
Two-Queue Polling Modelswith a Patient ServerO.J. BoxmaDepartment of Mathematis and Computer Siene, Eindhoven University ofTehnology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsS. ShlegelEURANDOM, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsU. YehialiDepartment of Statistis & Operations Researh, Shool of Mathematial Sienes,Tel Aviv University, Tel Aviv 69978, IsraelAbstrat. We onsider two-queue polling models with the speial feature thata timer mehanism is employed at Q1: whenever the server polls Q1 and �nds itempty, it ativates a timer and remains dormant, waiting for the �rst arrival. If suhan arrival ours before the timer expires, a busy period starts in aordane withQ1's servie disipline. However, if the timer is shorter than the interarrival timeto Q1, the server does not wait any more and swithes bak to Q2. We onsiderthree on�gurations: (i) Q1 is ontrolled by the 1-limited protool while Q2 isserved exhaustively. (ii) Q1 employs the exhaustive regime while Q2 follows the 1-limited proedure. (iii) Both queues are served exhaustively. In all ases, we assumePoisson arrivals and allow general servie and swithover time distributions. Ourmain results inlude the queue length distributions at polling instants, the waitingtime distributions and the distribution of the total workload in the system.Keywords: Two queues, alternating servie, polling, 1-limited, exhaustive, timer,patient server. 1. IntrodutionA single server attends two queues, denoted Q1 and Q2, by alternatingits servie among them. The servie disipline in eah queue is eitherexhaustive or 1-limited. In the exhaustive regime, the server keepsserving a queue until it is empty. For the 1-limited poliy, at mostone ustomer is served. However, regardless of its spei� regime, Q1exerises an extra priority over Q2 by virtue of a timer mehanism,operating as follows. Whenever the server polls Q1 and �nds it empty,it ativates a timer and remains dormant, waiting for the �rst arrival. Ifsuh an arrival ours before the timer expires, a busy period starts inaordane with Q1's servie disipline. However, if the timer is shorterthan the interarrival time to Q1, the server does not wait any moreand swithes bak to Q2. This 'wait and see' poliy is ommon inhuman behaviour and is employed in many real-life operations (road© 2002 Kluwer Aademi Publishers. Printed in the Netherlands.
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2traÆ intersetions; a mahine that an proess several lasses of jobs,requiring hange-over times between lasses for tool swithing; et.).In spite of its importane, it has been studied only reently [9℄ in theontext of a single queue with vaations. A variant of this 'wait andsee' poliy is studied in Pek�oz [19℄, where during a visit to a queue andafter the queue beomes empty, the server always stays idle there for adeterministi amount of time.In this work we extend the analysis of [9℄ to two-queue pollingmodelsin whih the server exerises the wait option in Q1. We onsider threeon�gurations: (i) Q1 is ontrolled by the 1-limited protool while Q2is served exhaustively. (ii) Q1 employs the exhaustive regime while Q2follows the 1-limited proedure. (iii) Both queues are served exhaus-tively. In all ases, we assume that ustomers arrive at the queuesaording to independent Poisson proesses, with servie requests thatare independent and follow general distributions.We onsider both zeroand nonzero swithover times; in the latter ase, their distributions aregeneral. Our main results inlude the queue length distributions atpolling instants, the waiting time distributions and the distribution ofthe total workload in the system.Let us briey review the relevant literature; for extensive surveys onpolling systems the reader is referred to Takagi [22, 23℄ and Yehiali[24℄. Two-queue alternating-servie systems without timers have beentreated by many authors in the literature, under various assumptionson their operating shemes. Avi-Itzhak, Maxwell and Miller [1℄ werethe �rst to study suh a on�guration, assuming the exhaustive serviedisipline in eah queue and zero swithover times. They derived themean queue size and expeted waiting time, as well as the �rst two mo-ments of the busy period, in eah queue. Tak�as [21℄ studied the samemodel, obtaining Laplae-Stieltjes transforms (LST) and probabilitygenerating funtions (PGF) of key variables. Eisenberg [12℄ investigatedthe same model but with nonzero swithover times.The two-queue polling model with exhaustive servie at one queueand 1-limited servie at the other queue has been analysed in detailby Groenendijk [16℄ and Ibe [17℄. The two-queue polling model with1-limited servie at both queues is intrinsially more diÆult thanthose with exhaustive servie at both queues or those with exhaustiveservie at one queue and 1-limited at the other. The joint queue lengthdistribution at both 1-limited queues an be obtained via a translationto a boundary value problem (see e.g. Boxma and Groenendijk [6℄), butextension of the results to more than two queues seems out of reah.Instead of timers, additional priorities an also be implemented usingthresholds. Threshold servie disiplines, where Q1 is served exhaus-tively whileQ2 is served only until either the work there is ompleted or
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3the queue size in the other (`primary') queue reahes a given threshold,were studied by Lee [18℄, Boxma, Koole and Mitrani [7, 8℄ and Boxmaand Down [4℄. In [7℄ the servie times are exponentially distributed andservies at Q2 are preemptively interrupted when the threshold at Q1 isreahed, while in [8℄ the servie proess at Q2 is nonpreemptively inter-rupted when the threshold at Q1 is reahed. [4℄ extends the analysis in[8℄ to the ase where servie times are generally distributed, and treatsboth ases of zero and nonzero swithover times. Exat expressions forthe joint queue-length distributions at ustomer departure epohs andfor the steady-state queue length and sojourn time distributions arederived. Lee [18℄ deals with a similar model and gives light and heavytraÆ analyses.Eliazar and Yehiali [14℄ reently studied a ommuniation multi-plexer problem, analyzing it as two alternating queues with dependentrandomly-timed gated regime [13℄. The primary queue is served exhaus-tively, whereas the duration of time the server resides in the seondaryqueue is determined by the dynami evolution in Q1. They derivednumerous performane measures, eah expressed as a funtion of anundetermined PGF of the number of messages at polling instants of Q2,and obtained expliit approximated values for all performane measuresthat depend on the above PGF.The paper is organized as follows. Setion 2 ontains a detailedmodel desription. In Setion 3 we study queue lengths and derivemulti-dimensional PGFs of the system's state at polling instants. InSetion 4 we alulate the LST of the workload in the system, derivedeomposition results and obtain expressions for pseudoonservationlaws, from whih mean waiting times are determined. Waiting timedistributions are onsidered in Setion 5. Various possible extensionsare mentioned in Setion 6.2. Model Desription and NotationWe onsider a polling system onsisting of two queues Q1 and Q2 within�nite bu�er apaity eah, attended by a single server that alternatesbetween the queues. Customers arrive at Qi, i = 1; 2, aording to aPoisson proess {Ai(t); t ≥ 0} with intensity �i, and require a servietime Bi with distributionBi(·), mean �i, seond moment �(2)i , and LST~Bi(·). Suessive i.i.d. servie times are denoted by Bik, k = 1; 2; : : :,i = 1; 2. A similar notation is used for other random variables to be in-trodued below. Let � = �1+�2 denote the total arrival rate, �i = �i�ithe traÆ intensity at Qi, and � = �1+�2 the total traÆ intensity. ByB(·) we denote the servie time distribution of an arbitrary (arriving)
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4ustomer: B(t) = �1�1 + �2 B1(t) + �2�1 + �2 B2(t) :Customers at Q1 have some priority in the sense that on �ndingQ1 empty the server waits there for a pre-spei�ed duration of time T(whih may be random or onstant and whih we all a timer), hopingfor an arrival during that time. If the timer expires before an arrivalours, the server swithes to Q2. We onsider both zero and nonzeroswithover times. In the latter ase, swithing from Qi to the otherqueue, i = 1; 2, takes a random duration Di with distribution Di(·),mean di and LST ~Di(·); d = d1+d2. We deal with two servie disiplinesat the two queues, namely, the exhaustive and 1-limited regimes.We restrit ourselves to the stationary situation. The stability ondi-tion depends on the hosen servie disiplines. We will disuss them atthe appropriate plaes; for extensive disussions of stability onditionsin polling systems see Borovkov [2℄ and Friker and Jaibi [15℄.Let Xji be the number of ustomers at Qj when Qi is polled (i.e., isvisited by the server), with joint PGF Fi(z1; z2) = IE[zX1i1 zX2i2 ℄. Let IA1be the interarrival time at Q1, M1 = min{IA1; T} with LST ~M1(·) andmean IEM1 = a1=�1, where a1 = IP(IA1 ≤ T ) = 1− ~T (�1), where ~T (·)denotes the LST of T . Moreover,Bi(z1; z2) = IE hzA1(Bi)1 zA2(Bi)2 i = ~Bi(�1(1− z1) + �2(1− z2)) ;Di(z1; z2) = IE hzA1(Di)1 zA2(Di)2 i = ~Di(�1(1− z1) + �2(1− z2)) ;fi(z) = ~�i(�j(1− z)) ; i; j = 1; 2 ; i 6= j ; z ≥ 0 ;where ~�i(·) is the LST of a generi busy period �i at Qi, i = 1; 2, withmean IE�i = �i=(1 − �i) and IE(�2i ) = �(2)i =(1 − �i)3. We only dealwith busy periods at queues with exhaustive servie. Note that Bi(·; ·)(Di(·; ·)) is the joint PGF of the number of arrivals at eah of the queuesduring a servie (swithover time) at (from) Qi. Further, f1(z) is thePGF of the number of arrivals at Q2 during one generi busy period atQ1, and similar for f2(z):f1(z) = IE[zA2(�1)℄; f2(z) = IE[zA1(�2)℄: (1)Finally, de�ne the yle time C as the time between two suessivepolling instants by the server of Q1. By an easy balane argument, themean yle time isIEC = (d+ IEM1IP(X11 = 0))=(1 − �) : (2)
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53. Queue LengthsIn this setion we onstrut the evolution equations for the queuelengths at polling instants for various ombinations of servie disi-plines at the two queues. We onsider the following ombinations: (i)Q1 follows the 1-limited rule while Q2 is ontrolled by the exhaustiveregime. (ii) Q1 is served exhaustively while Q2 employs the 1-limitedpoliy. (iii) Both queues operate under the exhaustive regime. Reallthat the timer is initiated only ifQ1 is empty at a polling instant. Basedon the evolution equations we derive the PGF's of the queue lengthsfor eah ombination.3.1. Q1: 1-limited; Q2: exhaustiveIn this model, though ustomers at Q1 have some priority reeted bythe timer at Q1, there is a trade-o� for this preferene by serving atmost one ustomer during the ourse of a server's visit to Q1.The stability ondition in this ase must be the same as in the1-limited/exhaustive polling model without a timer [16, 17℄, namely�+�1d < 1. We refrain from a proof (for proof tehniques, see [2, 15℄).An intuitive argument is the following. Sine Q1 an serve at most oneustomer per yle, the bottlenek is at Q1, and the stability onditionis �1IEC < 1, where IEC is given by (2). However, given that Q1 is inheavy traÆ, the server never �nds Q1 empty, and thus we get indeed�+ �1d < 1.We derive the joint PGFs of the queue lengths at polling instants; f.(9), (10). From these we obtain mean queue lengths at polling instants;f. (13), (14).The queue length X11 is given by the queue length at Q1 when Q2was polled for the last time, i.e. X12 , plus the arrivals to Q1 during theserver's stay at Q2 plus the arrivals to Q1 during the swithing from Q2to Q1. Note that servingQ2 exhaustively means that if at the beginningof servie at Q2 the number of jobs is X22 > 0, the server stays there X22regular busy periods of an M=G=1 queue having Poisson arrival rate�2 and servie requirements B2. Arguing in the same way, we get theevolution equations for the queue lengths at polling instants:X11 = X12 +A1�X22Xk=1 �2k�+A1(D2) ; X21 = A2(D2) ;X12 = �X11 − 1 +A1(B1) +A1(D1) ; if X11 > 0,A1(B1)1I(IA1 ≤ T ) +A1(D1) ; if X11 = 0,X22 = �X21 +A2(B1) +A2(D1) ; if X11 > 0,X21 +A2(M1) +A2(B1)1I(IA1 ≤ T ) +A2(D1) ; if X11 = 0,
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6where 1I(A) is the indiator funtion of the event A. Note that M1and 1I(IA1 ≤ T ) are dependent. From this we obtain the generatingfuntionsF1(z1; z2) = IEhzX111 zX212 i = IEhzX12+A1(PX22k=1 �2k)1I(X22>0)+A1(D2)1 zA2(D2)2 i= D2(z1; z2)�IEhzX12+A1(PX22k=1 �2k)1 1I(X22 > 0)i+ IEhzX121 1I(X22 = 0)i�= D2(z1; z2)F2(z1; f2(z1)) ; (3)andF2(z1; z2) = IEhz(X11−1+A1(B1))1I(X11>0)+A1(B1)1I(IA1≤T )1I(X11=0)+A1(D1)1
× zX21+A2(B1)1I(X11>0)+(A2(M1)+A2(B1)1I(IA1≤T ))1I(X11=0)+A2(D1)2 i= D1(z1; z2)�B1(z1; z2) 1z1 IEhzX111 zX212 1I(X11 > 0)i+ IEhzA1(B1)1I(IA1≤T )1 zX21+A2(M1)+A2(B1)1I(IA1≤T )2 1I(X11 = 0)i�=D1(z1; z2)hB1(z1; z2) F1(z1; z2)− F1(0; z2)z1 + F1(0; z2) r(z1; z2)i; (4)where r(z1; z2) = IEhzA1(B1)1I(IA1≤T )1 zA2(M1)+A2(B1)1I(IA1≤T )2 iis a known funtion that an be spei�ed expliitly for given distribu-tions of B1 and T . With 1 = F2(0; ~�2(�1)) (5)we have from (3) F1(0; z2) = 1D2(0; z2) ; (6)and thus substituting (3) into (4) yieldsF2(z1; z2) = F2(z1; f2(z1)) D1(z1; z2)D2(z1; z2)B1(z1; z2)z1+1D2(0; z2)D1(z1; z2)�r(z1; z2)− B1(z1; z2)z1 � : (7)Putting z2 = f2(z1) in (7) and solving for F2(z1; f2(z1)) givesF2(z1; f2(z1)) == 1D2(0; f2(z1))D1(z1; f2(z1))�z1r(z1; f2(z1))−B1(z1; f2(z1))�z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1)) : (8)

pollkluwfinal.tex; 25/01/2002; 12:02; p.6



7Therefore, by plugging (8) into (3) and (7), respetively, we �nally getF1(z1; z2) = 1D1(z1; f2(z1))D2(z1; z2)D2(0; f2(z1))
×

z1r(z1; f2(z1))−B1(z1; f2(z1))z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1)) (9)andF2(z1; z2) == 1D2(0; f2(z1))D1(z1; f2(z1))�z1r(z1; f2(z1))−B1(z1; f2(z1))�z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1))
×
D1(z1; z2)D2(z1; z2)B1(z1; z2)z1+1D2(0; z2)D1(z1; z2)�r(z1; z2)− B1(z1; z2)z1 � : (10)To determine the onstant 1, we put z1 = z2 = 1 in (9) to obtain1 = F1(1; 1)= 1D2(0; 1) limz1→1 z1r(z1; f2(z1))−B1(z1; f2(z1))z1 −D1(z1; f2(z1))D2(z1; f2(z1))B1(z1; f2(z1))= 1 ~D2(�1) 1 + �1(�2IE�2IEM1 − (1− a1)(�2IE�2 + 1)�1)1− �1(�2IE�2 + 1)(d1 + d2 + �1)= 1 ~D2(�1) 1− �+ �1�2IEM1 + a1�11− �− �1d = 1 ~D2(�1) 1− �+ �1�IEM11− �− �1d ;where we employed l'Hospital's rule for the lim operation, usedddz1Di�z1; f2(z1)����z1=1 = �1di=(1 − �2) ;ddz1B1�z1; f2(z1)����z1=1 = �1�1=(1− �2)and a1 = �1IEM1. Finally,1 = 1− �− �1d~D2(�1)�1− �+ �1�IEM1� : (11)Remark 3.1 Notie that 1 > 0 sine the stability ondition � +�1d < 1 holds. A more diret approah to determine 1, whih exploitsthe 1-limited protool at Q1, is the following. Sine in steady-state themean number of arrivals per yle at one of the queues equals the meannumber of servies there, we have�1IEC = 0 · IP(no servie atQ1) + 1 · IP(there is a servie atQ1)= IP(X11 > 0) + IP(X11 = 0; IA1 ≤ T ) = 1− IP(X11 = 0)(1 − a1) :
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8Now, by substituting the value of IEC from (2) in the left-hand-side ofthe above, solving for IP(X11 = 0), using (6) with z2 = 1, and reall-ing that D2(0; 1) = ~D2(�1), we get (11). Notie also that F1(0; 1) =IP(X11 = 0) and thusIP(X11 = 0) = 1− �− �1d1− �+ �1�IEM1 : (12)Now, the PGF's of X1i and X2i (i = 1; 2) are given by, respetively,IEhzX1i1 i = Fi(z1; 1) ; IEhzX2i2 i = Fi(1; z2) ;from whih, by di�erentiation, we obtain after a lengthy alulationIEhX11 i = �21(d+ IEM1(1− �1d))1− �+ �1�IEM1 �1�(2)1 + �2�(2)22(1 − �2)(1− �− �1d)+ �21(1− �2)(1− �− �1d)  d(2)2 + �1d!− �1 �21− �2  ~D′2(�1)~D2(�1) − d1!
−
�1�(d+ IEM1(1− �1d))1− �+ �1�IEM1 + �1�IEM11− �+ �1�IEM1+ �21��2IEM212(1− �2)(1− �+ �1�IEM1) + �1(d+ �IEM1)1− �+ �1�IEM1 ; (13)and IEhX22 i = �2 (d+ IEM1(1− �1d))(1 − �2)1− �+ �1�IEM1 ; (14)where the latter one is also easily obtained diretly from the evolutionequations or by the following argument: due to exhaustive servie atQ2, X22 is the number of arrivals to Q2 during the total swithover timeand the server's stay at Q1. Thus,IEhX22i = �2�d+ �1IP(X11 > 0) + (IEM1 + a1�1)IP(X11 = 0)� :Using the expression for IP(X11 = 0) given in (12), this gives (14).To obtain (13), we have used that IEM1 − R∞0 te−�1tdIP(T ≤ t) =�1IEM21 =2, whih follows fromIEM1 = Z ∞0 e−�1tIP(T > t)dt and IEM21 = Z ∞0 2te−�1tIP(T > t)dt :Remark 3.2 The ase of zero swithover times auses no diÆulty asit does in some other polling models. This is due to the presene of the
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9timer. Thus, for zero swithover times all expressions above simplify bysetting ~Di(·) ≡ 1 and di = 0. In partiular,1 = F1(0; 1) = IP(X11 = 0) = 1− �1− �+ �1�IEM1 :Note that in this ase X21 = 0 due to exhaustive servie at Q2 andtherefore F1(z1; z2) is onstant in z2.3.2. Q1: exhaustive; Q2: 1-limitedWe now onsider the ase of exhaustive servie at Q1 and 1-limitedservie at Q2 and again derive the joint PGFs Fi(z1; z2); f. (20), (15).As before, the timer is at Q1. That is, Q1 gets an extra priority overQ2 by exerising the timer proedure when Q1 is empty, in addition toits being served exhaustively.Sine Q2 an serve at most one ustomer per yle, the stabilityondition in this ase is �2IEC < 1, where IEC is given by (2). WhenQ2 is in heavy traÆ, i.e., there is one servie at Q2 in eah yle,then the term IP(X11 = 0) in (2) beomes ~D1(�1) ~D2(�1) ~B2(�1). Indeed,Q1 is left behind empty beause of the exhaustive servie disipline,and ~D1(�1) ~D2(�1) ~B2(�1) is the probability of no arrival at Q1 in thesubsequent swithovers and servie at Q2. Then the stability ondition�2IEC < 1 redues to �+ �2d+ �2IEM1 ~D1(�1) ~D2(�1) ~B2(�1) < 1.The evolution equations of the queue lengths at polling instants forthis model are given byX11 = �X12 +A1(B2) +A1(D2) ; if X22 > 0,X12 +A1(D2) ; if X22 = 0,X21 = �X22 − 1 +A2(B2) +A2(D2) ; if X22 > 0,A2(D2) ; if X22 = 0,X12 = A1(D1) ;X22 = (X21 +A2�PX11k=1 �1k�+A2(D1) ; if X11 > 0,X21 +A2(M1) +A2(�1)1I(IA1 ≤ T ) +A2(D1) ; if X11 = 0.From this we obtain the generating funtionsF2(z1; z2) = D1(z1; z2)hF1�f1(z2); z2�+ F1(0; z2)(h(z2)− 1)i ; (15)where h(z2) = IEhzA2(M1)+A2(�1)1I(IA1≤T )2 i ; (16)
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10andF1(z1; z2) = D2(z1; z2)hB2(z1; z2) F2(z1; z2)− F2(z1; 0)z2 + F2(z1; 0)i :(17)Note that h(·) annot be fatorized sine M1 and 1I(IA1 ≤ T ) aredependent. Substituting (15) into (17) yieldsF1(z1; z2) = F1(f1(z2); z2) D1(z1; z2)D2(z1; z2)B2(z1; z2)z2+F1(0; z2)(h(z2)− 1) D1(z1; z2)D2(z1; z2)B2(z1; z2)z2+2D1(z1; 0)D2(z1; z2)�1− B2(z1; z2)z2 � ; (18)where 2 = F1(~�1(�2); 0) + F1(0; 0)(h(0) − 1)and h(0) = IP(A2(M1) +A2(�1)1I(IA1 ≤ T ) = 0) :Put z1 = f1(z2) in (18) and solve for F1(f1(z2); z2) to getF1(f1(z2); z2) = D2(f1(z2); z2)z2 −D1(f1(z2); z2)D2(f1(z2); z2)B2(f1(z2); z2)
×
nF1(0; z2)(h(z2)− 1)D1(f1(z2); z2)B2(f1(z2); z2)+ 2D1(f1(z2); 0)(z2 −B2(f1(z2); z2))o : (19)We use the following shorthand notation, for i = 1; 2:D̂i = Di(z1; z2) ; D∗i = Di(f1(z2); z2) ;B̂2 = B2(z1; z2) ; B∗2 = B2(f1(z2); z2) :Plugging (19) into (18) then yieldsF1(z1; z2) = F1(0; z2)(h(z2)− 1)z2 −D∗1D∗2B∗2 D̂1D̂2B̂2 + 2D1(z1; 0)D̂2(1− B̂2=z2)+ 2D1(f1(z2); 0)D∗2(1−B∗2=z2)z2 −D∗1D∗2B∗2 D̂1D̂2B̂2 ; (20)and it remains to determine F1(0; z2) and 2. Setting z1 = 0 in (20)gives, for z2 6= 0,F1(0; z2) = 2z2 −D∗1D∗2B∗2 − (h(z2)− 1)D∗∗1 D∗∗2 B∗∗2
×
nD1(0; 0)D∗∗2 (1−B∗∗2 =z2)(z2 −D∗1D∗2B∗2)+ D1(f1(z2); 0)D∗2(1−B∗2=z2)D∗∗1 D∗∗2 B∗∗2 o ; (21)
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11where D∗∗i = Di(0; z2), i = 1; 2, and B∗∗2 = B2(0; z2). Now, (20) givesF1(z1; z2), while F2(z1; z2) follows from (15) and (19). Further, from(15) we get 2 = F2(z1; 0)=D1(z1; 0). Put z1 = z2 = 1 in (20) todetermine this onstant. Sine Di(1; 1) = B2(1; 1) = 1, i = 1; 2,1 = F1(1; 1) = limz2→1F1(1; z2) = limz2→1F1(0; z2) limz2→1 h(z2)− 1z2 −D∗1D∗2B∗2+ 2D1(f1(1); 0) limz2→1 D∗2z2 limz2→1 z2 −B∗2z2 −D∗1D∗2B∗2 : (22)Remember that f1(1) = 1. Aording to (21),limz2→1F1(0; z2) = 2 ~D1(�) ~D2(�1)
× limz2→1 z2 −D∗1D∗2B∗2z2 −D∗1D∗2B∗2 − (h(z2)− 1)D∗∗1 D∗∗2 B∗∗2 limz2→1 z2 −B∗∗2z2+ 2 ~D1(�2) limz2→1 (z2 −B∗2) ~D1(�1) ~D2(�1) ~B2(�1)z2 −D∗1D∗2B∗2 − (h(z2)− 1)D∗∗1 D∗∗2 B∗∗2 :Thus, by using l'Hospital's rule,F1(0; 1) = 2 ~D2(�1) (23)

×
~D1(�)(1 − �− �2d)(1− ~B2(�1)) + ~D1(�1) ~D1(�2) ~B2(�1)(1 − �)1− �− �2d− �2IEM1 ~D1(�1) ~D2(�1) ~B2(�1) :Further,limz2→1 h(z2)− 1z2 −D∗1D∗2B∗2 = �2(IEM1 + a1IE�1)1− �2(�1IE�1 + 1)(d + �2) = �2IEM11− �− �2d (24)andlimz2→1 z2 −B∗2z2 −D∗1D∗2B∗2 = 1− �2(�1IE�1 + 1)�21− �2(�1IE�1 + 1)(d+ �2) = 1− �1− �− �2d :(25)Thus, we �nally get from (22), (23), (24) and (25):2 = 1− �− �2d− �2IEM1 ~D1(�1) ~D2(�1) ~B2(�1)�2IEM1 ~D1(�) ~D2(�1)(1− ~B2(�1)) + (1− �) ~D1(�2) : (26)Remark 3.3 Notie that 2 > 0 sine the stability ondition �2IEC <1 holds. Again, exploiting the 1-limited servie yields a more diretapproah to determine 2. We have�2IEC = IE[number of servies atQ2 per yle℄ = IP(X22 > 0) :Substituting (2) and using (15) with z1 = 1, z2 = 0, and (23) to expressIP(X22 = 0) and IP(X11 = 0) in terms of 2, respetively, yields (26).

pollkluwfinal.tex; 25/01/2002; 12:02; p.11



12 F1(z1; z2) is determined by substituting the value of 2 into (20) and(21) and then substituting (21) into (20). F2(z1; z2) is then determinedfrom (15), (19) and (21). Queue length moments an now be obtainedin a similar manner as in Subsetion 3.1.Remark 3.4 As before, for zero swithover times all expressionssimplify by setting ~Di(·) ≡ 1 and di = 0.3.3. Exhaustive regime in both queuesIn this setion both Q1 and Q2 are assumed to be served exhaustivelyand, as before, the timer is at Q1. Again we derive the joint PGFsFi(z1; z2); f. (31), (27). It is easily seen that the stability onditionnow is �1 + �2 < 1. For the system under onsideration the evolutionequations of the queue lengths at polling instants are given byX12 = A1(D1) ; X21 = A2(D2) ; X11 = X12 +A1�X22Xk=1 �2k�+A1(D2) ;X22 = (X21 +A2�PX11k=1 �1k�+A2(D1) ; X11 > 0 ;X21 +A2(M1) +A2(�1)1I(IA1 ≤ T ) +A2(D1) ; X11 = 0 :From this we obtain the generating funtionsF1(z1; z2) = D2(z1; z2)F2�z1; f2(z1)� ; (27)andF2(z1; z2) = D1(z1; z2)hF1�f1(z2); z2�− F1(0; z2) + F1(0; z2)h(z2)i ;(28)where h(z2) is given by (16). With the notationk(z2) = h(z2)− 1 ; g(z2) = ~�2��1(1− f1(z2))� = f2(f1(z2)) ; (29)substituting (27) into (28) yieldsF2(z1; z2) = D1(z1; z2)D2(f1(z2); z2)F2�f1(z2); g(z2)�+D1(z1; z2)D2(0; z2)F2�0; ~�2(�1)� k(z2) :With D(z1; z2) = D1(z1; z2)D2(f1(z2); z2) ;E(z1; z2) = D1(z1; z2)D2(0; z2) k(z2) ;3 = F2�0; ~�2(�1)� ; (30)
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13we get by iteration, after K steps,F2(z1; z2) = D(z1; z2)
×

K−1Yk=0 D�f1(g(k)(z2)); g(k+1)(z2)�× F2�f1(g(K)(z2); g(K+1)(z2)�+ 3D(z1; z2) K−1Xk=0 E�f1(g(k)(z2)); g(k+1)(z2)�
×

k−1Yj=0D�f1(g(j)(z2)); g(j+1)(z2)�+ 3E(z1; z2) ;where g(0)(z) = z ; g(k)(z) = g(g(k−1)(z)) ; k ≥ 1 :LettingK → ∞ (for onvergene see Boxma, Shlegel and Yehiali [10℄)givesF2(z1; z2) = D(z1; z2)
×

∞Yk=0D�f1(g(k)(z2)); g(k+1)(z2)�× F2�f1(g(∞)(z2)); g(∞)(z2)�+ 3D(z1; z2) ∞Xk=0E�f1(g(k)(z2)); g(k+1)(z2)�
×

k−1Yj=0D�f1(g(j)(z2)); g(j+1)(z2)�+ 3E(z1; z2) ; (31)and it remains to determine g(∞) and 3. By de�nitiong(k)(z2) = ~�2��1(1− f1(g(k−1)(z2)))�and thus g(∞)(z2) = ~�2��1(1− f1(g(∞)(z2)))�whih is solved by g(∞) ≡ 1. Sine ~�2��1(1−f1(x))� is a onvex funtionof x with��x ~�2��1(1− f1(x))������x=1 = �1IE�2 �2IE�1 = �1 �21− �2 �2 �11− �1 < 1under the stability ondition �1+�2 < 1, there is no other solution. Toget 3 we put z1 = 0 and z2 = ~�2(�1) in (31) (f. (30)):3 = D(0; z) ∞Yk=0D�f1(g(k)(z)); g(k+1)(z)�× h1−E(0; z) −D(0; z)
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14
×

∞Xk=0E�f1(g(k)(z)); g(k+1)(z)� k−1Yj=0D�f1(g(j)(z)); g(j+1)(z)�i−1���z=~�2(�1);and F2(z1; z2) is determined. Finally, F1(z1; z2) is obtained by substi-tuting (31) with z2 = f1(z2) into (27).4. Total Workload and a Pseudoonservation LawWe now investigate the total workload in the system. We show that theamount of work in the system an be deomposed into the amount ofwork in the 'orresponding' M=G=1 model (the model without timerand swithover times) and the amount of work in the system at anarbitrary epoh in a non-serving interval, i.e. in a timer period or aswithover period; f. (34), (38). The fat that the total workload analso be expressed in terms of mean waiting times then allows us toobtain a pseudoonservation law for the mean waiting times, i.e., anexat expression for a partiular weighted sum of the mean waitingtimes at Q1 and Q2; f. (37) and Theorem 4.1. It should be noted thatthe results obtained in this setion hold for general servie disiplinesand a timer at Q1.Zero swithover timesWe �rst onsider the ase of zero swithover times but a nonzero timer.Then, whenever the system is empty, the server stays at Q1 waiting.Indeed, if there are no arrivals, neither to Q1 nor to Q2, while the timerat Q1 is ative, then, after expiration of the timer, the server swithesto Q2 and immediately bak to Q1, where a new timer starts.In order to derive the LST '(s) = R∞0− e−sydV (y) of the (total)workload distribution V (·) with density v(·) we use the argument thatin steady state the probability for downrossing a level x is the same asthat for uprossing it. In our model a downrossing is only possible if thetimer is o�. Denoting v0(x) = ddx IP(V ≤ x; timer on), [v(x) − v0(x)℄dtis the probability of downrossing x in the next dt. Henev(x)− v0(x) = � Z x0−(1−B(x− y))dV (y) : (32)Multiplying both sides of (32) by e−sx and integrating over the positivereal line yields, notiing that V (0) = IP(V = 0) = IP(V = 0; timer on),'(s)− IEhe−sV 1I(timer on)i= � Z ∞0 e−sx Z x0−(1−B(x− y))dV (y) dx = � �e(s)'(s) ;
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15where �e(s) is the LST of the residual servie time distributionBe(x) =R x0 (1−B(y))dy=� with � = (�1�1 + �2�2)=�. Thus,'(s) = 1− �1− ��e(s) IEhe−sV | timer oni ; (33)sine, with zero swithover times, IP(timer on) = 1 − �. From (33) weimmediately get the following work deomposition:V d= VM=G=1 + V |timer on ; (34)where the distribution of VM=G=1 is the stationary distribution of theworkload in an M=G=1 queue with arrival rate � and servie timedistribution B(·) having LST (1− �)=(1− ��e(s)), see Cohen [11℄, andV |timer on is independent of VM=G=1 and has the stationary workloaddistribution in our model given that the timer at Q1 is ative. We nowstudy this quantity more losely.First we introdue the following quantities:M (∗)i denotes the amountof un�nished work left by the server atQi, andM (1)2 denotes the amountof un�nished work left by the server atQ2 on ondition thatQ1 is emptyat that moment. When the timer starts, Q1 is empty whereas in Q2 theworkload onsists of the un�nished work left behind when the serverleaves this queue. Moreover, while the timer is ative, only arrivals toQ2 may our. When the timer is on, as soon as there is an arrival atQ1 or the timer expires, whihever ours �rst, the timer is swithedo�. Sine {V |timer on(t); t ≥ 0} is a regenerative proess, we get for itsLST: IE�e−sV |timer on� = 1IEM1 IE Z M10 e−sV |timer on(t)dt= 1IEM1 IE Z ∞0 1I(M1 > t)e−s(M(1)2 +PA2(t)k=1 B2k)dt= IEe−sM(1)2IEM1 Z ∞0 IP(M1 > t)e−�2(1−�2(s))t dt= IEe−sM(1)2 1− ~M1(�2(1− �2(s)))IEM1�2(1− �2(s)) : (35)From (34) and (35) we getIEV = IEVM=G=1 + IEV |timer on = P2i=1 �i�(2)i2(1 − �) + IEM (1)2 + �2IEM212IEM1 :
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16In the speial ase of a timer that is exponentially distributed withparameter �, we getIE�e−sV |timer on� = IEe−sM(1)2 (� + �1)� + �1 + �2(1− �2(s))and IEV = P2i=1 �i�(2)i2(1 − �) + IEM (1)2 + �2� + �1 :Also, for any servie regimeIEV = 2Xi=1 �i IE[number of ustomerswaiting atQi℄ + 2Xi=1 �i�(2)i2�i= 2Xi=1 �iIEWi + 2Xi=1 �i�(2)i2 ; (36)where the last equality follows from Little's law and Wi denotes thestationary waiting time at Qi. Therefore, for zero swithover times weget the following pseudoonservation law:2Xi=1 �iIEWi = �1− � P2i=1 �i�(2)i2 + IEM (1)2 + �2IEM212IEM1 : (37)Nonzero swithover timesWe now turn to the ase of nonzero swithover times, in whih the(total) workload is not dereasing both when the timer is ative as wellas when the server is swithing. Therefore, with vs(x) = ddx IP(V ≤x; server swithes),v(x)− v0(x)− vs(x) = � Z x0−(1−B(x− y))dV (y) :Analogous to the ase of zero swithover times we get'(s)− V (0) − hIE(e−sV 1I(timer on))− IP(V = 0; timer on)i
−
hIE(e−sV 1I(swith))− IP(V = 0; swith)i = ��e(s)'(s) :Sine V (0) = IP(V = 0; timer on) + IP(V = 0; swith), we have'(s) = IE(e−sV 1I(timer on)) + IE(e−sV 1I(swith))1− ��e(s)= 1− �1− ��e(s)nqIE(e−sV |timer on) + (1− q)IE(e−sV |swith)o ;
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17where q = IP(timer on)=IP(timer on or swith). Thus, the following workdeomposition holds: V d= VM=G=1 + Y ; (38)with VM=G=1 and Y independent and Y is spei�ed by IP(Y = V |timer on)= q = 1− IP(Y = V |swith). We ompute IE(V |timer on) and IE(V |swith).When the timer starts, Q1 is empty. Now, other than before, in Q2 theworkload onsists of the un�nished work M (1)2 left behind when theserver leaves this queue (Q1 being empty) as well as the work that hasarrived during the swithover from Q2 to Q1. Note that this is not anordinary swithover time D2, but has to be onditioned on the eventthat there are no arrivals to Q1 during this period. Therefore,IE(V |timer on) = IEM (1)2 + R∞0 �2te−�1tdD2(t)R∞0 e−�1tdD2(t) + �2IEM212IEM1= IEM (1)2 −
�2 ~D′2(�1)~D2(�1) + �2IEM212IEM1 ; (39)where ~D′2(�1) = dds ~D2(s)���s=�1 . The �rst two terms on the right handside of (39) represent the workload at the instant when the timer starts,whih onsists of the un�nished work left behind at Q2 and of thearriving work to Q2 during the swithover D2, given that there are noarrivals to Q1 during that time. The third term arises sine work in-reases at Q2 at rate �2. We now ompute IE(V |swith) = (p1IE(V |D1)+p2IE(V |D2))=IP(swith), where pi = di=IEC is the probability that theserver is swithing from Qi to the other queue, i = 1; 2, and V |Didenotes the workload at an arbitrary epoh in suh a swithover. At thebeginning of the swithover period from Q1 to Q2, the total workloadonsists of the work left at Q1, if there is any left, the work at Q2 thathas been left there on the server's departure from Q2, the work that hasarrived to Q2 during the swithover time D2 from Q2 to Q1, and thework that has arrived to Q2 during the server's stay at Q1, where themean of this stay is given by �1IEC+IEM1IP(X11 = 0). Thus (rememberthat M (∗)i is de�ned above (35) as the amount of un�nished work leftby the server at Qi):IE(V |D1) = IEM (∗)1 + IEM (∗)2 + �2d2+�2�1 d+ IEM1IP(X11 = 0)1− � + �2IEM1IP(X11 = 0) + �IED212IED1 :Similarly,IE(V |D2) = IEM (∗)1 +IEM (∗)2 +�1d1+�1�2 d+ IEM1IP(X11 = 0)1− � +�IED222IED2 :
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18With q = IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)and (1− q)=IP(swith) = 1=IP(timer on or swith) = 1=(1−�) we �nallygetIEV = IEVM=G=1 + qIEV |timeron + (1− q)IEV |swith= P2i=1 �i�(2)i2(1 − �) + IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)�IEM (1)2 −
�2 ~D′2(�1)~D2(�1) + �2IEM212IEM1 �+ dd+ IEM1IP(X11 = 0)�IEM (∗)1 + IEM (∗)2 �+ �d(2)2(d+ IEM1IP(X11 = 0))+ IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)d1�2 + d2(1 − �) [�2 − 2Xi=1 �2i ℄ : (40)For T = 0, i.e., when the server does not wait for an arrival at Q1,the above result oinides with the well-known result, see e.g. [5℄.Combining (40) and (36) we obtain the following result.Theorem 4.1 (Pseudoonservation Law) In the 2-queue polling systemunder onsideration with nonzero swithover times and a timer at Q1,2Xi=1 �iIEWi = �1− � 2Xi=1 �i�(2)i2+ IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)�IEM (1)2 −

�2 ~D′2(�1)~D2(�1) + �2IEM212IEM1 �+ dd+ IEM1IP(X11 = 0)�IEM (∗)1 + IEM (∗)2 �+ �d(2)2(d+ IEM1IP(X11 = 0))+ IEM1IP(X11 = 0)d+ IEM1IP(X11 = 0)d1�2 + d2(1 − �) [�2 − 2Xi=1 �2i ℄ : (41)Note that the terms IEM (∗)i and IEM (1)2 (the amount of un�nishedwork left by the server) depend on the servie disipline at Qi andan thus only be determined after speifying the servie disipline at.For exhaustive servie at Q2, for example, IEM (1)2 = IEM (∗)2 = 0.Corollary 4.1 For 1-limited servie at Q1 and exhaustive servie atQ2, we have�1 1− �− �1d1− � IEW1 + �2IEW2
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19= �1− � 2Xi=1 �i�(2)i2 + IEM1(1− �− �1d)(1− �)(d+ IEM1(1− �1d))
×
��2IEM212IEM1 −

�2 ~D′2(�1)~D2(�1) �+ �21d1− � + �(1− �+ �1�IEM1)d(2)2(1 − �)(d + IEM1(1− �1d))+ IEM1(1− �− �1d)(1− �)(d+ IEM1(1− �1d))d1�2 + d2(1 − �)h�2 − 2Xi=1 �2i i :Proof. The server an only leave un�nished work at Q1 if on de-parture he has just ompleted serving a ustomer, whih happens withprobability �1IEC. The amount of work left behind then onsists of thework that has arrived during this ustomer's sojourn time at Q1. Thus,IEM (1)1 = �1IEC�1(IEW1 + �1)= �1 d+ IEM1(1− �1d)1− �+ �1�IEM1 �1IEW1 + �21 d+ IEM1(1− �1d)1− �+ �1�IEM1 ;where we have used IP(X11 = 0) = 1−�−�1d1−�+�1�IEM1 , whih is obtained from(6) with z2 = 1 and (11). Sine IEM (1)2 = IEM (∗)2 = 0, the assertionnow immediately follows from Theorem 4.1.5. Waiting TimesIn general, it is diÆult to alulate losed form expressions for themean waiting times at isolated queues in a polling system. Then, thepseudoonservation law is often the only exat information on waitingtimes that an be obtained. However, if the sheduling disipline is nottoo ompliated, expliit expressions for the mean waiting times areavailable; this is for example the ase in the three models of Setion 3.We now speify the servie disiplines at the two queues to be 1-limited at Q1 and exhaustive at Q2 as in Setion 3.1. For this model weare able to derive the LST of the stationary waiting times W1 and W2;f. (43), (44). Taking derivatives we also obtain expliit expressions forthe mean waiting times IEW1 and IEW2; f. (45), (46).Let Xi denote the number of ustomers at Qi at the beginning ofa serving interval at Qi (exerising the timer at Q1 is onsidered as anon-serving period), and let Yi denote the number of ustomers at theend of a visit of the server at Qi. Then the LST of Wi are given by, seee.g. [3℄,IEe−sWi = (1− �i)ss− �i(1− ~Bi(s)) IE[(1− s=�i)Yi ℄− IE[(1− s=�i)Xi ℄(IEXi − IEYi)s=�i : (42)
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20In (42), the �rst fator is the LST of the stationary waiting time Wiin the orresponding M=G=1-model. For arbitrary servie disipline atQ1 we have X1 = X111I(X11 > 0) + 1I(X11 = 0)1I(IA1 ≤ T )and therefore IE[zX1 ℄ = F1(z; 1) + a1IP(X11 = 0)(z − 1)and IEX1 = IEX11 + a1IP(X11 = 0). Further, sine Y1 = X12 −A1(D1),IE[zY1 ℄ = F2(z; 1)D1(z; 1) = ~B1(�1(1− z)) F1(z; 1) − F1(0; 1)z+F1(0; 1)(a1 ~B1(�1(1− z)) + 1− a1) ;where in the last step we have used (4), andIEY1 = IEX11 − (1− F1(0; 1)) + �1(1− F1(0; 1)) + �1a1F1(0; 1) :Thus, with s = �1(1− z),IE[e−�1(1−z)W1 ℄= F1(z; 1) − F1(0; 1)z(1− F1(0; 1) + a1F1(0; 1)) + a1F1(0; 1)1− F1(0; 1) + a1F1(0; 1) : (43)Similarly, with X2 = X22 and Y2 = 0,IE[e−�2(1−z)W2 ℄ = 1− �2IEX22 1− F2(1; z)~B2(�2(1− z)) − z : (44)Now the mean waiting times an be alulated from (43) and (44) bytaking derivatives. Together with the expressions in (13) and (14) forthe mean queue lengths IEX11 and IEX22 under the 1-limited disiplineat Q1 and the exhaustive disipline at Q2 we obtainIEW1 = �1�(2)1 + �2�(2)22(1− �2)(1 − �− �1d)+ 1− �+ �1�IEM11− �2 11− �− �1d d(2) + 2�1d2(d+ IEM1(1− �1d))
−

�2(1− �+ �1�IEM1)�1(d+ IEM1(1− �1d))(1 − �2) � ~D′2(�1)~D2(�1) − d1�− ��1+ �IEM1�1(d+ IEM1(1− �1d)) + �21− �2 �IEM212(d+ IEM1(1− �1d)) ; (45)
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21andIEW2 = �1�(2)1 + �2�(2)22(1 − �2) + 1− �+ �1�IEM11− �2 d(2) + 2�1d2(d + IEM1(1− �1d))+ 1− �− �1d(d+ IEM1(1− �1d))(1 − �2) � ~D′2(�1)~D2(�1) − d1�(�1 − IEM1(1 + �1))+ (1− �− �1d)(1 + �1)(d+ IEM1(1− �1d))(1 − �2) IEM212 ; (46)and for T = 0 this oinides with the known results for the modelwithout timer, see e.g. [17℄ or [16℄, p.105.6. ConlusionsThe results of this paper may be generalized in several diretions.Firstly, the analysis in Subsetion 3.3 may be extended to the aseof servie disiplines at Q1 and Q2 that are of a branhing type asstudied by Resing [20℄. This lass inludes not only the exhaustive andgated servie disiplines, but also more general disiplines that allowthe joint queue length proess to be a multi-type branhing proess.Seondly, the analysis in Subsetion 3.3 may be further extended tothe ase of N > 2 queues, but with a timer mehanism at only onequeue. On the other hand, we see major problems in extending ourresults to ases where there are timers at more than one queue. It isalso hallenging to study the models of Subsetions 3.1 and 3.2 whenthe exhaustive servie disipline is replaed by the gated disipline.AknowledgmentThe authors are grateful to the referees for several useful suggestions.Referenes1. Avi-Itzhak, B., Maxwell, W.L. and Miller, L. (1965) Queuing with alternatingpriorities. Oper. Res. 13, 306{318.2. Borovkov, A.A. (1998) Ergodiity and Stability of Stohasti Proesses. Wiley,Chihester.3. Borst, S.C. and Boxma, O.J. (1997) Polling models with and withoutswithover times. Oper. Res. 45, 536{543.4. Boxma, O.J. and Down, D.G. (1997) Dynami server assignment in a two-queuemodel. Eur. J. Oper. Res. 103, 595{609.5. Boxma, O.J. and Groenendijk, W.P. (1987) Pseudo-onservation laws in yliservie systems. J. Appl. Prob. 24, 949{964.
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