �1 + �2(1− �2(s))and IEV = P2i=1 �i�(2)i2(1 − �) + IEM (1)2 + �2� + �1 :Also, for any servi
e regimeIEV = 2Xi=1 �i IE[number of 
ustomerswaiting atQi℄ + 2Xi=1 �i�(2)i2�i= 2Xi=1 �iIEWi + 2Xi=1 �i�(2)i2 ; (36)where the last equality follows from Little's law and Wi denotes thestationary waiting time at Qi. Therefore, for zero swit
hover times weget the following pseudo
onservation law:2Xi=1 �iIEWi = �1− � P2i=1 �i�(2)i2 + IEM (1)2 + �2IEM212IEM1 : (37)Nonzero swit
hover timesWe now turn to the 
ase of nonzero swit
hover times, in whi
h the(total) workload is not de
reasing both when the timer is a
tive as wellas when the server is swit
hing. Therefore, with vs(x) = ddx IP(V ≤x; server swit
hes),v(x)− v0(x)− vs(x) = � Z x0−(1−B(x− y))dV (y) :Analogous to the 
ase of zero swit
hover times we get'(s)− V (0) − hIE(e−sV 1I(timer on))− IP(V = 0; timer on)i
−
hIE(e−sV 1I(swit
h))− IP(V = 0; swit
h)i = ��e(s)'(s) :Sin
e V (0) = IP(V = 0; timer on) + IP(V = 0; swit
h), we have'(s) = IE(e−sV 1I(timer on)) + IE(e−sV 1I(swit
h))1− ��e(s)= 1− �1− ��e(s)nqIE(e−sV |timer on) + (1− q)IE(e−sV |swit
h)o ;
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17where q = IP(timer on)=IP(timer on or swit
h). Thus, the following workde
omposition holds: V d= VM=G=1 + Y ; (38)with VM=G=1 and Y independent and Y is spe
i�ed by IP(Y = V |timer on)= q = 1− IP(Y = V |swit
h). We 
ompute IE(V |timer on) and IE(V |swit
h).When the timer starts, Q1 is empty. Now, other than before, in Q2 theworkload 
onsists of the un�nished work M (1)2 left behind when theserver leaves this queue (Q1 being empty) as well as the work that hasarrived during the swit
hover from Q2 to Q1. Note that this is not anordinary swit
hover time D2, but has to be 
onditioned on the eventthat there are no arrivals to Q1 during this period. Therefore,IE(V |timer on) = IEM (1)2 + R∞0 �2te−�1tdD2(t)R∞0 e−�1tdD2(t) + �2IEM212IEM1= IEM (1)2 −
�2 ~D′2(�1)~D2(�1) + �2IEM212IEM1 ; (39)where ~D′2(�1) = dds ~D2(s)���s=�1 . The �rst two terms on the right handside of (39) represent the workload at the instant when the timer starts,whi
h 
onsists of the un�nished work left behind at Q2 and of thearriving work to Q2 during the swit
hover D2, given that there are noarrivals to Q1 during that time. The third term arises sin
e work in-
reases at Q2 at rate �2. We now 
ompute IE(V |swit
h) = (p1IE(V |D1)+p2IE(V |D2))=IP(swit
h), where pi = di=IEC is the probability that theserver is swit
hing from Qi to the other queue, i = 1; 2, and V |Didenotes the workload at an arbitrary epo
h in su
h a swit
hover. At thebeginning of the swit
hover period from Q1 to Q2, the total workload
onsists of the work left at Q1, if there is any left, the work at Q2 thathas been left there on the server's departure from Q2, the work that hasarrived to Q2 during the swit
hover time D2 from Q2 to Q1, and thework that has arrived to Q2 during the server's stay at Q1, where themean of this stay is given by �1IEC+IEM1IP(X11 = 0). Thus (rememberthat M (∗)i is de�ned above (35) as the amount of un�nished work leftby the server at Qi):IE(V |D1) = IEM (∗)1 + IEM (∗)2 + �2d2+�2�1 d+ IEM1IP(X11 = 0)1− � + �2IEM1IP(X11 = 0) + �IED212IED1 :Similarly,IE(V |D2) = IEM (∗)1 +IEM (∗)2 +�1d1+�1�2 d+ IEM1IP(X11 = 0)1− � +�IED222IED2 :
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18With q = IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)and (1− q)=IP(swit
h) = 1=IP(timer on or swit
h) = 1=(1−�) we �nallygetIEV = IEVM=G=1 + qIEV |timeron + (1− q)IEV |swit
h= P2i=1 �i�(2)i2(1 − �) + IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)�IEM (1)2 −
�2 ~D′2(�1)~D2(�1) + �2IEM212IEM1 �+ dd+ IEM1IP(X11 = 0)�IEM (∗)1 + IEM (∗)2 �+ �d(2)2(d+ IEM1IP(X11 = 0))+ IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)d1�2 + d2(1 − �) [�2 − 2Xi=1 �2i ℄ : (40)For T = 0, i.e., when the server does not wait for an arrival at Q1,the above result 
oin
ides with the well-known result, see e.g. [5℄.Combining (40) and (36) we obtain the following result.Theorem 4.1 (Pseudo
onservation Law) In the 2-queue polling systemunder 
onsideration with nonzero swit
hover times and a timer at Q1,2Xi=1 �iIEWi = �1− � 2Xi=1 �i�(2)i2+ IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)�IEM (1)2 −

�2 ~D′2(�1)~D2(�1) + �2IEM212IEM1 �+ dd+ IEM1IP(X11 = 0)�IEM (∗)1 + IEM (∗)2 �+ �d(2)2(d+ IEM1IP(X11 = 0))+ IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)d1�2 + d2(1 − �) [�2 − 2Xi=1 �2i ℄ : (41)Note that the terms IEM (∗)i and IEM (1)2 (the amount of un�nishedwork left by the server) depend on the servi
e dis
ipline at Qi and
an thus only be determined after spe
ifying the servi
e dis
ipline at.For exhaustive servi
e at Q2, for example, IEM (1)2 = IEM (∗)2 = 0.Corollary 4.1 For 1-limited servi
e at Q1 and exhaustive servi
e atQ2, we have�1 1− �− �1d1− � IEW1 + �2IEW2
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19= �1− � 2Xi=1 �i�(2)i2 + IEM1(1− �− �1d)(1− �)(d+ IEM1(1− �1d))
×
��2IEM212IEM1 −

�2 ~D′2(�1)~D2(�1) �+ �21d1− � + �(1− �+ �1�IEM1)d(2)2(1 − �)(d + IEM1(1− �1d))+ IEM1(1− �− �1d)(1− �)(d+ IEM1(1− �1d))d1�2 + d2(1 − �)h�2 − 2Xi=1 �2i i :Proof. The server 
an only leave un�nished work at Q1 if on de-parture he has just 
ompleted serving a 
ustomer, whi
h happens withprobability �1IEC. The amount of work left behind then 
onsists of thework that has arrived during this 
ustomer's sojourn time at Q1. Thus,IEM (1)1 = �1IEC�1(IEW1 + �1)= �1 d+ IEM1(1− �1d)1− �+ �1�IEM1 �1IEW1 + �21 d+ IEM1(1− �1d)1− �+ �1�IEM1 ;where we have used IP(X11 = 0) = 1−�−�1d1−�+�1�IEM1 , whi
h is obtained from(6) with z2 = 1 and (11). Sin
e IEM (1)2 = IEM (∗)2 = 0, the assertionnow immediately follows from Theorem 4.1.5. Waiting TimesIn general, it is diÆ
ult to 
al
ulate 
losed form expressions for themean waiting times at isolated queues in a polling system. Then, thepseudo
onservation law is often the only exa
t information on waitingtimes that 
an be obtained. However, if the s
heduling dis
ipline is nottoo 
ompli
ated, expli
it expressions for the mean waiting times areavailable; this is for example the 
ase in the three models of Se
tion 3.We now spe
ify the servi
e dis
iplines at the two queues to be 1-limited at Q1 and exhaustive at Q2 as in Se
tion 3.1. For this model weare able to derive the LST of the stationary waiting times W1 and W2;
f. (43), (44). Taking derivatives we also obtain expli
it expressions forthe mean waiting times IEW1 and IEW2; 
f. (45), (46).Let Xi denote the number of 
ustomers at Qi at the beginning ofa serving interval at Qi (exer
ising the timer at Q1 is 
onsidered as anon-serving period), and let Yi denote the number of 
ustomers at theend of a visit of the server at Qi. Then the LST of Wi are given by, seee.g. [3℄,IEe−sWi = (1− �i)ss− �i(1− ~Bi(s)) IE[(1− s=�i)Yi ℄− IE[(1− s=�i)Xi ℄(IEXi − IEYi)s=�i : (42)
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20In (42), the �rst fa
tor is the LST of the stationary waiting time Wiin the 
orresponding M=G=1-model. For arbitrary servi
e dis
ipline atQ1 we have X1 = X111I(X11 > 0) + 1I(X11 = 0)1I(IA1 ≤ T )and therefore IE[zX1 ℄ = F1(z; 1) + a1IP(X11 = 0)(z − 1)and IEX1 = IEX11 + a1IP(X11 = 0). Further, sin
e Y1 = X12 −A1(D1),IE[zY1 ℄ = F2(z; 1)D1(z; 1) = ~B1(�1(1− z)) F1(z; 1) − F1(0; 1)z+F1(0; 1)(a1 ~B1(�1(1− z)) + 1− a1) ;where in the last step we have used (4), andIEY1 = IEX11 − (1− F1(0; 1)) + �1(1− F1(0; 1)) + �1a1F1(0; 1) :Thus, with s = �1(1− z),IE[e−�1(1−z)W1 ℄= F1(z; 1) − F1(0; 1)z(1− F1(0; 1) + a1F1(0; 1)) + a1F1(0; 1)1− F1(0; 1) + a1F1(0; 1) : (43)Similarly, with X2 = X22 and Y2 = 0,IE[e−�2(1−z)W2 ℄ = 1− �2IEX22 1− F2(1; z)~B2(�2(1− z)) − z : (44)Now the mean waiting times 
an be 
al
ulated from (43) and (44) bytaking derivatives. Together with the expressions in (13) and (14) forthe mean queue lengths IEX11 and IEX22 under the 1-limited dis
iplineat Q1 and the exhaustive dis
ipline at Q2 we obtainIEW1 = �1�(2)1 + �2�(2)22(1− �2)(1 − �− �1d)+ 1− �+ �1�IEM11− �2 11− �− �1d d(2) + 2�1d2(d+ IEM1(1− �1d))
−

�2(1− �+ �1�IEM1)�1(d+ IEM1(1− �1d))(1 − �2) � ~D′2(�1)~D2(�1) − d1�− ��1+ �IEM1�1(d+ IEM1(1− �1d)) + �21− �2 �IEM212(d+ IEM1(1− �1d)) ; (45)
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21andIEW2 = �1�(2)1 + �2�(2)22(1 − �2) + 1− �+ �1�IEM11− �2 d(2) + 2�1d2(d + IEM1(1− �1d))+ 1− �− �1d(d+ IEM1(1− �1d))(1 − �2) � ~D′2(�1)~D2(�1) − d1�(�1 − IEM1(1 + �1))+ (1− �− �1d)(1 + �1)(d+ IEM1(1− �1d))(1 − �2) IEM212 ; (46)and for T = 0 this 
oin
ides with the known results for the modelwithout timer, see e.g. [17℄ or [16℄, p.105.6. Con
lusionsThe results of this paper may be generalized in several dire
tions.Firstly, the analysis in Subse
tion 3.3 may be extended to the 
aseof servi
e dis
iplines at Q1 and Q2 that are of a bran
hing type asstudied by Resing [20℄. This 
lass in
ludes not only the exhaustive andgated servi
e dis
iplines, but also more general dis
iplines that allowthe joint queue length pro
ess to be a multi-type bran
hing pro
ess.Se
ondly, the analysis in Subse
tion 3.3 may be further extended tothe 
ase of N > 2 queues, but with a timer me
hanism at only onequeue. On the other hand, we see major problems in extending ourresults to 
ases where there are timers at more than one queue. It isalso 
hallenging to study the models of Subse
tions 3.1 and 3.2 whenthe exhaustive servi
e dis
ipline is repla
ed by the gated dis
ipline.A
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