
Dynamic visit-order rules for batch-servicepollingJan van der WalTechnical University of Eindhoven, The Netherlands[jan.v.d.wal@tue.nl]Uri YechialiDept. of Statistics and OR, Tel Aviv University, Israel[uriy@post.tau.ac.il]AbstractWe explore server's visit-order policies in non-symmetric polling systems with switch-in and switch-out times, where service is in batches of unlimited size. We concentrateon so-called `Hamiltonian tour' policies in which, in order to give a fair treatment tothe various users, the server attends every non-empty queue exactly once during eachround of visits (cycle). The server dynamically generates a new visit schedule at thestart of each round, depending on the current state of the system (number of jobs ineach queue) and on the various non-homogeneous system parameters. We considerthree service regimes: Globally Gated, (Locally) Gated, and Exhaustive, and studythree di�erent performance measures: (1) Minimizing expected weighted sum of allsojourn times of jobs within a cycle. (2) Minimizing the expected length of the nextcycle, and (3) Maximizing the expected weighted throughput in a cycle. For each com-bination of performance-measure and service-regime we derive characteristics of theoptimal Hamiltonian tour. Some of the resulting optimal policies are shown to be el-egant index-type rules. Others are the solutions of deterministic NP-Hard problems.Special cases are reduced to Assignment problems with speci�c cost matrices. Theindex-type rules can further be used to construct �xed-order, cyclic-type polling tablesin cases where dynamic control is not applicable.1 IntroductionWe study optimal server's scheduling policies in heterogeneous polling systems with switch-inand switch-out times, where service is in batches of unlimited size.We concentrate on fair policies, called `Hamiltonian-tours', where in each new round theserver must attend every non-empty queue exactly once, but is free to determine the orderof visits. 1



Polling systems - a set of queues attended by a single server - play a central role inthe modeling and analysis of various problems in communications, computer software andhardware, data base systems, manufacturing, maintenance management and road traÆccontrol. Much of the literature deals with occasions where service is given to one job ata time. For a comprehensive treatment of such models, as well as description of variousapplications and extensive literature we refer to Takagi [15{19]. Several surveys dealt withapplications and optimization (Levy and Sidi [12]), applications in communications (Grillo[11]), applications in computer networks (Takagi [17]), analysis and optimization (Boxma [5]),and analysis and control (Yechiali [22]). Most of the works considered `open' polling systemswhere all jobs are `transient', i.e., they arrive to, are served by, and leave the system never toreturn. A few works analyzed `closed' networks with `permanent' jobs that are routed fromone queue to another, but never leave the system (Altman and Yechiali [2], Dror and Yechiali[8]). Hybrid systems with both permanent and transient jobs were analyzed by Armony andYechiali [4].Unlimited batch service models were considered in the literature as applications to videotex,telex and TDMA systems ([3], [9], [13]) as well as for central data base operations ([20]).Ammar and Wong [3] considered a teletext system with N queues, where queue i receivesa Poisson stream of requests with rate �i. Service times in all queues are deterministic(slotted, unit of time each), batches are unlimited and there are no switching times. Theservice discipline is (Locally) Gated. Using a homogeneous linear cost function (one unit ofcost for each outstanding request at the beginning of a slot) and applying Markov decisionprocess formulation, they showed that the policy that minimizes mean response time is ofa cyclic nature, with cycle length of L � N slots, in which queue i is visited ki times,PNi=1 ki = L. Yet, the problem of �nding the exact length L was only partially resolved.Liu and Nain [13] examined the (Locally) Gated and Exhaustive regimes for the case ofzero switching times and a homogeneous arrival process to all queues, while Dykman et al.[9] indicated (after using Howard's policy-iteration algorithm) that, even with equal anddeterministic service requirements and with no switching times, the structure of the optimalpolicy could be very complicated . Van Oyen and Teneketzis [20] formulated a central database system and an Automated Guided Vehicle (AGV) as a polling system with an in�nite-capacity batch server and zero switching times, where the controller observes only the lengthof the queue at which the server is located. A review termed `Scheduling with Batching'is presented in [14]. Batches there, however, are �nite and are de�ned as the "maximalset of jobs that are scheduled to be served continuously, one at a time, on a machine andshare a setup". The concentration there is on \classi�cation of problems as polynomially orpseudo-polynomially solvable, binary or unitary (NP-Hard), or open".Recently, Xia, Michailidis, Bambos and Glynn [21] considered the problem of dynamic allo-cation of a single server with �nite batch processing capability to a set of parallel queues.The independent arrival processes are Poisson, but with equal rates. The service times ofbatches are exponentially distributed and identical . Zero switching times are incurred by theserver when moving from one queue to another. They restrict attention to the set of nonan-ticipative, nonpreemptive, and nonidling policies and show that, when bu�ers are in�nite,allocating the server to the longest queue stochastically maximizes the aggregate throughput2



of the system.Our work was motivated by a tape reading problem in a system where large amounts ofinformation are stored on tapes. Irregularly, requests arrive for data on one of these tapes.In order to read the data the tape has to be mounted, read and then dismounted again. Ifthere are more than one requests for a tape, they all can be read in (more or less) the sametime, thus suggesting modeling as a batch-service with unlimited batch size. Nevertheless,the models we present in this work are general and can be applied to all unlimited-batch-service systems mentioned above. Without loss of generality we will use the `tape language'throughout the paper.The goal is to establish `fair' dynamic visit-order policies so as to optimize various perfor-mance measures.Our special fairness approach is to visit the queues in a Hamiltonian way. (See Browne andYechiali [7].) In each new Hamiltonian cycle only those queues are visited that are nonemptyat the start of the cycle, and each such queue is visited exactly once. What is to be decidedat the beginning of each cycle is the order in which the queues are visited. For a cyclewith duration C we de�ne the 'sojourn time of a job J within a cycle' as the total timethat J resides in the system during C. We will consider the following performance measures:(1) minimizing the expected (weighted) sum of all sojourn times of all jobs within a cycle,(2) minimizing the expected duration of the next cycle, and (3) maximizing the expectedweighted throughput within the cycle. Criterion (2) is a proper one since, given the fairnessconsiderations leading to Hamiltonian tours, and as a result of the unlimited batch service,the duration of the current cycle is independent of the order of visits. Thus, one can onlyin
uence the duration of the next cycle.We formulate the problem as a polling system with unlimited batch size service and considerGlobally Gated, (Locally) Gated and Exhaustive service regimes. Some of the optimizationproblems turn out to be NP-Hard; some yield simple, elegant, index-type rules; while othersare transformed into classical Assignment problems, but with special costs involving theparameters of the problem.The structure of the paper is as follows. In section 2 we present the model, describe theassumptions and discuss various gating procedures. Minimizing weighted expected sojourntimes is treated in section 3, where all three service regimes are considered. Section 4 dealswith minimizing the expected duration of the next cycle, while section 5 aims at maximizingthe expected weighted throughput in a cycle. The analytical results and their implicationsare summarized in section 6, and conclusions are discussed in section 7.2 The modelThere is a set of queues (tapes), numbered 1 up to N. Requests (jobs) arrive to queue lat a Poisson rate �l. A single server visits the queues according to some order. When aqueue is visited all jobs are served simultaneously. This service time is independent of thenumber of jobs served. The total visit time at queue l consists of three parts: a time Rl to3



reach (mount) the tape, a time Bl to read (serve) the tape if the queue is gated, or severalrepetitions of Bl if the service is exhaustive, and �nally, a time Dl to dismount the tape (exitthe queue to some `base' position). The order in which the queues are visited is completelyfree.2.1 Hamiltonian cycle approachIn order to give a fair service to all queues, in each cycle the server performs a Hamiltoniantour in which every nonempty queue is visited exactly once. That is, if at the beginningof the cycle there are nl � 0 jobs in queue l, the server visits only those queues for whichnl is positive. Thus, even if during the cycle jobs arrive to a queue that was empty at thebeginning of the cycle, this queue is not included in the cycle. This process then repeatsitself with a new Hamiltonian tour, where the server visits only queues for which the new nlare positive.We consider several service regimes:� Globally Gated; i.e., all queues are simultaneously gated (closed) at the start of thecycle;� (Locally) Gated ; i.e., a queue is gated only when the server arrives; and� Exhaustive; the server continues serving a visited queue until it becomes empty.In the two Gated regimes, jobs arriving to a queue after its gate is closed will be served onlyduring the next cycle. The same applies in the exhaustive regime for jobs arriving after theserver leaves the queue. For a gated queue l a visit requires a time Rl +Bl +Dl. We de�neHl = Rl + Bl +Dl, hl = E[Hl], h(2)l = E[H2l ] and ~Hl(�) = E[e��Hl ]. Similarly we de�ne rl,r(2)l , ~Rl(�), bl, etc.Without loss of generality we assume that, at the beginning of the cycle, nl is positive forqueues l = 1; : : : ; L and that nl = 0 for l = L + 1; : : : ; N . Then, for the Gated cases,the duration of the cycle is PLl=1Hl, independent of the order in which the �rst L queuesare visited. Moreover, for the Exhaustive case as well, since the service is in batches, theduration of the cycle is also independent of the order of visits.3 Minimize weighted expected sojourn timesIn this section we consider the criterion of minimizing expected weighted sum of sojourntimes of all jobs in the cycle. (It is important to note that under batch service, minimizingsojourn times is not always equivalent to minimizing waiting times.) We will analyze thethree service regimes introduced before.
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3.1 Globally GatedUnder the Globally Gated regime, (cf. Boxma, Levy and Yechiali [6]), there is only onething to look at: the sojourn times of the jobs present at the beginning of the cycle. Thisfollows since the distribution of the cycle time is independent of the visit order, implyingthat the waiting times of those jobs that arrive during this cycle (and are not served) arenot in
uenced by the order. A visit order (policy) is determined by a permutation � =f�(1); �(2; : : : ; �(l); : : : ; �(L)g of the set f1; 2; : : : ; Lg, where �(l) indicates the index of thequeue which is l-th to be visited during a Hamiltonian tour. In order to �nd the optimalorder we start with the policy �1 for which �(l) = l. The total expected weighted sojourntimes for the jobs present at the beginning of the cycle is denoted by C(�1). Then, with wldenoting the weight associated with the sojourn times of jobs in queue l,C(�1) = LXl=1 wlnl ( l�1Xj=1 hj) + rl + bl! :Theorem: The optimal policy is to visit the queues according to a non-increasing order ofthe index wini=hi.Proof: Look at the policy �01 which has the same order as �1 except that queues i andi + 1 are interchanged. That is �01 is the order (1; 2; :::; i� 1; i + 1; i; i + 2; :::; L). Now, thedi�erence in sojourn `costs' for these two strategies isC(�1)� C(�01) = wi+1ni+1hi � winihi+1 :For this to be non-positive, i.e., for strategy �1 to be at least as good as �01, we must havewinihi � wi+1ni+1hi+1 :Applying repeatedly the interchange argument, the optimal visit order is determined by anindex rule: serve the queues in a non-increasing order of winihi . Q.E.D.Note that, if all hi are equal and all wi are the same, the optimal order is according to thelongest queue �rst policy, which is the consequence of the batch servicing.This result may be compared with the result of Liu and Nain [13], for the (Locally) Gatedcase, who showed that, for a fully symmetric polling system with zero switching times, \theso-called Most Customer First policy (in which the server always visits the queue with thelargest number of customers) minimizes, in the sense of strong stochastic ordering, the vectorof number of customers in each queue whose components are arranged in decreasing order".Note that, in their treatment, the server is free from `fairness' considerations and is entitledto choose the next queue to visit when exiting a served queue, whereas in our approach theorder within each new cycle is determined at the cycle's beginning .
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3.2 Locally GatedGating queue l just before Rl or just before Bl is not essentially di�erent. We consider thecase of gating just before Bl. Gating just before Rl then is a special case with R0l = 0 andB0l = Rl +Bl.As indicated, in the Locally Gated regime (similarly to the Globally Gated case), the batchservicing implies that the duration of the cycle, PLl=1Hl, is not in
uenced by the order inwhich the queues are visited. Therefore, we can ignore queues L+1; : : : ; N . The di�erence,compared to the Globally Gated case, is that now we also have to consider new arrivals(during the cycle) to queues 1 to L. Assume again that the visit order is according to policy�1 = (1; 2; : : : ; L).Consider queue l and de�ne Sl to be the total sojourn time of all queue-l jobs in the cycle.Then Sl is comprised of four terms. The �rst one is the sojourn time of the nl jobs presentat the start of the cycle. The second term is the waiting time of all jobs that arrive (duringthe cycle) before this queue is gated. The third term contains the service time of the jobsthat arrive before gating, and the fourth term consists of the sojourn time, until the end ofthe cycle, of those jobs that arrive after the queue is gated.For the second and fourth term we use the following well-known result.LemmaLet X1; X2; : : : be the arrival instants of a Poisson process with arrival rate �, and let Y bea non-negative random variable independent of the process fXig. Let N(Y ) be the numberof Poisson arrivals in (0; Y ). That is, N(Y ) = maxfkjXk < Y g. Then,E[N(Y )Xj=1 (Y �Xj)] = E[N(Y )Xj=1 Xj] = �2E[Y 2]:Combining the above described four terms and following �1 we haveE[Sl] = nl( l�1Xj=1 hj + rl + bl) + �l2 E[(H1 + � � �Hl�1 +Rl)2]+ �l( l�1Xj=1 hj + rl)bl + �l2 E[(Bl +Dl +Hl+1 + � � �HL)2)] : (1)
Thus, the total expected sojourn cost isLXl=1 wlE[Sl] = LXl=1 wlf nl( l�1Xj=1 hj + rl + bl) + �l2 E[(H1 + � � �Hl�1 +Rl)2]+ �l( l�1Xj=1 hj + rl)bl + �l2 E[(Bl +Dl +Hl+1 + � � �HL)2 ]g : (2)
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The objective function (2) can be simpli�ed by omitting all terms of the formPLl=1 
l whichare order independent.We �rst rewrite the second term in (2):LXl=1 �lwl2 E[(H1 + � � �+Hl�1 +Rl)2]= LXl=1 �lwl2  r(2)l + 2rl l�1Xj=1 hj + l�1Xj=1 h(2)j + l�1Xj=1 l�1Xk=1 hjhk � l�1Xj=1 h2j! : (3)Clearly, the �rst term in the right-hand-side of (3) is order independent.Now consider the fourth term in (2). We can write it asLXl=1 �lwl2 f(b(2)l + 2bldl + d(2)l ) + 2(bl + dl) LXj=l+1hj + LXj=l+1h(2)j + LXj=l+1 LXk=l+1hjhk � LXj=l+1h2jg:Thus, in (2), we can omit not only the terms Pl wlnl(rl + bl), Pl wl�lrlbl, Pl �lwlr(2)l =2,and Pl �lwl(b(2)l + 2bldl + d(2)l )=2, but also the combined terms Pl �lwlPj 6=l h(2)j =2, andPl �lwlPj 6=l h2j=2.Writing h[k;m] = mPj=k hj, the goal is to �nd a permutation � that minimizesLXl=1 w�(l)(n�(l) + ��(l)b�(l)) � h[�(1); �(l � 1)] + LXl=1 w�(l)��(l)fr�(l) � h[�(1); �(`� 1)]+(b�(l) + d�(l)) � h[�(l + 1); �(L)] + 12(h[�(1); �(l � 1)])2 + 12(h[�(l + 1); �(L)])2g(4)This is combinatorially a NP-Hard problem, as we prove in the Appendix.We now show that the symmetric case leads to a special Assignment Problem, which issolvable in O(L3) time [1].3.2.1 A symmetric caseSuppose bl = b; dl = d; rl = r, so that hl = h (this might be the case when all tapes aresimilar). One can verify that the objective can be simpli�ed to �nding the permutation �that minimizesLXl=1 w�(l)(n�(l) + ��(l)b)h � l + LXl=1 w�(l)��(l)f[2rh� (L+ 2)h2] � l + h2 � l2g= LXl=1 ��(l) � l + LXl=1 ��(l) � l2 ; 7



with ��(l) = w�(l)(n�(`) + ��(`)b)h + w�(l)��(l)[2rh � (L + 2)h2] and ��(l) = w�(l)��(l)h2. Itfollows that this problem can be formulated and readily solved as an Assignment problemwith costs Cij = C�(i);j = ��(i)j + ��(i) � j2 for i; j = 1; 2; : : : ; L.3.3 Exhaustive regimeIn the Exhaustive regime, servicing in queue l is repeated until the queue is empty. Thismeans that if during the service time Bl one or more new jobs arrive (with probabilityR10 (1 � e��lt)dP (Bl � t) = 1 � ~Bl(�l)) then, after completing the present service time, anew service time is started. This can be repeated several times in a geometric fashion.Let El denote this geometric sum of service times in queue l, with repetition rate 1� ~Bl(�l),mean el, second moment e(2)l and Laplace transform ~El(�). Thenel = bl~Bl(�l) :The Laplace transform ~El(�) is derived as follows:For given values Bl1; Bl2; � � �, all distributed as Bl, we have El =Pkj=1Blj with probabilityQk�1j=1(1� e��lBlj )e��lBlk , k = 1; 2; � � � .Thus, ~El(�) = 1Xk=1 E "e��(Pkj=1 Blj) k�1Yj=1(1� e��lBlj )e��lBlk#= ~Bl(� + �l) 1Xk=1 h ~Bl(�)� ~Bl(�+ �l)ik�1= ~Bl(� + �l)1� ~Bl(�) + ~Bl(�+ �l) :By di�erentiation we get,e(2)l = 1~Bl(�l) �b(2)l + 2blel + 2el ~B(0)l (�l)� :Let Gl be the total visit time to queue l: Gl = Rl +El+Dl. Then, for the weighted sojourntime criterion there is only a little di�erence between the Gated and the Exhaustive cases. Ifin the analysis of the Gated model we replace Hl, hl and h(2)l by Gl, gl and g(2)l , respectively,and we add the term for the sojourn times of the jobs served during the repetitions (on theaverage �lel jobs, each requiring one residual and one normal service time), then for policy�1 we get (cf. (2))
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LXl=1 wlE[Sl] = LXl=1 wl f nl( l�1Xj=1 gj + rl + bl) + �l2 E[( l�1Xj=1 Gj +Rl)2] + �l( l�1Xj=1 gj + rl)bl+ �lel(b(2)l2bl + bl) + �l2 E[(Dl + LXj=l+1Gj)2] g : (5)
The structure of this expression looks similar to equation (2), but in fact is even moreinvolved than in the (Locally) Gated case. Even for the symmetric case, when all Rl; Bl andDl are the same, the ~Bl(�l) terms cause us to no longer have an Assignment problem as asolution of (5).3.4 Extension: modifying the Hamiltonian tourA possibly improved procedure (within the framework of Hamiltonian tours) is the following.Suppose the visit order dictated by the performance measure and the gating procedure is1; 2; :::; L. Then, after exiting queue 1, the rule can be re-applied with regard to the remainingL�1 queues, taking into account the new values of the nl's. Accordingly, the next queue to bevisited will be determined, continuing in this manner until the last queue (among the originalL) will be serviced. Note, however, that such a modi�ed procedure will violate the mainpurpose of the Globally Gated regime aimed at not letting jobs arriving during the currentcycle to be serviced before jobs that have arrived during the previous cycle. Consideringfor a moment a Markov Decision Process approach, which aims at acting optimally at eachstep, one can apply a new the visit-order rule (for example, the nonincreasing wlnl=hl policy)after each visit of a queue, doing it in a continuous routine while neglecting the Hamiltoniantour restriction and generating a dynamic, though erratic, polling visit table (for more aboutpolling tables see Yechiali [22]).4 Minimize next cycle durationSince in all three service regimes the duration of each Hamiltonian cycle is independent ofthe order of visits, a criterion which seems to look a bit further ahead is to minimize theexpected duration of the next Hamiltonian cycle. Besides short cycles being clearly good, thiscriterion also implies that we are trying to serve new arrivals already in the �rst cycle.A possibly di�erent way of looking one cycle ahead is to minimize the expected number ofnonempty queues at the beginning of the next cycle. These two problems are, as we will see,closely related.Consider again the strategy �1 which serves the queues in the order 1, 2 up to L. We willcompute for this strategy the expected duration of the next cycle. In order to do so we needthe probability that a speci�c queue will be empty in the beginning of the next cycle. De�nepl = ProbfQueue l is empty at the start of the next cycleg9



We emphasize again that for the Globally and Locally Gated regimes, as well as for theExhaustive case, the duration of the present Hamiltonian cycle does not depend on thevisit order within the cycle. Consider �rst queues which are not visited in this cycle. Theprobability that queue l, l > L, is empty in the beginning of the next cycle is independentof the order. Formally, de�ning for the Gated regimes H(L) =PLj=1Hj , we havepl = E[e��lH(L)] = ~H(L)(�l) ; l > L :In the Exhaustive regime we get a similar expression with G(L) =PLl=1Gl.4.1 Globally GatedWhen simultaneously gating at the beginning of the cycle, the pl for l = 1; : : : ; L also satisfypl = ~H(L)(�l). Hence, in this case, all orders are stochastically identical (and optimal).4.2 Locally GatedSimilarly to the sojourn times criterion, the gating is just before Bl .Then, for l � L, pl is the probability that there are no arrivals into queue l during theremaining duration of the present cycle Bl +Dl +Hl+1 + � � �+HL. Hence,pl = ~Bl(�l) ~Dl(�l) LYj=l+1 ~Hj(�l) :The expected duration of the next cycle under �1 isNXl=1 (1� pl)hl = NXl=1 hl � LXl=1 ~Bl(�l) ~Dl(�l)hl LYj=l+1 ~Hj(�l)� NXl=L+1 ~H(L)(�l)hl : (6)We immediately observe that, in contrast to the `minimizing sojourn time' performancemeasure, the above expression is independent of the number of jobs present at the start ofthe cycle.The �rst and third terms in (6) are order independent, so we considerV (�1) = LXl=1 ~Bl(�l) ~Dl(�l)hl LYj=l+1 ~Hj(�l)and wish to �nd a permutation � that maximizesV (�) = LXl=1 ~B�(l)(��(l)) ~D�(l)(��(l))h�(l) LYj=l+1 ~H�(j)(��(l))In general this expression is hard to maximize. Therefore, we consider two special cases:1. All �l are equal, say �l = �,2. All Hl are identical. 10



4.2.1 Case 1: all �l equalAssume �l = � for all l. As previously, compare two strategies �1 and �01 which di�er onlyin the order in which queues i and i+ 1 are visited. In �1 the order is i, i+ 1 and in �01 theorder is reversed.Comparing V (�1) and V (�01), the contributions for queues l less than i and larger than i+1are the same. We only have to compare the expressions for i and i + 1 in the two orders.It follows that �1 is better than �01 if, simplifying the notation to aj := ~Hj(�) and cl =~Bl(�) ~Dl(�)hl, V (�1)� V (�01) = (ciai+1 + ci+1 � ci+1ai � ci) LYl=i+2 al > 0 :That is, if ci+11� ai+1 � ci1� ai > 0:Therefore, if all arrival rates are equal, the optimal visit schedule follows a nondecreasingorder of the index cl1� al = ~Bl(�) ~Dl(�)hl1� ~Hl(�) :4.2.2 Case 2: all Rl; Bl; Dl are identicalIf all Rl, Bl, Dl, and therefore Hl, are identical, writing fl = ~Bl(�l) ~Dl(�l)h and gl = ~H(�l),the expression for V (�1) simpli�es toV (�1) = LXl=1 flgL�ll :Thus, similarly to the consideration in Section 3, if queue i is in position j in the visit order,then its `contribution' is figL�ji . Therefore, in order to maximize V (�), one has to solve anAssignment problem with rewards Cij = C�(i);j = f�(i)gL�j�(i) .Note that this case is more involved than case 1 above, but essentially simpler than thegeneral case in which the terms in the objective function depend not only on �(i) and j butalso on the order of the other queues.4.3 Exhaustive regimeThe time to visit a queue now consists of Gl = Rl+El+Dl instead of Hl = Rl+Bl+Dl. Dueto the Exhaustive discipline (and under �1) we have pl = ~Dl(�l)QLj=l+1 ~Hj(�l) for l � L.Thus, writing gl = rl + el + dl the expression equivalent to V (�1) in Section 4.2 isLXl=1 ~Dl(�l)(rl + el + dl) LYj=l+1 ~Rj(�l) ~Ej(�l) ~Dj(�l) :11



This leads to essentially the same optimization problem as for the Locally Gated variant.The case where all �l are equal is the same as before, implying that the optimal visit scheduleis determined by the nondecreasing order of~Dl(�)gl1� ~Hl(�) = ~Dl(�)(rl + el + dl)1� ~Rl(�) ~El(�) ~Dl(�) :However, for case 2 (all Hl equal) there is a signi�cant di�erence in the meaning of theassumption that Rl + El + Dl is the same for all l. It implicitly implies that if the Hl arethe same and the El are the same, then all �l are the same as well. Hence, in this case, allqueues are stochastically identical and all visit orders are optimal.4.4 Number of nonempty queuesAs was indicated, the problem of minimizing the expected number of nonempty queues at thebeginning of the next cycle is not very di�erent from the problem of minimizing the expectedduration of the next cycle . The only di�erence is that in the expression for the objectivefunction given in (6) the terms hl disappear because the expected number of nonemptyqueues equals PNl=1(1� pl). Thus, the structure of the optimization problem is exactly thesame.5 Maximizing weighted throughput in a cycleA third objective for optimization is to maximize the expected weighted throughput duringthe cycle. This objective may seem to be more interesting from the viewpoint of the systemoperator than from the viewpoint of the requester. However, the more jobs are served in thecurrent cycle, the fewer jobs are left to wait until the next cycle. Thus, this objective is aninteresting one for the requesters as well. For the Globally Gated case the cycle throughputis order independent. Also, as we will see, the structure of the optimization problem is thesame for the Locally Gated and for the Exhaustive regimes.Note again that, for all service disciplines, the duration of the cycle is independent of theorder in which the queues are visited, implying that one can ignore the queues L + 1 up toN .5.1 Locally GatedLet �1 be again the order 1; 2; � � � ,L. De�ne M(�1) to be the expected weighted throughputduring the cycle under order �1. Then, gating just before Bl,M(�1) = LXl=1 wlnl + LXl=1 wl�l( l�1Xj=1 hj + rl)12



Now, similarly to what we have seen previously, the optimal visit order is an index rule andis independent of nl: visit the queues in a nondecreasing order ofwl�lhl :Note that this rule does not a�ect the long run weighted throughput, which is �xed andequal to Plwl�l, but focuses on early weighted throughput.Remark. If all wl are the same and all �l are equal, then the optimal order is in a non-increasing order of hl, enabling accumulation of as many jobs as possible in queues to bevisited later in the cycle. Similarly, if all wl and hl are equal, the queues are visited in anon-decreasing order of �l, again in order to generate as many jobs as possible in the mostactive queues.5.2 Exhaustive regimeThe result here is very similar to the one derived for the Locally Gated case. The corre-sponding expression for M(�1) changes intoM(�1) = LXl=1 wlnl + LXl=1 wl�l( l�1Xj=1 gj + rl + el) :Therefore, the optimal visit schedule follows a non-decreasing order ofwl�lgl :6 Summary of ResultsTable 1 below summarizes the analytical results considering the optimal policies (visit-orderrules) for the various combinations of Performance-Measure and Gating-Procedure. Thecriterion `Minimizing weighted expected sojourn times (during a Hamiltonian tour)' leadsto rules involving the values of the nl's, i.e., the number of requests present at the startof the cycle in each queue. This implies that the visit order will change from one cycle toanother as a result of the dynamic evolution of the system. Furthermore, it may enable oneto modify the visit order for the remaining queues in the cycle after each time the server exitsa queue. One can possibly exercise a one-step look-ahead procedure (following the relevantrule) and apply it repeatedly without being con�ned by the Hamiltonian tour restriction. Theobjectives `Minimize expected duration of next cycle' and `Maximizing expected weightedthroughput' lead to Hamiltonian procedures that do not involve the nl's. Thus, if we try tomodify the visit order within a cycle, we'll come up with the same visit order that has beendetermined at the start of the cycle. However, one can use rules which are �l dependent todetermine static, �xed-order, cycles in cases where dynamic control is not applicable.13



Table 1: Optimal policies for the various combinations of Performance Measure and GatingProcedureGating Procedure Globally Locally Gating ExhaustivePerformance GatingMeasureMinimize Index rule: Hard Combinatorial Hard CombinatorialWeighted Expected decreasing Problem involving the n`'s ProblemSojourn Times w`n`h` involving the n`'s[Section 3] Special case:h` = h; distinct �`'s:Assignment Problem withcosts cij's involvingthe n`'sMinimize All Policies Hard Combinatorial Hard CombinatorialExpected are Problem not involving Problem notDuration of Stochastically the n`'s involving the n`'sNext Cycle Equal[Section 4] Special case 1: �` = � Special case 1:Index rule: increasing �` = �~B`(�) ~D`(�)h`1� ~H`(�) Index rule:increasingSpecial case 2: h` = h ~D`(�)g`1� ~G`(�)Assignment Problem withrewards cij's not involving Special case 2:the n`'s h` = h, e` = eFully Symmetric,all Policies areStochastically EqualMaximize All Policies Index rule: Index rule:Expected are increasing increasingWeighted Stochastically w`�`h` w`�`g`Throughput Equalin a Cycle[Section 5]
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[22] U. Yechiali, Analysis and control of polling systems, in: Performance Evalua-tion of Computer and Communication Systems, eds. L. Donatielo & R. Nelson,Springer-Verlag, pp. 630{650, (1993).8 Appendix: The Scheduling Problem (4) is NP-HardWe wish to show that the scheduling-optimization problem (4) of �nding a permutation �so as to(A1) Minimize ( LXl=1 !�(l)(n�(l) + ��(l)b�(l)) � ( l�1Xj=1 h�(j))+ LXl=1 !�(l)��(l) "r�(l)( l�1Xj=1 h�(j)) + (b�(l) + d�(l))( LXj=l+1h�(j)) + 12( l�1Xj=1 h�(j))2 + 12( LXj=l+1h�(j))2#)is NP-Hard.To prove this assertion we consider a special instance of the problem where, for all `, b` = 0,d` = r` and w` = 1. Then problem (A1) is reduced to minimizing(A2) f(�) = LXl=1 n�(l) l�1Xj=1 h�(j)!+ 12 LXl=1 ��(l) 24 l�1Xj=1 h�(j)!2 + LXj=l+1h�(j)!235It is known [10] that the following Partition problem is NP-Complete:Input: a1; a2; : : : ; ak are positive integers (k � 2).Output: ForPkj=1 aj = A, is there a subset S � f1; 2; : : : ; kg such that Pj2S aj = A=2?That is, the process of �nding an answer `Yes' or `No' to the above output question isNP-Hard.We start with transforming the Partition problem into the polling-optimization schedulingproblem by taking L = k + 1; nl = 1 for l = 1; : : : ; k + 1; hl = al for l = 1; 2; : : : ; k;hk+1 = hL = 1; �l = 1 for l = 1; 2; : : : ; k; �k+1 = �L = M = 4(k + 1)A2.We now prove the following:Claim: The Output for the Partition problem is `Yes' if and only if there exists a permu-tation � of f1; 2; : : : ; k+ 1g such that f(�), the objective value of the respective scheduling-optimization problem, satis�es(A3) f(�) � (k + 1)A+ k2A2 + MA24 = Bwhere M = 4(k + 1)A2.Proof: Assume that there exists a partition and construct a permutation � satisfyingf(�) � B. 17



Suppose that the set S � f1; 2; : : : ; kg is a Partition. That is, Pj2S aj = Pj2S hj = A=2.Let jSj = m. Let � be a permutation of f1; 2; : : : ; k + 1g satisfying�(j) 2 S for j = 1; 2; : : : ; m (m � k � 1)�(m+ 1) = L�(j) 2 f1; 2; : : : ; kg � S for j = m+ 2; : : : ; k + 1 :Substituting for � in f(�) we obtainf(� = LXl=1  l=1Xj=1 h�(j)!+ 12 LXl=1l6=m+1 24 l�1Xj=1 h�(j)!2 + LXj=`+1h�(j)!235+ 12�L 24 mXj=1 h�(j)!2 + LXj=m+2h�(j)!235� L � A+ 12(L� 1) kXj=1 hj!2 + 12M 24 Xj2S aj!2 +0@Xj =2S aj1A235= L � A+ L� 12 A2 + 12M �(A2 )2 + (A2 )2� = L � A+ L� 12 A2 + M4 A2 = B
(7)

The inequalities follow since, giving hj = aj positive integers for j = 1; 2; : : : ; L � 1, andhL = 1, Pl�1j=1 h�(j) �PL�1j=1 aj = A for every l = 2; 3; : : : ; L.Next, suppose that the answer to the Output problem is `No', that is, there is no partitionsuch that Pj2S aj = A=2. We will show that for any permutation �, f(�) > B. Consideran arbitrary permutation � of f1; 2; : : : ; k + 1 = Lg and suppose that �(m) = k + 1 = L forsome m. Then f(�) � 12��(m) 24 m�1Xj=1 h�(j)!2 + LXj=m+1h�(j)!235Since there is no partition,Pm�1j=1 h�(j) � x 6= A2 , and PLj=m+1 h�(j) � y 6= A2 , where x + y =Pkj=1 aj = A.Hence, since x and y are integers, x2 + y2 � �A2 � 12�2 + �A2 + 12�2 (this follows from theconvexity and symmetry of the program minfx2 + y2g s.t. x+ y = A; x; y � 0). Therefore,f(�) � 12M "�A2 � 12�2 + �A2 + 12�2#= M2 �A22 + 12� = M4 A2 + M4 = M4 A2 + (k + 1)A2= M4 A2 + k2A2 + �k2 + 1�A2 > M4 A2 + k2A2 + (k + 1)A = B (8)
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The last inequality follows since, for k � 2 and A positive integer satisfyingA � 2, �k2 + 1�A2 >(k + 1)A. Q.E.D.To summarize, solving our polling scheduling-optimization problem is equivalent to solvingthe Partition problem, which is NP-Hard.

19


