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Abstract

We explore server’s visit-order policies in non-symmetric polling systems with switch-
in and switch-out times, where service is in batches of unlimited size. We concentrate
on so-called ‘Hamiltonian tour’ policies in which, in order to give a fair treatment to
the various users, the server attends every non-empty queue exactly once during each
round of visits (cycle). The server dynamically generates a new visit schedule at the
start of each round, depending on the current state of the system (number of jobs in
each queue) and on the various non-homogeneous system parameters. We consider
three service regimes: Globally Gated, (Locally) Gated, and Exhaustive, and study
three different performance measures: (1) Minimizing expected weighted sum of all
sojourn times of jobs within a cycle. (2) Minimizing the expected length of the next
cycle, and (3) Maximizing the expected weighted throughput in a cycle. For each com-
bination of performance-measure and service-regime we derive characteristics of the
optimal Hamiltonian tour. Some of the resulting optimal policies are shown to be el-
egant index-type rules. Others are the solutions of deterministic NP-Hard problems.
Special cases are reduced to Assignment problems with specific cost matrices. The
index-type rules can further be used to construct fixed-order, cyclic-type polling tables
in cases where dynamic control is not applicable.

1 Introduction

We study optimal server’s scheduling policies in heterogeneous polling systems with switch-in
and switch-out times, where service is in batches of unlimited size.

We concentrate on fair policies, called ‘Hamiltonian-tours’, where in each new round the
server must attend every non-empty queue exactly once, but is free to determine the order
of visits.



Polling systems - a set of queues attended by a single server - play a central role in
the modeling and analysis of various problems in communications, computer software and
hardware, data base systems, manufacturing, maintenance management and road traffic
control. Much of the literature deals with occasions where service is given to one job at
a time. For a comprehensive treatment of such models, as well as description of various
applications and extensive literature we refer to Takagi [15 19]. Several surveys dealt with
applications and optimization (Levy and Sidi [12]), applications in communications (Grillo
[11]), applications in computer networks (Takagi [17]), analysis and optimization (Boxma [5]),
and analysis and control (Yechiali [22]). Most of the works considered ‘open’ polling systems
where all jobs are ‘transient’, i.e., they arrive to, are served by, and leave the system never to
return. A few works analyzed ‘closed’ networks with ‘permanent’ jobs that are routed from
one queue to another, but never leave the system (Altman and Yechiali [2], Dror and Yechiali
[8]). Hybrid systems with both permanent and transient jobs were analyzed by Armony and
Yechiali [4].

Unlimited batch service models were considered in the literature as applications to videotex,
telex and TDMA systems ([3], [9], [13]) as well as for central data base operations ([20]).
Ammar and Wong [3] considered a teletext system with N queues, where queue i receives
a Poisson stream of requests with rate A;. Service times in all queues are deterministic
(slotted, unit of time each), batches are unlimited and there are no switching times. The
service discipline is (Locally) Gated. Using a homogeneous linear cost function (one unit of
cost for each outstanding request at the beginning of a slot) and applying Markov decision
process formulation, they showed that the policy that minimizes mean response time is of
a cyclic nature, with cycle length of L > N slots, in which queue i is visited k; times,
Zi]\il ki = L. Yet, the problem of finding the exact length L was only partially resolved.

Liu and Nain [13] examined the (Locally) Gated and Exhaustive regimes for the case of
zero switching times and a homogeneous arrival process to all queues, while Dykman et al.
[9] indicated (after using Howard’s policy-iteration algorithm) that, even with equal and
deterministic service requirements and with no switching times, the structure of the optimal
policy could be very complicated. Van Oyen and Teneketzis [20] formulated a central data
base system and an Automated Guided Vehicle (AGV) as a polling system with an infinite-
capacity batch server and zero switching times, where the controller observes only the length
of the queue at which the server is located. A review termed ‘Scheduling with Batching’
is presented in [14]. Batches there, however, are finite and are defined as the ”maximal
set of jobs that are scheduled to be served continuously, one at a time, on a machine and
share a setup”. The concentration there is on “classification of problems as polynomially or
pseudo-polynomially solvable, binary or unitary (NP-Hard), or open”.

Recently, Xia, Michailidis, Bambos and Glynn [21] considered the problem of dynamic allo-
cation of a single server with finite batch processing capability to a set of parallel queues.
The independent arrival processes are Poisson, but with equal rates. The service times of
batches are exponentially distributed and identical. Zero switching times are incurred by the
server when moving from one queue to another. They restrict attention to the set of nonan-
ticipative, nonpreemptive, and nonidling policies and show that, when buffers are infinite,
allocating the server to the longest queue stochastically maximizes the aggregate throughput



of the system.

Our work was motivated by a tape reading problem in a system where large amounts of
information are stored on tapes. Irregularly, requests arrive for data on one of these tapes.
In order to read the data the tape has to be mounted, read and then dismounted again. If
there are more than one requests for a tape, they all can be read in (more or less) the same
time, thus suggesting modeling as a batch-service with unlimited batch size. Nevertheless,
the models we present in this work are general and can be applied to all unlimited-batch-
service systems mentioned above. Without loss of generality we will use the ‘tape language’
throughout the paper.

The goal is to establish ‘fair’ dynamic visit-order policies so as to optimize various perfor-
mance measures.

Our special fairness approach is to visit the queues in a Hamiltonian way. (See Browne and
Yechiali [7].) In each new Hamiltonian cycle only those queues are visited that are nonempty
at the start of the cycle, and each such queue is visited ezactly once. What is to be decided
at the beginning of each cycle is the order in which the queues are visited. For a cycle
with duration C we define the ’sojourn time of a job J within a cycle’ as the total time
that J resides in the system during C. We will consider the following performance measures:
(1) minimizing the expected (weighted) sum of all sojourn times of all jobs within a cycle,
(2) minimizing the expected duration of the next cycle, and (3) maximizing the expected
weighted throughput within the cycle. Criterion (2) is a proper one since, given the fairness
considerations leading to Hamiltonian tours, and as a result of the unlimited batch service,
the duration of the current cycle is independent of the order of visits. Thus, one can only
influence the duration of the next cycle.

We formulate the problem as a polling system with unlimited batch size service and consider
Globally Gated, (Locally) Gated and Exhaustive service regimes. Some of the optimization
problems turn out to be NP-Hard; some yield simple, elegant, index-type rules; while others
are transformed into classical Assignment problems, but with special costs involving the
parameters of the problem.

The structure of the paper is as follows. In section 2 we present the model, describe the
assumptions and discuss various gating procedures. Minimizing weighted expected sojourn
times is treated in section 3, where all three service regimes are considered. Section 4 deals
with minimizing the expected duration of the nezt cycle, while section 5 aims at maximizing
the expected weighted throughput in a cycle. The analytical results and their implications
are summarized in section 6, and conclusions are discussed in section 7.

2 The model

There is a set of queues (tapes), numbered 1 up to N. Requests (jobs) arrive to queue [
at a Poisson rate \;. A single server visits the queues according to some order. When a
queue is visited all jobs are served simultaneously. This service time is independent of the
number of jobs served. The total visit time at queue [ consists of three parts: a time R; to



reach (mount) the tape, a time B; to read (serve) the tape if the queue is gated, or several
repetitions of By if the service is exhaustive, and finally, a time D, to dismount the tape (exit
the queue to some ‘base’ position). The order in which the queues are visited is completely
free.

2.1 Hamiltonian cycle approach

In order to give a fair service to all queues, in each cycle the server performs a Hamiltonian
tour in which every nonempty queue is visited exactly once. That is, if at the beginning
of the cycle there are n; > 0 jobs in queue [, the server visits only those queues for which
n; is positive. Thus, even if during the cycle jobs arrive to a queue that was empty at the
beginning of the cycle, this queue is not included in the cycle. This process then repeats
itself with a new Hamiltonian tour, where the server visits only queues for which the new n,
are positive.

We consider several service regimes:

e Globally Gated; i.e., all queues are simultaneously gated (closed) at the start of the
cycle;

e (Locally) Gated ; i.e., a queue is gated only when the server arrives; and

e Exhaustive; the server continues serving a visited queue until it becomes empty.

In the two Gated regimes, jobs arriving to a queue after its gate is closed will be served only
during the next cycle. The same applies in the exhaustive regime for jobs arriving after the
server leaves the queue. For a gated queue [ a visit requires a time R, + B; + D;. We define
H =R, + B, + D,, hy = E[H|], h,@ — E[H?] and H)(a) = E[e~*™]. Similarly we define 7,
Tl(z), Ry(a), by, etc.

Without loss of generality we assume that, at the beginning of the cycle, n; is positive for
queues | = 1,...,L and that n, = 0 for [ = L + 1,...,N. Then, for the Gated cases,
the duration of the cycle is Zle H,, independent of the order in which the first L queues
are visited. Moreover, for the Exhaustive case as well, since the service is in batches, the
duration of the cycle is also independent of the order of visits.

3 Minimize weighted expected sojourn times

In this section we consider the criterion of minimizing expected weighted sum of sojourn
times of all jobs in the cycle. (It is important to note that under batch service, minimizing
sojourn times is not always equivalent to minimizing waiting times.) We will analyze the
three service regimes introduced before.



3.1 Globally Gated

Under the Globally Gated regime, (cf. Boxma, Levy and Yechiali [6]), there is only one
thing to look at: the sojourn times of the jobs present at the beginning of the cycle. This
follows since the distribution of the cycle time is independent of the visit order, implying
that the waiting times of those jobs that arrive during this cycle (and are not served) are
not influenced by the order. A visit order (policy) is determined by a permutation = =
{mr(1),7(2,...,7(l),...,w(L)} of the set {1,2,..., L}, where 7(l) indicates the index of the
queue which is [-th to be visited during a Hamiltonian tour. In order to find the optimal
order we start with the policy m; for which 7(l) = [. The total expected weighted sojourn
times for the jobs present at the beginning of the cycle is denoted by C(my). Then, with w,
denoting the weight associated with the sojourn times of jobs in queue [,

C(m) = Z?l)lnl ((Z h;) +r + bl)

=1 j=1

Theorem: The optimal policy is to visit the queues according to a non-increasing order of
the index w;n;/h;.

Proof: Look at the policy 7} which has the same order as 7 except that queues i and
i + 1 are interchanged. That is 7} is the order (1,2,....,i — 1,i+ 1,4,4+ 2,..., L). Now, the
difference in sojourn ‘costs’ for these two strategies is

C(ﬂ']) - C(’ﬂ"l) = wH]nH]hi - wmihH] .

For this to be non-positive, i.e., for strategy m; to be at least as good as 7}, we must have

w;n; Wi1Mi+1

hi = hip

Applying repeatedly the interchange argument, the optimal visit order is determined by an
index rule: serve the queues in a non-increasing order of ™. Q.E.D.

Note that, if all h; are equal and all w; are the same, the optimal order is according to the
longest queue first policy, which is the consequence of the batch servicing.

This result may be compared with the result of Liu and Nain [13], for the (Locally) Gated
case, who showed that, for a fully symmetric polling system with zero switching times, “the
so-called Most Customer First policy (in which the server always visits the queue with the
largest number of customers) minimizes, in the sense of strong stochastic ordering, the vector
of number of customers in each queue whose components are arranged in decreasing order”.
Note that, in their treatment, the server is free from ‘fairness’ considerations and is entitled
to choose the next queue to visit when exiting a served queue, whereas in our approach the
order within each new cycle is determined at the cycle’s beginning.



3.2 Locally Gated

Gating queue [ just before R; or just before B, is not essentially different. We consider the
case of gating just before B;. Gating just before R; then is a special case with R} = 0 and
B, =R, + By.

As indicated, in the Locally Gated regime (similarly to the Globally Gated case), the batch
servicing implies that the duration of the cycle, ZlL:I H,, is not influenced by the order in
which the queues are visited. Therefore, we can ignore queues L +1,..., N. The difference,
compared to the Globally Gated case, is that now we also have to consider new arrivals
(during the cycle) to queues 1 to L. Assume again that the visit order is according to policy

Vs :(1,2,,[/)

Consider queue [ and define S; to be the total sojourn time of all queue-/ jobs in the cycle.
Then S; is comprised of four terms. The first one is the sojourn time of the n; jobs present
at the start of the cycle. The second term is the waiting time of all jobs that arrive (during
the cycle) before this queue is gated. The third term contains the service time of the jobs
that arrive before gating, and the fourth term consists of the sojourn time, until the end of
the cycle, of those jobs that arrive after the queue is gated.

For the second and fourth term we use the following well-known result.

Lemma

Let Xy, X5, ... be the arrival instants of a Poisson process with arrival rate A, and let Y be
a non-negative random variable independent of the process {X;}. Let N(Y') be the number
of Poisson arrivals in (0,Y"). That is, N(Y) = max{k|X; < Y}. Then,

N(Y) N(Y)
Y- (v - X)) = BIY ] = S BV

Combining the above described four terms and following m; we have

-1

A
E[S)] = ”l(z hj+r+b) + ElE[(Hl +o Hi o+ Ry
=1
= A ()
+ )\z(z h; 4+ )b, + EZE[(Bl + D+ Hppy + - 'HL)Q)] :
j=1

Thus, the total expected sojourn cost is

L L -1
A
]z; w E[S)] = ]z; wi{ nl(; hj 41 +by) + ElE[(Hl +---Hi_1+ R)?
[ = [— ]:

(2)
-1 )\l ,
+ (D hy )b+ S BB+ D+ Hi + - Hi)" }

Jj=1



The objective function (2) can be simplified by omitting all terms of the form ZZL:1 ~ which
are order independent.

We first rewrite the second term in (2):

=~

~A
’Tw’ [(Hy+ -+ Hi 1+ R)?

(3)

L 11 11
:Z)\guz< 2+27~th +Zh +Z hjhy, — Zhi) -
=1

7=1 k=1

Clearly, the first term in the right-hand-side of (3) is order independent.

Now consider the fourth term in (2). We can write it as

ZAT“J Vo 2bydy + dP) + 2(b + dy) Zh+2h +Z Zhhk—ZhQ

=1 J=Il+1 j=Il+1 j=l4+1 k=141 J=Il+1

Thus, in (2), we can omit not only the terms Y wyny(r; + by), >, wihiriby, Zz )\;w;rl2 /2,

and ), Nw, (b, 0\ + 2byd, + d )/2 but also the combined terms ), \juy Z#l /2 and
Zl )\;w; Zj;él h]/2
Writing hlk, m] = ) h;, the goal is to find a permutation 7 that minimizes
i=k
L L
> Wy (N + Aebeqy) - BT (L), (1~ D]+ weg )= hlr(1), (0 — 1)]
=1 =1

+(baty + da) - hl(L+ 1), m(L) + %(h[wu), Rl - 1)+ éww(z +1), 7))
g

This is combinatorially a NP-Hard problem, as we prove in the Appendix.

We now show that the symmetric case leads to a special Assignment Problem, which is
solvable in O(L?) time [1].

3.2.1 A symmetric case
Suppose b, = b, d; = d, r, = r, so that h; = h (this might be the case when all tapes are

similar). One can verify that the objective can be simplified to finding the permutation 7
that minimizes

wa(;)(nﬂ(l) + Az)b)h - l—i—ZwW «w{2rh — (L +2)h* -1+ h* - 1?}

_ZO/?T ]+Zﬁ7r l )



with n(l) = Wr(l )( ) + )\ b)h + ww(l))\ﬂ(l)[th — (L + 2)h2] and Bw(l) = wﬂ(l))\w(l)hQ. It
follows that this problem Can be formulated and readily solved as an Assignment problem
with costs Cij = Crpiyj = )] + Briy - g2 fori,j=1,2,..., L.

3.3 Exhaustive regime

In the Exhaustive regime, servicing in queue [ is repeated until the queue is empty. This
means that if during the service time B; one or more new jobs arrive (with probability
JS(@—eMydP(B, <t)=1- By(\;)) then, after completing the present service time, a
new service time is started. This can be repeated several times in a geometric fashion.

Let E; denote this geometric sum of service times in queue I, with repetition rate 1 — B;()\;),

mean e;, second moment el(Q) and Laplace transform Fj(«). Then

by
B/(\)

€ =

The Laplace transform Ej(«) is derived as follows:
For given values By, Bjs, - - -, all distributed as B;, we have F;, = 27 , Bij with probability

Hl?i](l _ e*)\lF},l]‘)e*)\lBlk7 k — 1727 LR

j=1

Thus,
o] k—1
Z =1 Bi) H(1 . *)\szg) )\zBlk]
=1 J=1
- > k—1
= B+ N\ Z[ Bla+A)}

k=1
Bl(()’ + )\l)

By differentiation we get,

(2) 1
e = = b + 2be; + 2¢, B () }
! Bi(\) < H : ( 1)>

Let G; be the total visit time to queue I: G; = R;+ E;+ D;. Then, for the weighted sojourn
time criterion there is only a little difference between the Gated and the Exhaustive cases. If
in the analysis of the Gated model we replace H;, h; and h by Gy, g, and g,( ) respectively,
and we add the term for the sojourn times of the jobs qerved during the repetltions (on the
average \e; jobs, each requiring one residual and one normal service time), then for policy
m we get (cf. (2))



=~

L -1

Zwl Zwl{mZg7+rl+b1)+)\E ZG + R)?) 4+ A( Zg7+n

=1 =1
) b))+ 2LE[(D G Y.
+ 161(2bl +b) + 5 [( l+jzl; i)}

The structure of this expression looks similar to equation (2), but in fact is even more
involved than in the (Locally) Gated case. Even for the symmetric case, when all R;, B; and
D, are the same, the Bl()\;) terms cause us to no longer have an Assignment problem as a
solution of (5).

3.4 Extension: modifying the Hamiltonian tour

A possibly improved procedure (within the framework of Hamiltonian tours) is the following.
Suppose the visit order dictated by the performance measure and the gating procedure is
1,2, ..., L. Then, after exiting queue 1, the rule can be re-applied with regard to the remaining
L—1 queues, taking into account the new values of the n;’s. Accordingly, the next queue to be
visited will be determined, continuing in this manner until the last queue (among the original
L) will be serviced. Note, however, that such a modified procedure will violate the main
purpose of the Globally Gated regime aimed at not letting jobs arriving during the current
cycle to be serviced before jobs that have arrived during the previous cycle. Considering
for a moment a Markov Decision Process approach, which aims at acting optimally at each
step, one can apply a new the visit-order rule (for example, the nonincreasing w;n;/h; policy)
after each visit of a queue, doing it in a continuous routine while neglecting the Hamiltonian
tour restriction and generating a dynamic, though erratic, polling visit table (for more about
polling tables see Yechiali [22]).

4 Minimize next cycle duration

Since in all three service regimes the duration of each Hamiltonian cycle is independent of
the order of visits, a criterion which seems to look a bit further ahead is to minimize the
expected duration of the next Hamiltonian cycle. Besides short cycles being clearly good, this
criterion also implies that we are trying to serve new arrivals already in the first cycle.

A possibly different way of looking one cycle ahead is to minimize the expected number of
nonempty queues at the beginning of the next cycle. These two problems are, as we will see,
closely related.

Consider again the strategy m; which serves the queues in the order 1, 2 up to L. We will
compute for this strategy the expected duration of the next cycle. In order to do so we need
the probability that a specific queue will be empty in the beginning of the next cycle. Define

p = Prob{Queue | is empty at the start of the next cycle}

9



We emphasize again that for the Globally and Locally Gated regimes, as well as for the
Exhaustive case, the duration of the present Hamiltonian cycle does not depend on the
visit order within the cycle. Consider first queues which are not visited in this cycle. The
probability that queue [, [ > L. is empty in the beginning of the next cycle is independent
of the order. Formally, defining for the Gated regimes H 27 . H; , we have

p=Ele M =HON), I>1L.

In the Exhaustive regime we get a similar expression with G) = ZlL:] G.

4.1 Globally Gated

When simultaneously gating at the beginning of the cycle, the p; for I = 1,..., L also satisfy
p = H)())). Hence, in this case, all orders are stochastically identical (and optimal).

4.2 Locally Gated

Similarly to the sojourn times criterion, the gating is just before B, .
Then, for I < L, p, is the probability that there are no arrivals into queue [ during the
remaining duration of the present cycle B, + D, + H; 1 + - - - + Hy. Hence,

3
= Bi(\)Dy(\) H H ()
j=1+1

The expected duration of the next cycle under 7, is

Z ]_ *pl hl Zhl ZBl l)hl H f'j]()\l) - Z I:I(L)()\l)hl . (6)

j=l+1 I=T+1

We immediately observe that, in contrast to the ‘minimizing sojourn time’ performance
measure, the above expression is independent of the number of jobs present at the start of
the cycle.

The first and third terms in (6) are order independent, so we consider

7T1) = ZB]()\[)D[()\[)h[ H f‘fj()\l

j=1+1

and wish to find a permutation 7 that maximizes

I
= Baoy(w) Dagy H Hy
=1 Jj=Il+1

In general this expression is hard to maximize. Therefore, we consider two special cases:
1. All )\, are equal, say A\, = A,
2. All H, are identical.

10



4.2.1 Case 1: all \; equal

Assume A\, = A for all [. As previously, compare two strategies m; and 7] which differ only
in the order in which queues i and 7 4+ 1 are visited. In 7; the order is ¢, i + 1 and in 7} the
order is reversed.

Comparing V' (m) and V(7}), the contributions for queues [ less than 7 and larger than i+ 1
are the same. We only have to compare the expressions for ¢ and 7 + 1 in the two orders.

It follows that m is better than 7 if, simplifying the notation to a; := I:Ij()\) and ¢, =
Bi(AN)Dy(\)hy,
L

V(’ﬂ']) — V(Wq) = (CZ'(LZ'+] + Cit1 — Cip1Q5 — Ci) H a; > 0.
I=i+2
That is, if
Ci+1 C

— > 0.
l—aH_l l—ai

Therefore, if all arrival rates are equal, the optimal visit schedule follows a nondecreasing
order of the index

C| _ Bl()\)bl()\)hl
- aj 1— ﬁl()\) .

4.2.2 Case 2: all R;, B;,, D, are identical

If all R), B;, D;, and therefore H;, are identical, writing f, = Bl()\l)Dl()\l)h and g, = f[()\l),
the expression for V' (m) simplifies to

L
V(m) =Y hg "
=1

Thus, similarly to the consideration in Section 3, if queue 7 is in position j in the visit order,
then its ‘contribution’ is figif’fj. Therefore, in order to maximize V'(7), one has to solve an
Assignment problem with rewards Cj; = Cr),; = fﬂ(i)gi’(;f.

Note that this case is more involved than case 1 above, but essentially simpler than the
general case in which the terms in the objective function depend not only on 7 (i) and j but
also on the order of the other queues.

4.3 Exhaustive regime

The time to visit a queue now consists of G; = R+ E;+ Dy instead of H; = R;+ B;+ D;. Due

to the Exhaustive discipline (and under ) we have p, = D;()\)) H_,L':H] H;(\) for I < L.

Thus, writing g, = r; + e; + d; the expression equivalent to V(m;) in Section 4.2 is

Y DN m+e+d) [T B )EM)D;(A) -

j=l+1

11



This leads to essentially the same optimization problem as for the Locally Gated variant.

The case where all \; are equal is the same as before, implying that the optimal visit schedule
is determined by the nondecreasing order of

Di(N)g, _ Di(N)(ri + e + d)
1—H(\) 1=RWNEND)

However, for case 2 (all H; equal) there is a significant difference in the meaning of the
assumption that R, + E) + D; is the same for all [. It implicitly implies that if the H; are
the same and the F; are the same, then all \; are the same as well. Hence, in this case, all
queues are stochastically identical and all visit orders are optimal.

4.4 Number of nonempty queues

As was indicated, the problem of minimizing the expected number of nonempty queues at the
beginning of the next cycle is not very different from the problem of minimizing the expected
duration of the next cycle . The only difference is that in the expression for the objective
function given in (6) the terms h; disappear because the expected number of nonempty
queues equals le\; (1 — p;). Thus, the structure of the optimization problem is exactly the
same.

5 Maximizing weighted throughput in a cycle

A third objective for optimization is to maximize the expected weighted throughput during
the cycle. This objective may seem to be more interesting from the viewpoint of the system
operator than from the viewpoint of the requester. However, the more jobs are served in the
current cycle, the fewer jobs are left to wait until the next cycle. Thus, this objective is an
interesting one for the requesters as well. For the Globally Gated case the cycle throughput
is order independent. Also, as we will see, the structure of the optimization problem is the
same for the Locally Gated and for the Exhaustive regimes.

Note again that, for all service disciplines, the duration of the cycle is independent of the
order in which the queues are visited, implying that one can ignore the queues L + 1 up to
N.

5.1 Locally Gated

Let m; be again the order 1,2, --- L. Define M (m) to be the expected weighted throughput
during the cycle under order m;. Then, gating just before B,

L

-1
M(m) = Zwml + wl)\z(z hj + 1)
1 J=1

=1 I=

12



Now, similarly to what we have seen previously, the optimal visit order is an index rule and
is independent of n;: visit the queues in a nondecreasing order of

wiA;
hy

Note that this rule does not affect the long run weighted throughput, which is fixed and
equal to Y, wyA;, but focuses on early weighted throughput.

Remark. If all w; are the same and all )\, are equal, then the optimal order is in a non-
increasing order of h;, enabling accumulation of as many jobs as possible in queues to be
visited later in the cycle. Similarly, if all w; and h; are equal, the queues are visited in a
non-decreasing order of \;, again in order to generate as many jobs as possible in the most
active queues.

5.2 Exhaustive regime

The result here is very similar to the one derived for the Locally Gated case. The corre-
sponding expression for M (m;) changes into

L L -1
M(ﬂ'l) = Zwm; + Zwl)\;(z,qj + T + el) .
=1 =1 j=1

Therefore, the optimal visit schedule follows a non-decreasing order of

wiA;

g

6 Summary of Results

Table 1 below summarizes the analytical results considering the optimal policies (visit-order
rules) for the various combinations of Performance-Measure and Gating-Procedure. The
criterion ‘Minimizing weighted expected sojourn times (during a Hamiltonian tour)’ leads
to rules involving the values of the n,’s, i.e., the number of requests present at the start
of the cycle in each queue. This implies that the visit order will change from one cycle to
another as a result of the dynamic evolution of the system. Furthermore, it may enable one
to modify the visit order for the remaining queues in the cycle after each time the server exits
a queue. One can possibly exercise a one-step look-ahead procedure (following the relevant
rule) and apply it repeatedly without being confined by the Hamiltonian tour restriction. The
objectives ‘Minimize expected duration of next cycle’ and ‘Maximizing expected weighted
throughput’ lead to Hamiltonian procedures that do not involve the n;’s. Thus, if we try to
modify the visit order within a cycle, we’ll come up with the same visit order that has been
determined at the start of the cycle. However, one can use rules which are \; dependent to
determine static, fixed-order, cycles in cases where dynamic control is not applicable.
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Table 1: Optimal policies for the various combinations of Performance Measure and Gating

Procedure
Gating Procedure Globally Locally Gating Exhaustive
Performance Gating
Measure
Minimize Index rule: Hard Combinatorial Hard Combinatorial

Weighted Expected
Sojourn Times

decreasing
wyny
he

Problem involving the n,’s

Problem
involving the n,’s

[Section 3] Special case:
hy, = h; distinct A’s:
Assignment Problem with
costs ¢;;’s involving
the n,’s
Minimize All Policies Hard Combinatorial Hard Combinatorial
Expected are Problem not involving Problem not
Duration of Stochastically the n,’s involving the n;’s
Next Cycle Equal
[Section 4] Special case 1: A\, = A Special case 1:
Index rule: increasing A=A
7’?‘5);)3/‘((;‘))“ Index rule:
increasing
Special case 2: hy =h %
Assignment Problem with
rewards ¢;;’s not involving Special case 2:
the ng’S hg = h, €yp = €
Fully Symmetric,
all Policies are
Stochastically Equal
Maximize All Policies Index rule: Index rule:
Expected are increasing increasing
Weighted Stochastically % “’f}%
Throughput Equal .
in a Cycle
[Section 5]

14




7 Conclusions

We have considered the problem of finding dynamic visit order rules for a polling system
with unlimited batch servicing, where service times are independent of the batch sizes. We
adopt a ‘fair’ dynamic Hamiltonian cycle approach where in each new cycle a new visit
order is determined, based on the dynamic evolution of the system. Within the cycle we
have considered various performance measures and various gating procedures. Some of the
Hamiltonian cycle problems lead to elegant solutions in the form of an index rule. Some lead
to an Assignment problem, while others result in combinatorial hard problems. Furthermore,
the n;-dependent rules may be re-applied within a cycle to modify it, or as a one-step look-
ahead repeated procedure. The non n;-dependent index rules can be used to construct
fixed-order cyclic polling tables in cases where static rules are required.
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8 Appendix: The Scheduling Problem (4) is NP-Hard

We wish to show that the scheduling-optimization problem (4) of finding a permutation 7
so as to

L -1
(A1) Minimize {Z Wr()(Mry + Ae@ybry) - (Z ha(jy)
=1 j=1
L -1 L 1 -1 1 L
+ D Wt Aei) [Twu)(z hap) + (br) + de) (Y ) + 5D ha))® + 5( D ha)?
I=1 j=1 j=l+1 j=1 j=l+1

is NP-Hard.

To prove this assertion we consider a special instance of the problem where, for all ¢, b, = 0,
dy = ry and wy = 1. Then problem (A1) is reduced to minimizing

(A2) f(r) = inw(n (H hﬂj)) +%i/\”“) {(ZZ: hﬂ(ﬁ) + (ZL: hﬂj)) }

=1 j= = j=1 j=l+1

It is known [10] that the following Partition problem is NP-Complete:

Input: ay,as,...,a; are positive integers (k > 2).
Output: For 25:1 a; = A, is there a subset S C {1,2,...,k} such that > ._.a; = A/2?

That is, the process of finding an answer ‘Yes’ or ‘No’ to the above output question is

NP-Hard.

We start with transforming the Partition problem into the polling-optimization scheduling
problem by taking L = k+1;, ny = 1for l = 1,....k+1; by = a; for [ = 1,2,...,k;
hk+1 :hL = ]_ )\l =1forl = 1,2,,k )\k+] :)\L :M:4(k—|—1)A2

jes

We now prove the following:

Claim: The Output for the Partition problem is ‘Yes’ if and only if there exists a permu-
tation ™ of {1,2,...,k+ 1} such that f(7), the objective value of the respective scheduling-
optimization problem, satisfies

MA2
= -

B

(A3) F(7) < (k+1)A+ g/ﬁ +

where M = 4(k + 1) A2

Proof: Assume that there exists a partition and construct a permutation 7 satisfying
f(@ <B.
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Suppose that the set S C {1,2,...,k} is a Partition. That is, Zjes a; = ZjeS h; = AJ2.
Let |S| = m. Let T be a permutation of {1,2,... k + 1} satisfying

m(j)esS forj=1,2,....om (m<k-1)

T(m+1)=1L
(j)ye{1,2,....k} —S forj=m+2,... k+1.

il

Substituting for 7 in f(-) we obtain

=1 \j=1

timir L
1 [ m 2 L 2-|
+oA th)) + ( > D
[\ S )
1 1 ’
<L A+2( —1 (Zh]> +§M (ZCLj) +(Zaj
j=1 jES j¢s
L L—-1 M
_poar ey | =L A+ —A2+—A*=B
T3 +2 [(2)+(2)i 2 L
The inequalities follow since, giving h; = a; positive integers for j = 1,2,..., L — 1, and
hy =1, Z;:l Z] 1a]—Afor every [ =2,3,..., L.

Next, suppose that the answer to the Output problem is ‘No’, that is, there is no partition
such that Zjes‘ aj = A/2. We will show that for any permutation w, f(7) > B. Consider
an arbitrary permutation = of {1,2,... k41 = L} and suppose that 7(m) =k +1 =L for

some m. Then
. " m—1 2 L 2-|
F(m) 2 5 An(m) ( hwm) + ( > hwm)
i j=1 j=m+1 J

L
w5, and Y0 g

Since there is no partition, Z;’;l () y # 4, where z +y =
k
> ap = A
A1 A1

Hence, since z and y are integers, x? + y? > (5 — 5)2 + (5 + 5)2 (this follows from the

convexity and symmetry of the program min{z? + y?} s.t. * +y = A;z,y > 0). Therefore,

A712+ A+12
2 2 2 9

2
M (A2 1\ M M M

= (o) = A = A2 4 (k1) A (8)
2<2+2> T AT+
M
A
1

f(m) > Y

4
k k M
2+§A2+(§+1>A2>ZA2+SA2+(I<+1)A—B
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The last inequality follows since, for k¥ > 2 and A positive integer satisfyingA > 2, (g + 1) A? >
(k+1)A. Q.E.D.

To summarize, solving our polling scheduling-optimization problem is equivalent to solving
the Partition problem, which is NP-Hard.
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