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Abstract

We analyze the M /G/1 queue with server vacations and an additional feature,
reflecting various real-life situations, in which the server, upon finding an empty system
at the end of a vacation, activates a timer of duration 7" and waits dormant. If a batch
arrives during the dormant period, a new busy period starts, but if no arrivals occur, the
server waits no more and takes another vacation. The M*X /G /1 queues with multiple
or with single vacations become limiting cases of the above model when T — 0 or
T — oo, respectively.
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1 Introduction

We study a batch-arrival M* /G /1 system with server vacations, and with the additional
feature, reflecting many real-life situations, that when the server returns from a vacation and
finds an empty queue, he decides to wait for some time T' (called a Timer), before taking
further action. If a batch arrives before T" expires, a busy period starts immediately. However,
if there are no arrivals within 7', the server leaves for a new vacation. This extension, besides
modeling a common human behaviour, generalizes models of M~ /G/1 queue with server
vacations: when T shrinks to 0, we obtain the M~ /G/1 queue with multiple vacations,
while when T extends to infinity, the result is the M~ /G/1 queue with single vacations.
The batch-arrival single-class M~ /G/1 queue without vacations and FIFO regime was

analyzed by Burke (1975), and the corresponding queue with multiple vacations by Baba



(1986). Takagi and Takahashi (1991) investigated priority queues with batch Poisson ar-
rivals under the FIFO service regime, with either multiple or single vacations. Rosenberg
and Yechiali (1993) analyzed the M~ /G/1 queue with LIFO service regime under three
versions: without server vacations, with multiple vacations and with single vacations. They
derived explicit formulae for the Laplace-Stieltjes transform (LST), mean and second mo-
ment of the waiting time Wiro of an arbitrary customer and showed that in each case
EWirol = E[Wipol/(1 — p), where p is the traffic load. Shomrony and Yechiali (2001)
studied the M~ /G/1 queue with vacations under the Randomly Timed Gated (RTG) proto-
col, introduced by Eliazar and Yechiali (1998), by which, whenever the server starts a busy
period, a timer with a random duration is activated. If the server empties the queue before
the timer expires, he leaves for another vacation. Otherwise, if there are still customers in
the system when the timer expires, the server either completes service to the customer being
served and leaves for a vacation (version 1), or leaves immediately (version 2). Recently,
G. Choudhury studied the M* /G /1 queue with multiple vacations and with a setup period
(2000), and further investigated the batch-arrival queue with single vacations (2002).

The ‘wait’ option of the server when finding an empty queue was introduced and studied
by Boxma, Schlegel and Yechiali (2002) for the regular M/G/1 queue. In the current work we
extend the analysis to the batch-arrival queue and derive the probability generating functions
(PGFs) of the queue size not only at service completion epochs (section 3) but also at a start
of a busy period (section 7). We further derive the LST, mean and second moment of the
busy period duration (section 4), the LST and mean of the (total) vacation period (section
5) and of the sum of dormant times within a vacation period (section 6). In section 8 we
obtain the LST and mean of the cycle time and in section 9 we derive the LST and mean of
the waiting time of an arbitrary customer. It should be indicated that, differently from the
M/G/1 scenario where PASTA applies and the derivation of the LST of the waiting time
follows a standard argument relating this LST with the PGF of the queue size at arrival
(and departure) instants, in the batch-arrival case this argument can not be directly applied
and a careful consideration of the waiting time within a batch is required. Finally, in each
section we obtain the corresponding results for the M* /G /1 queue with multiple or with

single vacations by letting 7" — 0 or by letting T — oo, respectively.

2 The Model

We consider an M* /G /1 queueing system where i.i.d random batches of customers arrive
according to a Poisson process {A(t),t > 0} with intensity A. Each batch-size, X, has a
probability mass function P(X = m) = f,, (m = 1,2,3,...) with probability generating



function (PGF), X (2) = E[zX] = 3.°°_, fmz™ Welet f = fO = B[X], f® = E[X(X —1)]
and f® = E[X(X — 1)(X — 2)], where f() = dk)?(z)/dzk‘zz]. Customers are served
one at a time by a single server and service times, B, of individual customers are i.i.d.
random variables with LST B*(s) = Ele ], mean E[B] = b") = b and k-th moment
E[B*] = ™). Similar notation is used for other random variables introduced in the sequel.
The traffic load is denoted by p = AE[X|E[B] = Afb, and the system is stable when
p < 1. The ‘residual’ service time, Ry, has an LST Rj(s) = [1 — B*(s)]/[sE[B]] with mean
E[Rg| = E[B?]/(2E[B]). Batches are admitted to service according to their order of arrival,
and within a batch, individual customers are served according to their inner order (FIFO
regime). Service of customers is non-preemptive. At the termination of a busy period,
when the queue becomes empty, the server takes a random vacation U. At the end of a
vacation U the server returns to the main queue. If upon return from a vacation there are
N > 0 customers in the system (i.e. at least one batch has arrived during U) the server
starts servicing exhaustively until the first moment thereafter at which the system becomes
empty again. At that moment the server goes for another vacation. However, if N = 0,
the server activates a random timer 7" and waits. If a batch arrives before T expires, the
server immediately starts servicing (one by one) the just arrived customers and continues
working until the end of the busy period, before taking another vacation U. If no batches
arrive during the timer’s duration (i.e. the timer’s length is shorter than the inter-arrival
time of batches), the server does not wait any more and leaves for a vacation U. We invoke
the usual independence assumptions between inter-arrival times, batch sizes, service times,
vacation lengths and timer durations. The distributions of B, U and T are assumed to be

general.

3 Number of Customers

3.1 Law of Motion

In this section we derive the PGF and mean of the number of customers in the system at
service completion (departure) epochs.

Let L, denote the number of customers left behind by the n-th departing customer.
Then, the law of motion of the system’s state L at departure epochs is given as follows:

If L, > 0, then

A(B)
Lyoi =Ly, 1+ ) X;, (3.1)
j=1

where A(B) stands for the number of batches that arrived during the service time B, of



the (n + 1)-th customer, and Xy, Xy, ... are i.i.d. random variables, all distributed as X.
If L, =0, then

3 AB) 1-U*(X)

L =7 A(B) (3.2)
Ur)-=T*(A) _

where £ = A(U)‘A(U)Z], T*(A) = P(no arrivals in T) = [ e MdP(T < t), and U*(\) =
P(no arrivals in U) = P(A(U) = 0).

The explanation of (3.2) is similar to the one given in [2]: when the server takes a
vacation, the probability of no batch arrivals during U is [[“e MdP(U < u) = U*(A).
Then, upon finding an empty system, the server activates a timer 1. The probability of no
arrivals during 7" is 7*()), and the server takes another vacation, etc. This combined process
repeats itself k > 0 times with probability [U*(\)T*(A)]*, until, after k repetitions, there
is at least one batch arrival during U. This last event occurs with probability 1 — U*())
and the server then finds & = A(U)‘A(U)21 waiting batches with Z_?:] X; individual jobs.
Thus, the next departure will leave behind ij] X;—1+ Z?:(F) X; waiting customers with
probability a = (1 = U*(A)) 337, [U* (\)T*(V)]F = =iy~ The other possibility is that
after k repeated pairs of U and T" without batch arrivals, there will be another vacation with

no arrivals, but with a batch arrival during the following 7'. This occurs with probability

U (N1 = T*) [0 VT (W)F = T85782 = 1 — . Then, the server starts

servicing when there is ezactly one batch in the system, and the first departure thereafter
leaves behind X — 1 + Z?:(?) X, customers.

3.2 Generating Function of the Queue Size at a Service Comple-
tion (departure) Epoch

Using relations (3.1) and (3.2) we derive
E[z'+] = E [Z(Lr1+2f‘:(?> Xj)‘Ln > 0} - P(L, > 0)
+ {E {2(25:1 X1+ AP th)} Ca

+E [Z(X*“Z?:(f) Xﬂ} - a)} - P(L, =0) . (3.3)

We consider the system in steady state (p < 1) where L, — L, with L(z) = lim,_,e E[z"],

and denote the probability that the system is empty at a service completion instant by



Py := P(L =0). Then

E[z*|L > 0]- P(L > 0) (Z’f L_k))-P(L>0):Z(z)—PU. (3.4)

P(L >0

The PGF of the total number of customers arriving within a service time B is given by

A(B)

E {Z(ZJA(?)XJ)] = Eam {E [z =1 X ‘A H = Ean) {()?(Z))A(B)]

- / U M X(2)"-aP(B < 1)

_ /_ e M-XENP(B < 1) = B* [A(1 - X(z))] (3.5)

The PGF of the total number of customers arriving within a vacation U, given that there

was at least one batch arrival, is

E [Z(Zﬁzlxﬂ} - E [(X(z))g} ~{(R(2)) = E [)?AW)(Z)\A(U) > 1}

_ UP X)) Ut
1-U*(\)

Similarly,

UA1 — 2)] — U*(N)
LU\

Thus, utilizing equations (3.4), (3.5) and (3 6), we get,

E[2f] = resulting in E[¢] =

-~ -~

L) = (L) - R)='B A1 - X(2)]
+{[U[ (1 X(Z))]) “(A )] 1, g {)\(1_)?(2))}_ 1-U*()\)

1— U\ 11— U NI (V)

+X() B A1 ()] U1(A2§1(;)§8;) } P . (3.8)

Rearranging terms and writing 6 := A(1 — X (2)) we obtain

B (0)[(1 — X(2))U* (W) (L~ T*(N) + 1 - U*(9)]

L(z) = By [B*(8) — 2)[1 — U*(N\)T*(\)]

(3.9)
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To calculate Py we use L(1) =1 and B*(6)|,_, = 1. This leads to

P, s T - T ) —X(2) - U () +1

=TTy 2 B(5) - -

Applying L'Hospital’s rule, we obtain (with p := \fb)

1 U (NT*(\)
fAEU) +U (N1~ T*(N\)]

Py=(1-p) (3.10)

Finally R
(1 - p)B*(O)[U" (N — T* (V)1 — X(2)) — U*(d) + 1]
[B*(6) = 2] fABIU] + U*(A) (1 = T*(N))]

When X =1, equation (3.11) reduces to equation (3.5) in Boxma, Schlegel and Yechiali
(2002). Note that, in such a case, E(z) is also the PGF of the number of customers in the
system at an arbitrary moment.

When T' = oo (i.e. T*()\) = 0), the timer model reduces to the M* /G /1 queue with

single vacations (SV). In this case, equation (3.11) reduces to

L(z) = (3.11)

(1= p)B )1 = U*(5) + U (M)(1 —

f-1B*(8) = Z[ME[U] + U*(N)]
Equation (3.12) coincides with equation (5.5) in Choudhury (2002).
If T =0 (with T*(\) = 1), we obtain the M~ /G/1 queue with multiple vacations (MV).
Equation (3.11) then reduces to

X))

L(2)nx japasv = (3.12)

(1= p)B* ()1 = U*(9)]
f-1B*(6) = 2]AE[U]

(1-p)B () (1-X(z)  1-U*(©)

L(Z)MX/G/1+MV

f1B*(8) — 2] AE[U)(1 - X (2))
= Lhwvon g (3.13)

(see equation (4.20) in Shomrony and Yechiali (2001)). Denoting by Ry the ‘residual’ part
of the vacation time U, then R;;(§) = (1 — U*(9))/(0E[U]) expresses the PGF of the total
number of customers arriving during Ry. Thus, equation (3.13) reveals the decomposition
property that the number of customers at a service completion instant is the sum of the
number of customers in the M~ /G/1 queue plus the number of customers arriving during
the ‘remaining time’ of a vacation, Ry .

When U = 0, equation (3.13) reduces to the PGF for the M* /G /1 queue at departure

epochs

~ —p)B*(6)(1 — X(»




~

This follows since, when U — 0, [1 — U*(A(1 = X (2)))]/(AE[U]) = (1 — X (2)).
Equation (3.14) coincides with equation (3.18) in Shomrony and Yechiali (2001) and
with equation (2.10) in Cohen ((1982), page 386). Clearly, when X = 1, we have )?(z) = z,
d = A1—2) and f =1, so that equation (3.14) reduces to the Khintchine-Pollazcek formula
for the classical M/G/1 queue (see e.g. Levy and Yechiali (1975), Takagi (1991))
(10 2B =)
B*[\1—2)] — 2 '

L(z)mjap = (3.15)

4 The Busy Period

A busy period starts either with & = A(U)‘A(U)Z] batches that arrived during a vacation U,
or with a batch of size X arriving within the timer’s duration, 7. As in equation (3.2), the
former event occurs with probability . and the latter with probability 1 — . Consider first
a busy period that starts with the arrival of a batch of size X. Denote its duration by .
The total service time of all jobs belonging to this batch is Y = ZlX:] B;, where B; are i.i.d,
all distributed like B.

Clearly, E[Y] = E[X] - E[B] = f - E[B] = fb, while the LST of Y is given by (see
Rosenberg and Yechiali (1993), equation (1))

Yi(s) = E[e *E= ] =3 £,[B*(5)]" = X (B*(5)) - (4.1)

Differentiating, the second and third moments of Y are derived:
EY?I =[O0 + fo®, EY® = fO8 + 310+ £ (4.2)

Considering the service time of a batch as a service time of a ‘super’ customer in a regular
M/G/1 queue with service times Y and utilizing (4.1), the LST of the busy period starting
with an arrival of a batch is given by (see Rosenberg and Yechiali (1993), equation (2);
Shomrony and Yechiali (2001), equation (2.11)).

i(s) =Y (s + A — M (s)) = X (B*(5+ X — Mx(s))) - (4.3)

Thus, by differentiating Y*(-), we get

Flox] = BI(+ MEBx]) = 1—EA[?[Y] B f[_yf]) B 1f_bp -

Alternatively, by differentiating X (-) from the RHS of (4.3), we get

Elfx] = E[X]b(1 + AE[6x]) = lf_—bp .



This follows since 1+ AE[fx] =1+ £ = (1 - p) L.
The second moment of fy is derived by differentiating 6% (s) twice:
E[Y?|(1+ AE[0x])*>  E[Y?]
1—p (1-p)?
Now, consider a busy period that starts with £ batches, and denote its duration by 0.
Then, 6 = Z (0x); where (0x); are i.i.d. all distributed like 6x. Thus,

El03] = EYY(1 + AE[9x])" + E[YIAE[6%] = (4.5)

0:(s) = B |(05(5)] = E(0%(s) - (4.6)
But,
& Az - A0 = 2)] - U (A)
&) = Bz - R (4.7)
Thus, finally,
UrA0 — 05 (s)] — U (M)
0: (s) = =0 (4.8)
Differentiating, we get
_EU-QEGy) _ BN p B[]
=100 T ey 1 e T e Y
] = #(A) [E7 (AEl6x])” + BIUIAEL]] (4.10)
Combining (4.3) and (4.8) we obtain the LST of the busy period 6:
0°(s) = (1—a)fx(s)+ abi(s)
U ) *
= T X (B*(s + A — A0k (9)))
U A0 — 05 (s)] — U (D)
O : (4.11)
Now,
E[f] = (1 a)E[fx]|+ aFE|f]
TN =T S O,
11U TN 1—p  1-U*(N)T*(\) 1-p
ol - T )/ + B[]
(1= p)1 = U N)T*(N)]
_ Epy] U*(N)(1 = T*(\) + AE[U] (112)

1= U ()T (V)
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The second moment of # is given by
E[0?] = (1 — a)E[0%] + aE[0F] (4.13)

where E[0%] and E[#{] are given by (4.5) and (4.10), respectively.

When X =1 (M/G/1 with vacations and a timer), equation (4.11) reduces to equation
(5.1) of Boxma, Schlegel and Yechiali (2002).

For the multiple vacation case (T*(\) = 1), equation (4.11) yields

9*(5)MX/G/1+MV = chlule 19}[}:2])\) ) (4.14)

with
EU] p
E[0yxj610mv] = T T E[0] . (4.15)

For the single vacation (SV) case (T = oo and T*(\) = 0), equation (4.11) reduces to
equation (3.2) of Choudhury (2002):

0% (5)arx s 105y = U*(A) {f( (B*(s+ A — M3 (s))) — 1} LU A1 - 0%(s))] (4.16)

and
B0y jcnisv] = U*(A)flb+pE[U] £ = 1 pp [U*)E)\) + E(U)}
= E[0x](U*(\) + AE[U]) . (4.17)

5 Vacation Period

Let I be the Exponential()\) inter-arrival time, with LST 7*(s) = 2. Denote by Vp the
vacation period, i.e. the time interval beginning at the end of an active busy period and
extending to the start of the next busy period. Let {U;, i =1,2,3,...} and {7}, i = 1,2,3, ...}
be two sequences of i.i.d. random variables having LST U*(-) and T*(-), respectively.

For particular values of Uy, Us, ..., Ugy1, 11, T, ..., T}, and I we have

(Ui +Th) + -+ (Ug + Ti) + Ugys w.p. e AXiaUitT) (] — o= Mit)
P = —
(U1 + T]) + -+ (Uk + Tk) +Ugsr +1 w.p. e Zf:l(UHrﬂ)ei)\UkHFTkﬂ (I)

where Frp, (1) = P[Tj41 > 1].
It follows that the length of the vacation period in the current model is identical with
the length of the vacation period in the regular M/G/1 queue with a waiting server and

vacations.



Thus, as was shown in [2],

U*(s) — U*(e+/\)+U*(e+/\) S[1—T*(s + \)]

Vels) = 1—-U*(s+NT*(s+ A) (5.1)
and
U x
ElVy] = ElUl + ==[1 - T*(\)] (5.2)

1= U*(N)T*(N)
For the multiple vacation (MV) case, equations (5.1) and (5.2) reduce, respectively, to

o US(s) = Ur(s+ )
Vpls) = 1-U(s+2))

and
E[U]

1-U*(\)
For the single vacation (SV) case, equations (5.1) and (5.2) yield, respectively,

E[Vp] =

Vi(s) = U(s) = U*(s + A) + U (s + N I*(s)

and

()

BVe) = E[U]+ —

6 Sum of Dormant (‘Wait’) Lengths within a Vacation
Period

Denote by D the sum of dormant 7" times within a vacation period Vp. Similarly to the
derivation of the LST of Vp we write

D*(s)=Ele*"] = ZE [ ) A (Ui T (] — e*/\UH])}
+ZE [ —S(TE, 1) AT (Ui-l-Ti)ef/\UIH_l} B [e’SIFT(I)]
B 1—U*(A)+U*(A)m[1—T*(s+A)] (6.1)
N 1—=U*(NT*(s+ ) ' '
By differentiation we obtain
O 1 1)
E[D] = O T (6.2)
Then
P — (6.3

1 —U*(\)T*(\)
is the expected total time within a Vp in which the server is (only) on vacations U.
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7 Queue Size Distribution at a Start of a Busy Period

As indicated before, a busy period starts either with & = A(U)‘A(U)>1 batches that arrived
during a vacation, or with a batch of size X arriving within a timer duration. Thus, the

number of customers ) at a busy period initiation is

¢ . W.p. «
Q= {Zj—l X b (7.1)
X w.p. 1—a.
It follows that
Q) = 129 = ab [2&i= )] 4 (1 - a) B[="]
—af(X(2)) + (1 - )X (2) . (7.2)
Using (4.7) and (3.2) we get
Sy UT0) - UrN)  Ur()A - T (Y) ¢
CE =T T I rmro) G (7.3)
From (7.1) and (7.3) we obtain
FlQl = HIEE X+ BXI0 - ) = |r—firr + oGl | P
= ME[Vp]|E[X]. (7.4)
For the SV case (T*(\) = 0), equation (7.3) reduces to
Qi japasv(2) = U (0) - U" (V) (1 - X(2)) - (7.5)
Equation (7.5) coincides with equation (2.2) of Choudhury (2002).
For the MV case (T*(\) = 1), we get
@MX/G/1+MV(Z) = U*l((? &*[{;)(A) (7.6)

8 Cycle Time

Let C' = Vp + 6 denote the cycle time. Then, for given Uy, T1,Us, T, ..., Uy, T}, Ugyq and 1,

and with £ := A(Ugy, , we have

)‘A(U,H_I)Z

. {Zf](Ui+7})+Uk+1+9£ wp. e AT (] M) (5.1)

Z?:] (Ui + Ti) + Upgr + 1 + 0x wp. e Zf:l(Ui+Ti)€7/\Uk+1FTk+1(I)

11



where Frp, (1) = P(Tj41 > I) and ¢ and fx are as defined in section 4.
Then, the LST of C' is given by

ZE[ —sF (UH+T) *SUk+1e*/\Zf:1(Ui+Ti)(1 */\Uk+1)e Z§ 1(0x)j]
k=0

Tk+1(

+ZE [ —s h (Ui o= 5Ukp1 5T o= A SN (UiATh) - AUk i1 I)e’sax]

Mg

[U*(s + NT* (s + N)]" - B [e Ui (1 — ¢ A1) [9’;((5)]“”’““)A(uk+1>>1]

=~
Il

0

[1=T*(s 4+ N)]0%(s) .

+ 3 [U(s + T (s + N)] U (s + A)
— A+s

UM A = 03 (8)] = UF(s 4 A) + U (s N [1— T (s + A% (s)
Cls) = UGG - (8

The mean cycle time is given by
E[U] + L(A)[l — T ()]
(1=p[ =U(NT*(N)]

It readily follows from (4.12) and (8.3) that the fraction of time that the server is busy or is

non-operative is, as expected,

BlC] =

(8.3)

El] ElVel
P == Poon— ive 1= =1—p.
busy B [C] P, non—operative B [C] Y

Similarly, the proportion of time that the server is dormant is given by

b DL _ 52T )

EIC]  EU]+ 52 1 —1+(\)]

Finally, the proportion of time the server spends on ‘pure’ vacations U is

L _EVA-EID]_ B p)
Y E[C] BlU+ Z8 1o\

9 Waiting Times

Let W := waiting (queueing) time of an arbitrary customer, J. W is composed of two

components: (1) W, := the time from the arrival epoch of the batch to which J belongs

12



until the moment at which the first customer of this batch starts service, and (2) Wy := the
time elapsing from the latter moment until customer J begins service.

Consider a random batch of size X as a ‘super customer’ with (total) service time
Y = 2% B; (see section 4). Now, the LST of W, is the same as the LST of the wait-
ing time of an arbitrary customer (derived by Boxma, Schlegel and Yechiali (BSY) (2002))
for an M /G /1 queue with a waiting server, timer and vacations, where the individual service
time B there is replaced by Y here. Thus, using the expression for W*(s) in section 4 of
BSY (2002), we have

sSL=p) ML= Us)/s+ U (W)L T" (V)]

Wils) = ST )~ T - T 0 + 2B
= Wigaon () [T T R )+ o ¢ (9.1

where Wy 6(v)1 is the waiting time of a customer in a regular M /G /1 queue where service
times are Y rather than B. Thus,

where v = AE[U] + U*(A)(1 — T*())).

Equation (9.1) reveals that the queueing time of a batch is a composition of two inde-

pendent variables: Wi = Wyyqvy1 + S, where

g _ | By with probability (E[Ve] — E[D])/E[V
|0 with probability E[D]/E[Vp] .

When X = 1, equation (9.2) reduces to equation (4.2) in BSY (2002).

Calculation of W;(s)

Customer .J is in the n-th position (within his batch) with probability g, = %Zzozn fr (see
Burke, 1975). Then

o o

Wils) = S E[e ™| Jisnth)]g. =3 [efs@:;l m)} 0

_ Z [B*(5)]" 'gn = Z [B*(s)}"l% S = %ka Z [B*(s)]""




Also,

EWy] = Y E[Wy|J is n-thlgy = > (n— 1)bg, = ;Z fe) (n—=1)
n=1 n=1 k=1 n=1
b~ k(k—1) b , _bf®
= ?;fk72 *ﬁ[E[X]*ﬂ* of (9.4)

Finally, since W = W, + W, while W; and W, are independent, we obtain
W*(s) = Wi(s) - W5 (s) . (9.5)

The mean queueing time is given by

AE[Y?  AE[U?] 1 bf®
+ L+
2(1—p) 2 v 2f
For the MV case, equation (9.5) reduces to Baba’s (1986) equation (24) and Takagi’s
equation (3.20):

E[W] = (9.6)

: _ <1—p>[1—X<B*< ) I T B
MX/G/1+MV(S) f(s—)\—l—)\X (B*(s )(1 B(s)) SE[U] = W*( )MX/G/1 Ry (s)
(9.7)

implying the decomposition W = Wyx /1 + Ry (see equation (3.13) above). Clearly, (9.7)

follows from (9.1) when there is no dormant time (7" = 0 and D = 0) within a vacation
period. Now,

AB[Y?] | E[U?] | bf®

21— p) " om] T o

Afb2) bf® E[U?

= a0 e g TaEn (53)

E [WMX/G/]+MV] =

Equation (9.8) coincides with equation (18) of Rosenberg and Yechiali (1993), and with
equation (25) of Baba (1986).
For the SV case,

i AE[Y?] AE[U?] bf®
[Warx jaisv] 2(1 —p)  2(\E[U]+U*()\)) 2f
AFb® bf AE[U?]

= 219 T a—p T pEUIF ] (9-9)

Equation (9.9) is identical to equation (32) of Rosenberg and Yechiali (1993).

It is readily seen that E[Wyx,c11sv] < E[W] < E[Wyx /6/14mv]-
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