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1. INTRODUCTIONA classical replacement problem is to �nd the optimal replacement policyfor a system under Markovian deterioration. The system is inspected attimes t = 1; 2; : : : and is classi�ed (in a discrete case) into one of a �nitenumber of states f0; 1; 2; : : :Ng, or (in a continuous case) into some statex within a given interval. The system su�ers deterioration over time andthe dichotomy after each inspection is whether to replace it or not. Forthe discrete case Derman [4] and Kolesar [11] established conditions on thetransition probabilities and the cost functions under which the optimal policyis a control limit rule. Under such a rule, a replacement takes place if and onlyif the system is observed at state i > i�, where i� is the control limit. Ross[16] generalized the above models and extended the results to the continuousstate-space case. These models have wide applicability and were extendedto other areas, including reorganization of data bases (cf. Mendelson andYechiali [13]).In many real-world systems, however, replacement is not the only ac-tion possible. Often, one considers several degrees of repair, where a fullreplacement is only one of many options. In recent years various models forrepairable systems with imperfect repair have been suggested (to mention afew, see Brown and Prochan [2], Block et al. [1], Yeh [19], [20], Kijima [10],Rangan and Grace [14]). In these models, upon failure, a maintenance actionis performed and its outcome is either (with probability p) a perfect repair(equivalent to a full replacement), or (with probability 1 � p) an imperfectrepair which restores the failed system to its condition just prior to failure.Other models that allow for maintenance actions apart from full replacementwere examined by Chikte and Deshmukh [3] and Zuckerman [21]. In thesemodels the system is subjected to a shock-process causing deterioration overtime. The system fails when the accumulated deterioration exceeds somethreshold, whereupon it is replaced. Several maintenance actions are allowedwhich reduce the rate of damage accumulation. Kijima et al. [9] considered aperiodical replacement problem where a system is replaced only at scheduledtimes kT (k = 0; 1; : : :) and is repaired whenever it fails in between. Uponfailure, the repair may restore the system to its functioning condition justprior to failure (minimal repair), or reduce the system's age. The objec-



tive is to �nd an optimal replacement interval which minimizes the long-runexpected cost. Recently, Stadje and Zuckerman [17] studied maintenancestrategies with general degree of repair. Actions are taken only when thesystem fails. A failed system whose age is x can be restored to an operativesystem with an equivalent age x�d, where the degree of repair 0 � d � x is adecision variable determined by the controller. Using reasonable assumptionson the repair-upon-failure cost function and the system's law of deterioration,they established analytical and numerical methods for determining optimalmaintenance strategies, and examined their structure.In this paper we generalize and extend the above models for both thediscrete and the continuous state spaces. We allow for a general-degree repairaction from any state to any better state at any time of inspection. Weconsider state-dependent operating costs, as well as repair costs dependingon the degree of repair. Two classical criteria are investigated: (i) minimizingthe total expected discounted cost and (ii) minimizing the (long-run) averagecost per unit of time.We introduce a generalized control limit rule de�ned as follows: repairto a better state (or replace) if and only if the state of the system exceedssome control-limit state. We show that, under reasonable conditions on thesystem's transition laws and the cost functions, the optimal policy has thestructure of a generalized control limit rule. We further extend the model(generalizing the concept of imperfect repair) to include situations where theresult of a repair action is uncertain and a planned repair to a given stateeventually ends up in some other state (which can even be a worse state).Surprisingly, the generalized control limit rule remains optimal in this casetoo. The structure of the paper is as follows. In section 2 we study the discretestate-space case and derive the optimality of the generalized control limitpolicy for certain, as well as uncertain, repair actions. A brief presentationof the continuous state-space case is given in Section 3. This work generalizes,extends and uni�es many studies in the area of optimal control of repairablesystems.



2. DISCRETE STATE-SPACEThe ModelConsider a system (a unit, a piece of operating equipment, etc.) which isinspected at equally spaced points in time. After each inspection the systemis classi�ed into one of N + 1 states: 0; 1; : : : ; N . State 0 denotes a new(or functioning as good as new) system, whereas state N denotes a failedsystem. State i is better than state j if i < j. Let the times of inspectionbe t = 1; 2; : : : ; and let Xt denote the observed state of the unit at time t.The in�nite sequence fXt j t = 1; 2; : : : ; g is a �nite-state Markov chain withstationary transition probabilitiespij = P (Xt+1 = j j Xt = i) for all i; j and t :A failed system must be replaced immediately by a new one, and the replace-ment is instantaneous. We suppose that, for each i = 0; 1 : : :N; p(t)iN > 0 forsome t. This condition assures that the system eventually reaches the failurestate regardless of its initial state.At each state 0 < i < N the system can be replaced by a new one, or berepaired such that its state after the repair is k < i. We assume that a repair(as well as an initiated replacement) takes no time. Clearly, the motivationfor performing a repair or a replacement is to prevent the severe consequencesof a failure, or of letting the unit operate under `bad' conditions.Denote by Ai the collection of maintenance actions which are possiblewhen the system is at state i (1 � i � N � 1). We assume that, for eachi; Ai = f0; 1; 2; : : : ; ig. An action m (m 2 Ai) means a repair of the systemm stages \backwards", i.e. changing its state from i to i � m (m = 0means no repair at all, m = i means a replacement of the system by anew one). A maintenance rule, denoted by R, consists of the maintenanceactivities to be performed at the various states. The maintenance rule Rcontrols the behavior of the system and results in a modi�ed Markov chainfXt(R) j t = 1; 2; : : : ; g, governing the evolution of the system according tomodi�ed transition probabilities pij(R):pij(R) = pij if no activity is performed at state i :pij(R) = pkj if a repair is performed from state i to state k < i :



Suppose that when the system is observed at state i, and action 0 � m � iis taken (changing the state to k = i�m), an expected operating cost rk � 0is incurred until the next inspection. The repair action itself costs cik � 0(ci0 is the cost of replacing the system by a new one, and cii = 0). The goalof this work is to derive and characterize optimal maintenance (repair andreplacement) rules for the following two criteria:1. Total expected discounted cost for unbounded horizon.2. Long-run average expected cost per unit of time.ConditionsWe impose the following conditions on the costs and the transition prob-abilities:Condition 2.1. For each i; j; k such that N � 1 � j > i � k � 0,cjk � cik. That is, the cost of a repair to a certain state, k > 0, as well asthe cost of initiated replacement, is an increasing function of the state fromwhich the repair is performed. Furthermore, cN0 � ci0 for N > i, i.e., aninitiated replacement costs less than the mandatory replacement in the caseof a failure.Condition 2.2. r0 � r1 � � � � � rN�1. That is, as the state of the systemdeteriorates, the operating cost increases.Condition 2.3. For each i; i < N , and for each k < i, cik + rk � ri.Condition 2.3 implies that for a one-period horizon, it does not pay toperform any repair. This condition is valid for systems in which the cost ofa repair (composed of spare parts, repair-crew costs, etc.) is large relative tothe operating cost.Condition 2.4 (an IFR assumption). For each k = 0; 1; 2; : : : ; N thefunction Dk(i) = NXj=k pijis nondecreasing in i (i = 0; 1; 2; : : : ; N � 1). From Derman [4], Condition2.4 is equivalent to the following:



Condition 2.5. For every nondecreasing function h(j), j = 0; 1; : : : ; N ,the function K(i) = NXj=0 pijh(j)is also nondecreasing (i = 0; 1; 2; : : : ; N � 1).A Generalized Control Limit RuleWe focus our attention on the class of non-randomized stationary main-tenance rules. It is known that for a �nite state and a �nite action space,there exists an optimal policy which depends only on the state of the systemat decision epochs. We shall direct our attention to a subclass of the non-randomized stationary rules, which we call generalized control limit rules. Ageneralized control limit rule is a maintenance rule of the form:\Repair (or replace) the system, at time t, if and only if Xt � i�", where i�is the control limit (0 � i� � N).Remark. The rule is termed \generalized" because it is a generalizationof the well known control limit rule (see Derman [4], Kolesar [11], Ross[16]), by which the unit is replaced whenever the state of the system exceedssome control limit. The \generalization" is the addition of repair actionswhich are not necessarily full replacement. The knowledge that the optimalmaintenance policy is a generalized control limit rule is highly valuable, sinceit reduces considerably the search for an optimal policy.Denote by gR(Xt) the one-step expected cost when the system is in stateXt at time t under the maintenance rule R. Let � be a discount factor, 0 <� < 1. Denote by �R(i; �) the total expected discounted cost for unboundedhorizon if the system starts in state i and maintenance rule R is used. Then,�R(i; �) = ( 1Xt=1 �t�1gR(Xt) j X1 = i) : (2:1)For a given discount factor � denote the optimal maintenance policy forcriterion (2.1) by R��, and denote the total discounted minimal cost by �(i; �),that is, �(i; �) = minR �R(i; �) = �R��(i; �) : (2:2)



When the operation horizon is �nite (T periods, say), denote by �(i; �; T )the minimal total expected discounted cost when the system starts in statei: �(i; �; T ) = minR ( TXt=1 �t�1gR(Xt) j X1 = i) : (2:3)In a problem with no discount, denote by �R the long-run average expectedcost per time unit under the maintenance rule R,�R = limT!1 1T TXt=1 gR(Xt) : (2:4)Using standard arguments of Dynamic Programming, it can be shown that�(i; �) satis�es the functional set of equations:�(0; �) = r0 + � NXj=0 p0j�(j; �)�(i; �) = min�ri + � NXj=0 pij�(j; �); min0�k�i�1 �cik + rk + � NXj=0 pkj�(j; �)�� ;0 < i < N�(N;�) = cN0 + r0 + � NXj=0 p0j�(j; �) : (2:5)In a similar manner the following set of successive approximations can bederived:�(0; �; T ) = r0 + � NXj=0 p0j�(j; �; T � 1)�(i; �; T ) = min�ri + � NXj=0 pij�(j; �; T � 1);min0�k�i�1 �cik + rk + � NXj=0 pkj�(j; �; T � 1)�� ; 0 < i < N�(N;�; T ) = cN0 + r0 + � NXj=0 p0j�(j; �; T � 1) : (2:6)



The initial conditions are derived by the use of condition 2.3 and the factthat at state N the system must be replaced:�(i; �; 1) = ri 0 � i � N � 1�(N;�; 1) = cN0 + r0 : (2:7)The following lemma exhibits the monotonic property of �(i; �; T ).Lemma 2.1. For �xed � and T (0 < � < 1; T � 1); �(i; �; T ) is a nonde-creasing function of i, (i = 0; 1; 2; : : : ; N).Proof: The proof is by induction. For T = 1, the set (2.7) applies. Themonotonicity in 0 � i � N�1 follows trivially from condition 2.2. Condition2.1 implies cN0 � cN�1;0, and condition 2.3 implies cN�1;0 + r0 � rN�1.Therefore, cN0 + r0 � rN�1, which completes the proof for the case T = 1.We suppose now that �(i; �; T � 1) is a nondecreasing function of i andshow that �(i; �; T ) � �(i + 1; �; T ). Let 0 � i � N � 1. Then, for everymaintenance policy R, only one of two possibilities exists at state i + 1:either a repair (or a replacement) is performed, or no maintenance activityis performed at all. We consider each case separately.1. If at state i+ 1 no maintenance action is taken then�(i+ 1; �; T ) = ri+1 + � NXj=0 pi+1;j�(j; �; T � 1)� ri + � NXj=0 pij�(j; �; T � 1) � �(i; �; T ) :The �rst inequality follows from condition 2.2 and condition 2.5 (usingthe monotonicity of �(i; �; T � 1)). The second inequality follows triviallyfrom equations (2.6).2. If at state i+ 1 a repair (or replacement) is performed, bringing thesystem to state k, 0 � k < i+ 1, it follows from condition 2.1 that�(i+ 1; �; T ) = ci+1;k + rk + � NXj=0 pkj�(j; �; T � 1)� cik + rk + � NXj=0 pkj�(j; �; T � 1) :



Again, (2.6) implies that, for 0 � k � i,cik + rk + � NXj=0 pkj�(j; �; T � 1) � �(i; �; T )(where cii � 0). Therefore, �(i+ 1; �; T ) � �(i; �; T ). Q.E.D.A suÆcient condition for the existence of an optimal rule, which is ageneralized control limit policy, is given in the following theorem:Theorem 2.1. Suppose that for all i; k; v, such that k < i < v < N ,cvk� cik � rv�ri. Then, for both optimality criteria, the optimal policy hasthe form of a generalized control limit rule.We �rst need the following proposition regarding �(i; �; T ).Proposition. Under the condition of theorem 2.1, if at state 0 < i < N ,the minimum of (2.6) is achieved either by a repair to some state 1 � k < ior by a replacement, then, for every state j > i, the minimum of (2.6) is alsoachieved by a repair or a replacement.(For convenience we shall regard `replacement' in the sequel, as a `repair'to the 0-state).Proof: (by induction on T ).T = 1: By the initial conditions (2.7), N is the only state at which a repair(i.e., replacement) is bene�cial. Suppose that the proposition holds for T �1.We shall show that it is also true for T . Suppose that for state i, i � N � 1,the minimum of equations (2.6) is achieved by repairing the system to a statek, k < i (recall, k = 0 means a replacement). From equations (2.6) it followsthat�(i; �; T ) = cik + rk + � NXj=0 pkj�(j; �; T � 1) � ri + � NXj=0 pij�(j; �; T � 1) :(2:8)Now, if i = N �1, it is clear that the proposition is true since the only largerstate than i is N , for which a repair is mandatory. If i < N �1, let v be suchthat i < v < N and cvk � cik � rv � ri. Adding this last expression to both



sides of the inequality in (2.8) results incvk+rk+� NXj=0 pkj�(j; �; T�1) � rv+� NXj=0 pij�(j; �; T�1) ; i < v < N :(2:9)As �(i; �; T ) is nondecreasing in i = 0; 1; 2; : : : ; N (Lemma 2.1), it followsfrom condition 2.5 thatNXj=0 pij�(j; �; T � 1) � NXj=0 pvj�(j; �; T � 1) :Substituting the above in the right hand side of equation (2.9) we getcvk + rk + � NXj=0 pkj�(j; �; T � 1) � rv + � NXj=0 pvj�(j; �; T � 1) :The latter expression says that at state v it is better to repair the system tostate k, rather than doing nothing. Therefore, the action which minimizesthe right hand side of (2.6) at state v, i < v < N , is to perform a repair (notnecessarily to state k). The fact that at state N we always repair (to state0) completes the proof of the proposition. Q.E.D.Proof of Theorem 2.1 Let 0 < iT � N be the smallest state at whicha repair is bene�cial when T steps are left for the operating horizon (such astate always exists because at state 0 no maintenance is needed, and at stateN , replacement is mandatory).Therefore, it readily follows from the Proposition above that �(i; �; T )has the form:�(i; �; T ) = ri + � NXj=0 pij�(j; �; T � 1) 0 � i < iT�(i; �; T ) = ciki + rki + � NXj=0 pkij�(j; �; T � 1) iT � i < N (2:10)�(N;�; T ) = cN0 + r0 + � NXj=0 p0j�(j; �; T � 1)



where ki is the optimal state to which the system is repaired from state i, i �iT . Since �(i; �) = limT!1�(i; �; T ) and, for each T; �(i; �; T ) is nondecreasingin i = 0; 1; : : : ; N (lemma 2.1), then �(i; �) is also a nondecreasing functionof i, i = 0; 1; : : : ; N . Using condition 2.5 and equations (2.5) it is easy toshow (in a similar way as before) that there exists a state i�, 0 < i� � N ,such that �(i; �) has the form:�(i; �) = ri + � NXj=0 pij�(j; �) 0 � i < i��(i; �) = ciki + rki + � NXj=0 pkij�(j; �) i� � i < N (2:11)�(N;�) = cN0 + r0 + � NXj=0 p0j�(j; �)where ki is the optimal state to which the system is repaired from state i,i � i�.To summarize, it has been shown so far that, when the optimizationcriterion is total expected discounted cost for unbounded horizon, there existsan optimal policy which has the form of generalized control limit rule.We proceed now to the average cost criterion. For each �, 0 < � < 1,denote by i� the control limit determined by R�� for criterion (2.1). Let f�vgbe an increasing sequence of distinct discount factors such thatlimv!1�v = 1; and for each v; i�v = bi :That is, all the elements of the sequence �v generate the same control limitbi. (Since there is a �nite number of states, such a sequence and bi exist).We claim that the optimal policy for criterion (2.4) has also the form of ageneralized control limit rule.To show this, let R be any policy which is not a generalized control limitrule. Let bR be a generalized control limit policy with bi as its control limit(i.e. bR is optimal for �v, and bR = R��v for all v). From the de�nition of�(i; �) it follows that�R(i; �v) � �(i; �v) = �R��v (i; �v) v = 1; 2; 3; : : : ; (2:12)



Using (see e.g. Derman [5] p. 25) lim�!1(1��)�R(i; �) = �R, we get, by letting�v ! 1 �R = limv!1(1� �v)�R(i; �v) � limv!1(1� �v)�(i; �v) = �bR :Therefore, considering criterion (2.4), for every policy which is not a gener-alized control limit, there is a better one which is a generalized control limitrule with bi as its control limit. That is, for the average cost criterion as well,there exists an optimal policy bR which is a generalized control limit rule.Q.E.D.A Special CaseTheorem 2.1 states that a suÆcient condition for the existence of anoptimal policy which has the form of a generalized control limit rule is:cvk � cik � rv � ri, for all i; k; v such that k < i < v < N . We shall nowpresent a special case in which this condition has a more intuitive meaning.Suppose that the cost of a repair (or a replacement) is composed of a�xed cost c, and a variable cost Æik which is the additional cost of repairingfrom state i to state k. Then cik = c+Æik . Further, suppose that the �xed costc is higher than the operation cost ri; i = 0; 1; : : : ; N � 1. This assumptiontrivially satis�es condition 2.3, since c � ri implies c + Æik + rk � ri, thatis, cik + rk � ri; 0 � i � N � 1, k < i. In such a system the condition ofTheorem 2.1, cvk�cik � rv�ri, reduces to Ævk�Æik � rv�ri. This suÆcientcondition has a direct intuitive meaning: if for all i < v the di�erence betweenthe marginal cost of repairing from state v to state k and the cost of repairingfrom state i to state k, is no more than the di�erence rv � ri between theoperating costs, then there exists an optimal policy which has the form of ageneralized control limit rule.To further demonstrate the applicability of the generalized control limitrule, we present a 5-state example.ExampleLet f0; 1; 2; 3; 4g be the state space, where 0 is the \new" state and4 is the \failure" state requiring a mandatory replacement. At each state1 � i � 3 the system can be repaired (or replaced) to some state j, 0 � j < i.



The underlying transition probabilities pij for 0 � i � 3, 0 � j � 4 arei�j 0 1 2 3 40 0.1 0.7 0.1 0.05 0.051 0 0.8 0.1 0.05 0.052 0 0 0.5 0.25 0.253 0 0 0 0.5 0.5The expected one period operation costs (satisfying condition 2.2) are r0 = 1,r1 = 1; r2 = 4; r3 = 6. The repair (or replacement) costs (satisfyingconditions 2.1 and 2.3) arec10 = 17 ; c20 = 18 ; c30 = 20 ; c40 = 21 ; c21 = 7 ; c31 = 9 ; c32 = 7 :It can be easily veri�ed that(i) the function Dk(i) =Pj�k pij is nondecreasing in i (i = 0; 1; 2; : : : ; N �1) for each k = 0; 1; 2; : : : ; N , thus satisfying condition 2.4 (and theequivalent condition 2.5), and(ii) for every i; v; k such that 0 � k < i < v < N; cvk � cik � rv � ri.By Theorem 2.1 there exists an optimal policy which has the form of ageneralized control limit rule. Indeed, by using Howard's policy improvementalgorithm (cf. Tijms [18]) one can readily show that for the average costcriterion the optimal policy is the following: Do nothing when in state 0 or1. Repair to state 1 when in state 2 or 3. Replace when in state 4. The aboveoptimal policy has a simple intuitive explanation: Examining the transitionprobabilities, it is seen that when the system is new (state 0), it moves witha high probability to state 1. State 1 is more stable, and the system staysthere with a high probability. When out of state 1 the probability of failureincreases. Since the operating costs of states 0 and 1 are equal, whereas thecost of repairing the system to state 0 (i.e, a replacement) is higher than thecost of repairing to state 1, it is better, when in states 2 or 3, to repair to state1 (which is stable and cheap) instead of either waiting for the eventual failureof the system (which requires a mandatory replacement), or performing anexpensive replacement.



Uncertain RepairIn previous sections it was implicitly assumed that the result of a repairaction is certain. That is, a repair from state i to state k is always successful.We wish to relax this assumption and consider the case where the result of arepair action is uncertain. One can conceive a system at which any attempt torepair causes unstableness, and the end result might be a di�erent state fromthe one planned for (including a worse state). Surprisingly, the generalizedcontrol limit rule remains optimal even in such a situation. Speci�cally, forevery i = 1; 2; : : : ; N denote by qjv (j = 0; 1; : : : ; N) the probability that aplanned repair to state j ends up at state v. All other conditions remain thesame as before. Equations (2.5) now take the form:�(0; �) = r0 + � NXj=0 p0j�(j; �)�(i; �) = min8<:ri + � NXj=0 pij�(j; �);min0�k�i�1"cik + NXv=0 qkv�rv + � NXj=0 pvj�(j; �)�#9=; ; 0 < i < N�(N;�) = cN0 + NXv=0 q0v�rv + � NXj=0 pvj�(j; �)� : (2:13)In a similar manner we modify equations (2.6) for the �nite horizon case.Theorem 2.2 below shows that, in this case too, and without any conditionson the values of the probabilities qjv, the optimal policy has the structure ofa generalized control limit rule.Theorem 2.2. Suppose that for every i; k; v such that k < i < v < N ,cvk � cik � rv � ri. Then, for the uncertain repair case the optimal policyhas the form of a generalized control limit rule, for both optimality criteria:total expected discounted cost and average cost per unit of time.Proof: Lemma 2.1 remains true: case 1 is unchanged, and case 2 remains



true after substituting everywhere the expressionNXv=0 qkv 24rv + � NXj=0 pvj�(j; �; T � 1)35instead of rk + � NXj=0 pkj�(j; �; T � 1 ) :The proof continues in the same lines as the proof of Theorem 2.1 (andthe proposition preceding it), where at each place where a certain repair isperformed from state i to k, resulting in expected future cost ofcik + rk + � NXj=0 pkj�(j; �; T � 1) ;the modi�ed expressioncik + NXv=0 qkv 24rv + � NXj=0 pvj�(j; �; T � 1)35is substituted. Q.E.D.3. CONTINUOUS STATE-SPACEThe ModelIn this section we extend the results of the previous section to the caseof a continuous state-space. Detailed proofs are omitted and may be foundin Douer and Yechiali [6].Suppose that the system is inspected at equally spaced points in time,and after each inspection it is classi�ed into some state x 2 S, S = [0;1)Uffg.The system is at state 0 if it is new (or functions as good as new), and it isat state f if it has failed.Let Xt denote the observed state of the system at time t. Let Fx(y) bethe distribution function of a transition from state x to a state y which isnot f , Fx(y) = P (Xt+1 � y j Xt = x) ; y 6= f; y 2 S :



Let �x be a continuous function 0 � �x < 1 which is de�ned on S nffg, suchthat, if Xt = x, then Xt+1 = f with probability �x. The de�nition of �ximplies that for every x 2 [0;1):Zy�0 dFx(y) = 1� �x : (3:1)Remark. It should be noted that the transition law Fx(y) is general inthe sense that the system can either deteriorate (y > x) or improve (y < x)without any external intervention. In a pure deterioration process, Fx(y) = 0for y < x.For every state x 2 [0;1), a maintenance action (repair or replacement)may be taken. Any maintenance action bringing the system to state y < x isadmissible, and it takes no time. A failed system (state f) must be replacedby a new one, and the replacement is instantaneous. At state 0 (new system)no maintenance action is done.At each period in which the system operates at state x an expected costr(x) is incurred (in case of a repair, the cost of operating the system while inthe new state is incurred). Each repair from state x to state y (y < x) costscx(y) (a replacement costs cx(0)), and a mandatory replacement from statef costs cf <1.Again, we are interested in �nding optimal maintenance rules for eachof the two optimality criteria:1. Total expected discounted cost for unbounded horizon.2. Long-run average expected cost per unit of time.ConditionsWe impose the following conditions on the costs and transition proba-bilities.Condition 3.1. For every x 2 [0;1); cx(y) is a continuous non-increasingfunction of y, y 2 [0; x). That is, one has to pay more when a repair to abetter state is performed.Condition 3.2. cx(y) � cz(y) for every x; z; y 2 [0;1) such that x > z >y. This condition is similar to Condition 2.1.



Condition 3.3. cx(0) is a bounded function of x; x 2 [0;1). That is,the cost of replacing the system, from any state, is bounded.Condition 3.4. r(x) is a continuous non-decreasing bounded function ofx; x 2 [0;1). See Condition 2.2.Condition 3.5. For every x 2 [0;1), r(x) < inf0�z<x[cx(z) + r(z)]. There-fore, there exists "x > 0 such that r(x)+"x � cx(z)+r(z) for every z 2 [0; x).As does Condition 2.3, Condition 3.5 implies that for a one-period horizonthe best action is to do nothing.Condition 3.6. �x is a continuous non-decreasing function of x; x 2[0;1). That is, as the state of the system deteriorates, the probability of afailure increases.Condition 3.7. For every x 2 [0;1), the density function dFx(y) iscontinuous in x, and is bounded.Condition 3.8. For every y 2 [0;1); Ty(x) � 1 � Fx(y) is a non-decreasing function of x. This is similar to the IFR assumption of Condition2.4, and from known results of stochastic domination (cf. Lehmann [12]) isequivalent to:Condition 3.9. For every bounded function h(y), non-decreasing in y 2[0;1), the function K(x) = Ry�0 h(y)dFx(y) is also non-decreasing. SeeCondition 2.5.Optimality of the Generalized Control Limit Maintenance RuleLet �R(x; �), �(x; �); �(x; �; T ) and �R be as de�ned in (2.1), (2.2),(2,3) and (2.4), respectively (x 2 S; 0 < � < 1). Then, it is known that�(x; �) satis�es the following (compare with equations (2.5)):�(0; �) = r(0) + �24 Zy�0 �(y; �)dF0(y) + �0�(f; �)35�(x; �) = min �r(x) + �24 Zy�0 �(y; �)dFx(y) + �x�(f; �)35 ;



inf0�z<x8<:cx(z) + r(z) + �24 Zy�0 �(y; �)dFz(y) + �z�(f; �)359=;� ; x > 0�(f; �) = cf + �(0; �) : (3:2)Now, �(x; �; T ) is derived from (3.2) in the same manner as (2.6) and (2.7)are derived from (2.5).One can now show that for �xed �; T (0 < � < 1, T � 1), �(x; �; T ) isa bounded non-decreasing function of x, x 2 [0;1). The proof follows thesame arguments as in Lemma 2.1.The following theorem presents a suÆcient condition which ensures that,for the criterion of total expected discounted cost, the optimal policy has theform of a generalized control limit rule (see the discounted section in theproof of Theorem 2.1).Theorem 3.1. Consider the optimization criterion (2.3). Then, a suÆcientcondition for the optimal policy to be a generalized control limit rule iscw(z)� cx(z) � r(w)� r(x) for all 0 � z < x < w :We now study the criterion of average expected cost per unit of time.We impose an additional condition for the adaptation of the previous resultsto this case.Condition 3.10. For every y 2 [0;1); cx(y) is a continuous function ofx(x � y).Now, observe that Condition 3.7 implies thatlimx0!x Zy�0 ��dFx0(y)� dFx(y)��dy = 0 : (3:3)De�ne h�(x) = �(x; �)� �(f; �) x 2 [0;1)Uffg (3:4)and g� = (1� �)�(f; �) : (3:5)



Then it is easy to show (using equations (3.4), (3.5)) that the followingequations are equivalent to equations (3.2).g� + h�(x) = min �r(x) + � Zy�0 h�(y)dFx(y) ;inf0�z<x�cx(z) + r(z) + � Zy�0 h�(y)dFz(y)�� x 2 (0;1)g� + h�(f) = cf + r(0) + � Zy�0 h�(y)dF0(y) (3:6)g� + h�(0) = r(0) + � Zy�0 h�(y)dF0(y) :As in Theorem 4 of Ross [15], Conditions 3.4 and 3.10 together withequations (3.3) and the fact that �cf � �(x; �)��(f; �) � cx(0) <1, implythat fh�(x) j x 2 [0;1)Uffgg is uniformly bounded and equicontinuous forx 6= f , and therefore has a convergent subsequence. Thus, by Theorems 1and 2 of Ross [15] we have:Theorem 3.2. There exists a bounded function h(x) and a constant g suchthat(i) h(f) = 0(ii) for every x, x 2 [0;1)Uffg the limit lim�!1�(1� �)�(x; �) = g exists(iii) g and h satisfyg + h(x) = min�r(x)+ Zy�0 h(y)dFx(y) ;inf0�z<x �cx(z) + r(z)+ Zy�0 h(y)dFz(y)��; x 2 (0;1)g + h(f) = cf + r(0) + Zy�0 h(y)dF0(y) (3:7)g + h(0) = r(0) + Zy�0 h(y)dF0(y) :



(iv) g = cf + r(0) + Ry�0 h(y)dF0(y).(v) Any policy which, when in state x 2 (0;1), takes the action that min-imizes the right hand side of (3.7) is optimal (for x = 0 and x = f thedecision is predetermined for all possible policies).(vi) h(x) = lim�!1� h�(x)(vii) For every x, g = minR f�R j X1 = xg.That is, g is the minimal expected cost per unit of time.Using Theorem 3.2 we can �nally conclude that the condition of Theorem3.1 is also a suÆcient condition for the optimization criterion (2.4).Theorem 3.3. Under the average expected cost per unit of time criterion(2.4), a suÆcient condition for the optimality of a generalized control limitrule is: cw(z)� cx(z) � r(w)� r(x) for every 0 � z < x < w :Remarks.1. The generalized control limit policy exists and is optimal for quite ageneral form of transition probabilities which enable the system, at anygiven state x, to either deteriorate or improve, with no external inter-vention.2. Conditions 3.4 and 3.10 may be utilized so as to express the suÆcientcondition of theorem 3.3 in an equivalent form involving derivatives.Since cw(z) � cx(z) � r(w) � r(x), 0 � z < x < w, then cx+�x(z) �cx(z) � r(x + �x) � r(x), 0 � z < x, �x > 0. Dividing by �x andletting �x approach 0, gives @@xcx(z) � r0(x), 0 � z < x, as a necessarycondition which is easily seen to be suÆcient as well.3. Explicit computation of the optimal policy for the discounted case canbe done by using the known method of successive approximation. Thismethod can be used for the average cost criterion too by a simple trans-formation of the problem (cf. Ross [15]). Methods for accelerating theconvergence of the Value Iteration Algorithm (by choosing a `good' re-laxation factor) are suggested by Herzberg and Yechiali [7], [8].
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