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ABSTRACT

A deteriorating system is inspected at equally spaced points in time.
After each inspection a repair to a better state or a full replacement are pos-
sible. We introduce a generalized control limit policy and show that, under
reasonable conditions on the system’s law of evolution and on the operating,
repair and replacement costs, this policy is optimal for the expected total
discounted cost, as well as for the (long-run) average cost criteria. Further-
more, we allow for uncertain repair actions (that may even end up in a worse
state), and show that the generalized control limit rule is still optimal. The
work extends, generalizes and unifies many models in the area of optimal
control of repairable systems.
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1. INTRODUCTION

A classical replacement problem is to find the optimal replacement policy
for a system under Markovian deterioration. The system is inspected at
times t = 1,2,... and is classified (in a discrete case) into one of a finite
number of states {0,1,2,...N}, or (in a continuous case) into some state
x within a given interval. The system suffers deterioration over time and
the dichotomy after each inspection is whether to replace it or not. For
the discrete case Derman [4] and Kolesar [11] established conditions on the
transition probabilities and the cost functions under which the optimal policy
is a control limit rule. Under such a rule, a replacement takes place if and only
if the system is observed at state : > ¢*, where ¢* is the control limit. Ross
[16] generalized the above models and extended the results to the continuous
state-space case. These models have wide applicability and were extended
to other areas, including reorganization of data bases (cf. Mendelson and
Yechiali [13]).

In many real-world systems, however, replacement is not the only ac-
tion possible. Often, one considers several degrees of repair, where a full
replacement is only one of many options. In recent years various models for
repairable systems with imperfect repair have been suggested (to mention a
few, see Brown and Prochan [2], Block et al. [1], Yeh [19], [20], Kijima [10],
Rangan and Grace [14]). In these models, upon failure, a maintenance action
is performed and its outcome is either (with probability p) a perfect repair
(equivalent to a full replacement), or (with probability 1 — p) an imperfect
repair which restores the failed system to its condition just prior to failure.
Other models that allow for maintenance actions apart from full replacement
were examined by Chikte and Deshmukh [3] and Zuckerman [21]. In these
models the system is subjected to a shock-process causing deterioration over
time. The system fails when the accumulated deterioration exceeds some
threshold, whereupon it is replaced. Several maintenance actions are allowed
which reduce the rate of damage accumulation. Kijima et al. [9] considered a
periodical replacement problem where a system is replaced only at scheduled
times kT (k = 0,1,...) and is repaired whenever it fails in between. Upon
failure, the repair may restore the system to its functioning condition just

prior to failure (minimal repair), or reduce the system’s age. The objec-



tive is to find an optimal replacement interval which minimizes the long-run
expected cost. Recently, Stadje and Zuckerman [17] studied maintenance
strategies with general degree of repair. Actions are taken only when the
system fails. A failed system whose age is  can be restored to an operative
system with an equivalent age x —d, where the degree of repair 0 < d < z is a
decision variable determined by the controller. Using reasonable assumptions
on the repair-upon-failure cost function and the system’s law of deterioration,
they established analytical and numerical methods for determining optimal
maintenance strategies, and examined their structure.

In this paper we generalize and extend the above models for both the
discrete and the continuous state spaces. We allow for a general-degree repair
action from any state to any better state at any time of inspection. We
consider state-dependent operating costs, as well as repair costs depending
on the degree of repair. Two classical criteria are investigated: (i) minimizing
the total expected discounted cost and (ii) minimizing the (long-run) average
cost per unit of time.

We introduce a generalized control limit rule defined as follows: repair
to a better state (or replace) if and only if the state of the system exceeds
some control-limit state. We show that, under reasonable conditions on the
system’s transition laws and the cost functions, the optimal policy has the
structure of a generalized control limit rule. We further extend the model
(generalizing the concept of imperfect repair) to include situations where the
result of a repair action is uncertain and a planned repair to a given state
eventually ends up in some other state (which can even be a worse state).
Surprisingly, the generalized control limit rule remains optimal in this case
too.

The structure of the paper is as follows. In section 2 we study the discrete
state-space case and derive the optimality of the generalized control limit
policy for certain, as well as uncertain, repair actions. A brief presentation
of the continuous state-space case is given in Section 3. This work generalizes,
extends and unifies many studies in the area of optimal control of repairable

systems.



2. DISCRETE STATE-SPACE

The Model

Consider a system (a unit, a piece of operating equipment, etc.) which is
inspected at equally spaced points in time. After each inspection the system
is classified into one of N + 1 states: 0,1,...,N. State 0 denotes a new
(or functioning as good as new) system, whereas state N denotes a failed
system. State ¢ is better than state j if + < j. Let the times of inspection
bet =1,2,..., and let X; denote the observed state of the unit at time ¢.
The infinite sequence {X; |t =1,2,..., } is a finite-state Markov chain with

3 3

stationary transition probabilities
pij =P (Xyy1 =7 | Xy =14) forall i,j and t.

A failed system must be replaced immediately by a new one, and the replace-
ment is instantaneous. We suppose that, for each : = 0,1... N, pf;), > ( for
some t. This condition assures that the system eventually reaches the failure
state regardless of its initial state.

At each state 0 < 7 < N the system can be replaced by a new one, or be
repaired such that its state after the repair is £ < 7. We assume that a repair
(as well as an initiated replacement) takes no time. Clearly, the motivation
for performing a repair or a replacement is to prevent the severe consequences
of a failure, or of letting the unit operate under ‘bad’ conditions.

Denote by A; the collection of maintenance actions which are possible

when the system is at state ¢ (1 < i < N —1). We assume that, for each

i, A;=1{0,1,2,...,i}. An action m (m € A;) means a repair of the system
m stages “backwards”, i.e. changing its state from ¢ to i — m (m = 0
means no repair at all, m = 7 means a replacement of the system by a

new one). A maintenance rule, denoted by R, consists of the maintenance
activities to be performed at the various states. The maintenance rule R
controls the behavior of the system and results in a modified Markov chain
{X¢(R) |t =1,2,...,}, governing the evolution of the system according to
modified transition probabilities p;;(R):

pij(R)

= Pij if no activity is performed at state 7 .
pij (R) = pr;j if a repair is performed from state 7 to state k < 7 .



Suppose that when the system is observed at state 7, and action 0 < m < i
is taken (changing the state to k = i —m), an expected operating cost rg > 0
is incurred until the next inspection. The repair action itself costs c;p > 0
(c;0 is the cost of replacing the system by a new one, and ¢;; = 0). The goal
of this work is to derive and characterize optimal maintenance (repair and
replacement) rules for the following two criteria:

1. Total expected discounted cost for unbounded horizon.

2. Long-run average expected cost per unit of time.

Conditions
We impose the following conditions on the costs and the transition prob-

abilities:

Condition 2.1. For each 4,5,k such that N —1 > 53 >4+ > k > 0,
cjk > Cik. That is, the cost of a repair to a certain state, & > 0, as well as
the cost of initiated replacement, is an increasing function of the state from
which the repair is performed. Furthermore, cyg > ¢;o for N > 1, i.e., an
initiated replacement costs less than the mandatory replacement in the case

of a failure.

Condition 2.2. ryo<r; <---<ryny_1. That is, as the state of the system

deteriorates, the operating cost increases.

Condition 2.3. For each 7, + < N, and for each k < i, ¢c;; + r > r;.
Condition 2.3 implies that for a one-period horizon, it does not pay to

perform any repair. This condition is valid for systems in which the cost of

a repair (composed of spare parts, repair-crew costs, etc.) is large relative to

the operating cost.

Condition 2.4 (an IFR assumption). For each k = 0,1,2,..., N the

function
N
Di(i) = pij
j=k

is nondecreasing in i (i = 0,1,2,..., N — 1). From Derman [4], Condition

2.4 is equivalent to the following:



Condition 2.5. For every nondecreasing function h(j), 7 =0,1,..., N,

the function

N
K(i) = > pish(y)

is also nondecreasing (i = 0,1,2,..., N —1).

A Generalized Control Limit Rule

We focus our attention on the class of non-randomized stationary main-
tenance rules. It is known that for a finite state and a finite action space,
there exists an optimal policy which depends only on the state of the system
at decision epochs. We shall direct our attention to a subclass of the non-
randomized stationary rules, which we call generalized control limit rules. A
generalized control limit rule is a maintenance rule of the form:
“Repair (or replace) the system, at time ¢, if and only if X; > *”, where i*
is the control limit (0 < * < N).

Remark. The rule is termed “generalized” because it is a generalization
of the well known control limit rule (see Derman [4], Kolesar [11], Ross
[16]), by which the unit is replaced whenever the state of the system exceeds
some control limit. The “generalization” is the addition of repair actions
which are not necessarily full replacement. The knowledge that the optimal
maintenance policy is a generalized control limit rule is highly valuable, since
it reduces considerably the search for an optimal policy.

Denote by gr(X;) the one-step expected cost when the system is in state
X; at time ¢ under the maintenance rule R. Let a be a discount factor, 0 <
a < 1. Denote by ¢r(i, @) the total expected discounted cost for unbounded

horizon if the system starts in state 2 and maintenance rule R is used. Then,

dr(i,a) = {Zat_lgR(Xt) X, = 7} . (2.1)

For a given discount factor a denote the optimal maintenance policy for

criterion (2.1) by R}, and denote the total discounted minimal cost by ¢(7, @)
that is,

(i, a) = m}%n ¢r(i, ) = pp= (1, @) . (2.2)



When the operation horizon is finite (7" periods, say), denote by ¢(i,a, T)

the minimal total expected discounted cost when the system starts in state

$(i, @, T) = min {Zat_lgR(Xt) | X = 2} : (2.3)

In a problem with no discount, denote by ¢p the long-run average expected

cost per time unit under the maintenance rule R,

T
1
¢r = lim — ;gR(Xt) : (2.4)

Using standard arguments of Dynamic Programming, it can be shown that

¢(i, ) satisfies the functional set of equations:

N

$(0.0) =710+ Y pojd(j, )

7=0

N N
¢(2, a) = min {Ti + OZZP77¢(7, O!), mlIZl 1 |:C1k + T+ Zpk7¢(7, O!):| } )

0<k<i—

J=0 - §=0
0<i< N
N
$(N, @) = eno + 1o+ @Y pojd(d, @) - (2.5)
7=0

In a similar manner the following set of successive approximations can be

derived:
N
$(0,0,T) =70+ Y poj(j, 0, T — 1)
Jj=0
N
¢(7'7 Q, T) = min {7'7: + azp77¢(7/ Q, T - 1),
j=0
N
05}?3”3-1 {cik + 1+ ozzopquﬁ(],a,T - 1)} } , 0<i< N
j=
N
d(N,a,T) = cno + 10 + aZpg_,-qﬁ(j, a,T—1). (2.6)

J=0



The initial conditions are derived by the use of condition 2.3 and the fact

that at state N the system must be replaced:
d(i,a, 1) =1y 0<i<N-1

(2.7)
d(N,a,1) =cng + 10 -

The following lemma exhibits the monotonic property of ¢(i, «, T).

Lemma 2.1. For fixed o and T (0 < a <1, T > 1), ¢(i,,T) is a nonde-

creasing function of i, (i =0,1,2,..., N).

Proof: The proof is by induction. For T" = 1, the set (2.7) applies. The
monotonicity in 0 < ¢ < N —1 follows trivially from condition 2.2. Condition
2.1 implies cnyo > ¢n—1,0, and condition 2.3 implies cy_1,0 + 10 > TN_1-
Therefore, cyg + 19 > rn—1, which completes the proof for the case T = 1.

We suppose now that ¢(i,, T — 1) is a nondecreasing function of i and
show that ¢(i,,T) < ¢(i + 1,,T). Let 0 < i < N — 1. Then, for every
maintenance policy R, only one of two possibilities exists at state ¢ + 1:
either a repair (or a replacement) is performed, or no maintenance activity
is performed at all. We consider each case separately.

1. If at state 2 + 1 no maintenance action is taken then

N
i+ 1o, T)=rip1 + quzﬂ,j(ﬁ(.ﬁ a,T—1)
=0
N
> r; + azpmqs(]; (,Y,T - 1) > ¢(7;a7T) :
=0

The first inequality follows from condition 2.2 and condition 2.5 (using
the monotonicity of ¢(i,, T — 1)). The second inequality follows trivially
from equations (2.6).

2. If at state ¢ + 1 a repair (or replacement) is performed, bringing the

system to state k, 0 < k < ¢+ 1, it follows from condition 2.1 that

N
$li+1,0.T) = cipip+re+ad prp(j. o, T — 1)
=0
N

2 Cik + 1K+ OéZpk_gfﬁ(.ﬁ a,T—1).
=0



Again, (2.6) implies that, for 0 < k <,

N
Cik + T+ Zpk7¢(77 «, T — 1) Z ¢(7'7 «, T)
Jj=0
(where ¢;; = 0). Therefore, ¢(i +1,,T) > ¢(i,, T). Q.E.D.

A sufficient condition for the existence of an optimal rule, which is a

generalized control limit policy, is given in the following theorem:

Theorem 2.1. Suppose that for all i,k,v, such that k < 7 < v < N,
Cok — Cik < 1y —1;. Then, for both optimality criteria, the optimal policy has

the form of a generalized control limit rule.
We first need the following proposition regarding ¢(i, o, T').

Proposition. Under the condition of theorem 2.1, if at state 0 < 1 < N,
the minimum of (2.6) is achieved either by a repair to some state 1 < k < i
or by a replacement, then, for every state j > i, the minimum of (2.6) is also

achieved by a repair or a replacement.

(For convenience we shall regard ‘replacement’ in the sequel, as a ‘repair’
to the 0-state).

Proof: (by induction on T).

T = 1: By the initial conditions (2.7), N is the only state at which a repair
(i.e., replacement) is beneficial. Suppose that the proposition holds for 7' — 1.
We shall show that it is also true for 7. Suppose that for state 7, i < N — 1,
the minimum of equations (2.6) is achieved by repairing the system to a state
k, k <i (recall, k = 0 means a replacement). From equations (2.6) it follows
that

N N
¢, o, T) = ciw + 1+ @Y prjp(foon T — 1) <+ Y pijp(,0, T 1) .
=0 7=0
(2.8)
Now, if : = N — 1, it is clear that the proposition is true since the only larger
state than ¢ is IV, for which a repair is mandatory. If + < N —1, let v be such

that 1 < v < N and ¢y — ¢ < 7 — 7. Adding this last expression to both



sides of the inequality in (2.8) results in

N N
coktreta) ped( o T—1) <rota) pyé(ja,T-1),  i<v<N.
Jj=0 j§=0
(2.9)
As ¢(i,, T) is nondecreasing in i = 0,1,2,..., N (Lemma 2.1), it follows

from condition 2.5 that

N N
Zp77¢(77 a:T - 1) S Zp1)7¢(77 OA,T - 1) .
7=0

=0
Substituting the above in the right hand side of equation (2.9) we get

N N

(:vk-l-rk-{—aZpquﬁ(j,a,T—l) < Tv-l-ozvaqu(j,a,T—l) .
j=0 j=0

The latter expression says that at state v it is better to repair the system to
state k, rather than doing nothing. Therefore, the action which minimizes
the right hand side of (2.6) at state v, i < v < N, is to perform a repair (not
necessarily to state k). The fact that at state N we always repair (to state

0) completes the proof of the proposition. Q.E.D.

Proof of Theorem 2.1 Let 0 < i < N be the smallest state at which
a repair is beneficial when T steps are left for the operating horizon (such a
state always exists because at state 0 no maintenance is needed, and at state
N, replacement is mandatory).

Therefore, it readily follows from the Proposition above that ¢(i,«, T)

has the form:

N
$(i. o, T) =ri+a Yy pyd(j,a,T—1) 0<i<ir
=0
N
¢, 0, T) = cit, + 1o, + @Y _prjd(joo T —1) ip <i <N (2.10)
Jj=0
N

¢(N,a,T) = cno+ 1o + OzZpo,j(ﬁ(.ﬁ o, T —1)
§=0



where k; is the optimal state to which the system is repaired from state i, 7 >
ir. Since ¢(i, ) = Tlim ¢(i,, T) and, for each T, ¢(i, v, T') is nondecreasing
ini=0,1,...,N (lemma 2.1), then ¢(i, ) is also a nondecreasing function
of i, i = 0,1,..., N. Using condition 2.5 and equations (2.5) it is easy to
show (in a similar way as before) that there exists a state i,, 0 < i, < N,

such that ¢(i,a) has the form:

N
¢(7'7a) :T7+azp77¢(77a) OS 0 <Zoz
7=0

N
$i, ) = Cin, + 1k, + Y _prjd(j,)  ia <i< N (2.11)
=0
N
¢(N,a) = cno + 710 + aZpo]'(ﬁ(j-/ )
Jj=0

where k; is the optimal state to which the system is repaired from state i,
1> ey

To summarize, it has been shown so far that, when the optimization
criterion is total expected discounted cost for unbounded horizon, there exists

an optimal policy which has the form of generalized control limit rule.

We proceed now to the average cost criterion. For each a, 0 < a < 1,
denote by i, the control limit determined by R* for criterion (2.1). Let {«,}
be an increasing sequence of distinct discount factors such that

lim o, =1, and for each v, i,, =1 .
V— 00

That is, all the elements of the sequence «, generate the same control limit
B (Since there is a finite number of states, such a sequence and 0 exist).
We claim that the optimal policy for criterion (2.4) has also the form of a
generalized control limit rule.

To show this, let R be any policy which is not a generalized control limit
rule. Let R be a generalized control limit policy with i as its control limit
(i.e. R is optimal for o, and R = Ry, for all v). From the definition of
¢ (i, ) it follows that

br(i, ) > ¢(i, ) = Ppe (i, ) v=1,2,3,..., (2.12)



Using (see e.g. Derman [5] p. 25) liml(l—oz)qﬁR(i, a) = ¢r, we get, by letting
a—r
oy — 1

¢or = lm (1 — ay)dp(i,ay) > lim (1 — a,)d(i, o) = ¢5 -

V—>00 V—>00
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Therefore, considering criterion (2.4), for every policy which is not a gener-
alized control limit, there is a better one which is a generalized control limit
rule with 7 as its control limit. That is, for the average cost criterion as well,
there exists an optimal policy R which is a generalized control limit rule.
Q.E.D.

A Special Case

Theorem 2.1 states that a sufficient condition for the existence of an
optimal policy which has the form of a generalized control limit rule is:
Cok — Cik < 1y — 15, for all 4, k, v such that £ <1 < v < N. We shall now
present a special case in which this condition has a more intuitive meaning.

Suppose that the cost of a repair (or a replacement) is composed of a
fixed cost ¢, and a variable cost d;; which is the additional cost of repairing
from state ¢ to state k. Then ¢;;, = c+9;5. Further, suppose that the fixed cost
c is higher than the operation cost r;, + = 0,1,..., N — 1. This assumption
trivially satisfies condition 2.3, since ¢ > r; implies ¢ + d;5 + . > r;, that
is, cip +rp > 1ri, 0 <1< N—1, k <1 Insuch a system the condition of
Theorem 2.1, cyp — cip < 1y — 714, reduces to dyp — ;1 < 1, — ;. This sufficient
condition has a direct intuitive meaning: if for all 7 < v the difference between
the marginal cost of repairing from state v to state k£ and the cost of repairing
from state ¢ to state k, is no more than the difference r, — r; between the
operating costs, then there exists an optimal policy which has the form of a
generalized control limit rule.

To further demonstrate the applicability of the generalized control limit

rule, we present a 5-state example.

Example
Let {0,1,2,3,4} be the state space, where 0 is the “new” state and
4 is the “failure” state requiring a mandatory replacement. At each state

1 <4 < 3 the system can be repaired (or replaced) to some state 7, 0 < j < i.



The underlying transition probabilities p;; for 0 <4 <3, 0 < j <4 are

J
\ 0 1 2 3 4

0 0.1 0.7 0.1 0.05 0.05
1 0 0.8 0.1 0.05 0.05
2 0 0 0.5 0.25 0.25
3 0 0 0 0.5 0.5

The expected one period operation costs (satisfying condition 2.2) are ro = 1,
r1 = 1, ro = 4, r3 = 6. The repair (or replacement) costs (satisfying

conditions 2.1 and 2.3) are

cto=17, ¢ =18, 30 =20, ca0=21; ca =7, c31=9; c32=7.

It can be easily verified that
(i) the function Dy (i) = ;5 pij is nondecreasing in i (i =0,1,2,..., N —
1) for each £ = 0,1,2,..., N, thus satisfying condition 2.4 (and the
equivalent condition 2.5), and

(ii) for every i,v,k such that 0 < k < i <v < N, Cpp — Cig < Ty — T4.

By Theorem 2.1 there exists an optimal policy which has the form of a
generalized control limit rule. Indeed, by using Howard’s policy improvement
algorithm (cf. Tijms [18]) one can readily show that for the average cost
criterion the optimal policy is the following: Do nothing when in state 0 or
1. Repair to state 1 when in state 2 or 3. Replace when in state 4. The above
optimal policy has a simple intuitive explanation: Examining the transition
probabilities, it is seen that when the system is new (state 0), it moves with
a high probability to state 1. State 1 is more stable, and the system stays
there with a high probability. When out of state 1 the probability of failure
increases. Since the operating costs of states 0 and 1 are equal, whereas the
cost of repairing the system to state 0 (i.e, a replacement) is higher than the
cost of repairing to state 1, it is better, when in states 2 or 3, to repair to state
1 (which is stable and cheap) instead of either waiting for the eventual failure
of the system (which requires a mandatory replacement), or performing an

expensive replacement.



Uncertain Repair

In previous sections it was implicitly assumed that the result of a repair
action is certain. That is, a repair from state ¢ to state k is always successful.
We wish to relax this assumption and consider the case where the result of a
repair action is uncertain. One can conceive a system at which any attempt to
repair causes unstableness, and the end result might be a different state from
the one planned for (including a worse state). Surprisingly, the generalized
control limit rule remains optimal even in such a situation. Specifically, for
every ¢ = 1,2,..., N denote by g;, (j = 0,1,...,N) the probability that a

planned repair to state j ends up at state v. All other conditions remain the

same as before. Equations (2.5) now take the form:

N
$(0,a) =ro+ Y pojd(j, )
J=0
N
¢(2/ a) =minq r; + « me(ﬁ(f O!),
§=0
N N
JJmin ek +§%qu [m +“Zop“j¢(j’ a)H L0<i<N
V= 1=
N N
d(N,a) = eno + qu {rv +a vajqﬁ(j, a)} : (2.13)
v=0 7=0

In a similar manner we modify equations (2.6) for the finite horizon case.
Theorem 2.2 below shows that, in this case too, and without any conditions
on the values of the probabilities ¢;,, the optimal policy has the structure of

a generalized control limit rule.

Theorem 2.2. Suppose that for every i,k,v such that k < 1+ < v < N,
Cok — Cik < 1Ty — 1;. Then, for the uncertain repair case the optimal policy
has the form of a generalized control limit rule, for both optimality criteria:

total expected discounted cost and average cost per unit of time.

Proof: Lemma 2.1 remains true: case 1 is unchanged, and case 2 remains



true after substituting everywhere the expression

N { N -‘
Z kv | Tv + a Zp1)7¢(77 «, T — 1)
v=0 \‘ 7=0 J

N

instead of 7 + « Zpk]-¢(,j, a,T—-1).
§=0

The proof continues in the same lines as the proof of Theorem 2.1 (and
the proposition preceding it), where at each place where a certain repair is

performed from state ¢ to k, resulting in expected future cost of

N

ik + e+ oy prid(jonT 1)
Jj=0

the modified expression

N N
Cik + qu) Ty +azp1)7¢(7/ O!,T- 1)
v=0 7=0

is substituted. Q.E.D.

3. CONTINUOUS STATE-SPACE

The Model

In this section we extend the results of the previous section to the case
of a continuous state-space. Detailed proofs are omitted and may be found
in Douer and Yechiali [6].

Suppose that the system is inspected at equally spaced points in time,
and after each inspection it is classified into some state z € S, S = [0, 00)U{ f}.
The system is at state 0 if it is new (or functions as good as new), and it is
at state f if it has failed.

Let X; denote the observed state of the system at time ¢. Let F(y) be
the distribution function of a transition from state = to a state y which is
not f,

Foly)y=P(X¢ma <y | Xe=2),y#f, yesS.



Let p, be a continuous function 0 < p, < 1 which is defined on S\ {f}, such
that, if X; = =z, then X;,; = f with probability p,. The definition of pu,

implies that for every z € [0, 00):

[ arw=1-p. (3.1)
Jy>0

Remark. It should be noted that the transition law F,(y) is general in
the sense that the system can either deteriorate (y > x) or improve (y < x)
without any external intervention. In a pure deterioration process, Fi(y) = 0
for y < .

For every state x € [0, c0), a maintenance action (repair or replacement)
may be taken. Any maintenance action bringing the system to state y < x is
admissible, and it takes no time. A failed system (state f) must be replaced
by a new one, and the replacement is instantaneous. At state 0 (new system)
no maintenance action is done.

At each period in which the system operates at state x an expected cost
r(x) is incurred (in case of a repair, the cost of operating the system while in
the new state is incurred). Each repair from state x to state y (y < x) costs
cz(y) (a replacement costs ¢, (0)), and a mandatory replacement from state
f costs ¢y < o0.

Again, we are interested in finding optimal maintenance rules for each
of the two optimality criteria:

1. Total expected discounted cost for unbounded horizon.

2. Long-run average expected cost per unit of time.

Conditions

We impose the following conditions on the costs and transition proba-
bilities.
Condition 3.1.  For every = € [0, 00), ¢,(y) is a continuous non-increasing

function of y, y € [0,z). That is, one has to pay more when a repair to a

better state is performed.

Condition 3.2. ¢, (y) > c,(y) for every z, z,y € [0,00) such that z > z >

y. This condition is similar to Condition 2.1.



Condition 3.3.  ¢;(0) is a bounded function of xz, = € [0,00). That is,

the cost of replacing the system, from any state, is bounded.

Condition 3.4. r(z) is a continuous non-decreasing bounded function of

z, x € [0,00). See Condition 2.2.
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Condition 3.5. For every z € [0,00), r(z) < 0<inf [z (%) + 7(2)]. There-
z<T

fore, there exists €, > 0 such that r(z)+¢e, < ¢, (2)+r(z) for every z € [0, z).
As does Condition 2.3, Condition 3.5 implies that for a one-period horizon

the best action is to do nothing.

Condition 3.6. [t 1S a continuous non-decreasing function of =z, x= €
[0,00). That is, as the state of the system deteriorates, the probability of a

failure increases.

Condition 3.7. For every = € [0,00), the density function dF,(y) is

continuous in x, and is bounded.

Condition 3.8. For every y € [0,00), T,(z) = 1 — Fy(y) is a non-
decreasing function of x. This is similar to the IFR assumption of Condition
2.4, and from known results of stochastic domination (cf. Lehmann [12]) is

equivalent to:

Condition 3.9. For every bounded function h(y), non-decreasing in y €

[0,00), the function K(z) = >0

Condition 2.5.

h(y)dF,(y) is also non-decreasing. See

Optimality of the Generalized Control Limit Maintenance Rule
Let ¢p(z,a), ¢(z, ), ¢(x,a,T) and ¢r be as defined in (2.1), (2.2),
(2,3) and (2.4), respectively (z € S, 0 < a < 1). Then, it is known that

¢(z, o) satisfies the following (compare with equations (2.5)):

#(0, ) =7(0) + « { / Py, a)dFo(y) + mod(f, Q)}

y>0

#(z, ) = min [r(m)m { / aﬁ(y,a)dFm(yHumaﬁ(f,a)} ,

y=>0



0<z<z

inf cm(2)+r(z)+a{ /qﬁ(y,a)sz(y)Jruzqﬁ(f:a)} } x>0

y=>0

O(f.00) = ep + $(0,0) . (3.2)

Now, ¢(z, «, T) is derived from (3.2) in the same manner as (2.6) and (2.7)
are derived from (2.5).

One can now show that for fixed o, T (0 < a < 1, T > 1), ¢(z,a,T) is
a bounded non-decreasing function of z, z € [0,00). The proof follows the
same arguments as in Lemma 2.1.

The following theorem presents a sufficient condition which ensures that,
for the criterion of total expected discounted cost, the optimal policy has the
form of a generalized control limit rule (see the discounted section in the

proof of Theorem 2.1).

Theorem 3.1. Consider the optimization criterion (2.3). Then, a sufficient

condition for the optimal policy to be a generalized control limit rule is

Cw(z) —cp(z) <r(w) —r(z) forall 0<z<z<w.

We now study the criterion of average expected cost per unit of time.
We impose an additional condition for the adaptation of the previous results

to this case.

Condition 3.10. For every y € [0,0¢0), ¢;(y) is a continuous function of
Now, observe that Condition 3.7 implies that

Jim / [dF, (y) — dF,(y)|dy = 0. (3.3)
s
Define
ha(r) = p(z,0) — $(f.0) € [0,00)U{f} (3.4)
and

go = (1 = )o(f, ) . (3.5)



Then it is easy to show (using equations (3.4), (3.5)) that the following

equations are equivalent to equations (3.2).

9o + ho(z) = min [r(z) + / ho(y)dFy(y) ,

y>0
051227 {CT(Z) +7(z) + « / ha(y)dFZ(y)}] z € (0,00)
y20
ot half) = +70) 40 [ ha)dFo(w (3.6)

y=>0

%+ham—rmywy/h4wﬂuw.
y.ZO

As in Theorem 4 of Ross [15], Conditions 3.4 and 3.10 together with
equations (3.3) and the fact that —c¢ < ¢(x, ) —d(f, @) < ¢z(0) < oo, imply
that {ha(x) | z € [0,00)U{f}} is uniformly bounded and equicontinuous for
x # f, and therefore has a convergent subsequence. Thus, by Theorems 1
and 2 of Ross [15] we have:

Theorem 3.2. There exists a bounded function h(x) and a constant g such
that

(i) h(f) =0

(ii) for every x, x € [0,00)U{f} the limit lim (1 — a)¢(x, ) = g exists

a—1—

(iii) g and h satisfy

g+ a) = min {ro)+ [ 0@)IE)

y>0
oglrzlgr {cm(z) +7(2)+ / h(y)sz(y)} }, z € (0,00)
y20
g+ h() =+ + [ hy)dry) (37)

y=>0

g+mm—rww%/th%@y
y>0



(iv) g =cs +7(0) + [, h(y)dFo(y).

(v) Any policy which, when in state x € (0, 00), takes the action that min-
imizes the right hand side of (3.7) is optimal (for x = 0 and x = f the
decision is predetermined for all possible policies).

(vi) h(z) = lim hy(z)

a—1-
(vii) For every x, g = mlgn{qﬁR | X1 ==x}.

That is, g is the minimal expected cost per unit of time.

Using Theorem 3.2 we can finally conclude that the condition of Theorem

3.1 is also a sufficient condition for the optimization criterion (2.4).

Theorem 3.3. Under the average expected cost per unit of time criterion
(2.4), a sufficient condition for the optimality of a generalized control limit

rule is:

Cw(z) —cp(z) <r(w) —r(z) forevery 0<z<z<w.

Remarks.
1. The generalized control limit policy exists and is optimal for quite a
general form of transition probabilities which enable the system, at any
given state z, to either deteriorate or improve, with no external inter-

vention.

2. Conditions 3.4 and 3.10 may be utilized so as to express the sufficient
condition of theorem 3.3 in an equivalent form involving derivatives.
Since ¢y (2) — cx(2) < r(w) —7r(x), 0 < z < x < w, then cppng(z) —
cz(2) < r(x+ Az) —r(z), 0 < z < xz, Az > 0. Dividing by Az and
letting Az approach 0, gives 2 ¢,(z) < r/(z), 0 < z < x, as a necessary

condition which is easily seen to be sufficient as well.

3. Explicit computation of the optimal policy for the discounted case can
be done by using the known method of successive approximation. This
method can be used for the average cost criterion too by a simple trans-
formation of the problem (cf. Ross [15]). Methods for accelerating the
convergence of the Value Iteration Algorithm (by choosing a ‘good’ re-

laxation factor) are suggested by Herzberg and Yechiali [7], [8].
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