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1. INTRODUCTIONWe consider a system of two multi-server queues in tandem with limited intermediatebu�er. External arrival is Poissonian with rate �, and service times of individual customersat queue k are exponential with parameter �k. There are Sk identical servers at stage k(k = 1; 2). Upon service completion at the �rst queue (lower echelon), a customer mayrequest (with probability p=1�q) an additional service at the second stage (higher echelon).If such a service is requested and the intermediate bu�er is full, the customer is forced toleave the system immediately.Such a model describes, for example, a telephone information system where a cus-tomer, after being served by a regular operator, may request a higher-echelon-service froma supervisor.Systems with a sequence of queues in tandem, where intermediate bu�ers are limited,have been studied in the literature from the early stages of queueing theory. One of theearliest works was a study by Avi-Itzhak and Yadin [2] of a sequence of two single-serverstations with no intermediate queue. They derived the moment generating function of thesteady-state number of customers in the various parts of the system under the assumptionof Poisson arrivals and arbitrarily distributed service times in both stations. The resultswere then extended to the case of a �nite intermediate bu�er. Avi-Itzhak [3] further ex-tended this work to a sequence of several stations, each of which consists of the samenumber of servers, with deterministic service times. He derived several properties regard-ing waiting times, which enable one to obtain waiting time distributions of such queueingprocesses. Neuts [16] analyzed a two-stage single-server network with a �nite intermediatebu�er and blocking, where service times have a general distribution function at the �rststage, and exponential distribution at the second stage. He emphasized equilibrium con-ditions and obtained several limit theorems of practical interest. Konheim and Reiser [13]studied a two-stage single-server queueing network with feedback and a �nite intermediatewaiting room, where the �rst server is blocked whenever M requests are present in thesecond stage. Under Markovian assumptions they provided an algorithmic solution for thestate probabilities of the network. For the above model, apart from blocking, Bocharovand Al'bores [4] allowed for two additional disciplines: loss of the blocked customer, and2



repeated service by the �rst server. When there is no feedback and the loss discipline isconsidered, this model coincides with ours whenever S1 = S2 = 1 and q = 0.A brief literature review (up to 1980) of the considerable number of papers devoted tothe study of systems consisting of two queues in tandem, separated by a �nite intermediatebu�er, where the physical phenomenon of primary interest is blocking, is given in Chapter5 of Neuts [17]. The excellent exposition indicates various results and emphasizes therelationships between these blocking models and their matrix-geometric solutions.Gershwin [6] considered a system of k single-server stations in tandem with limitedstorage capacity between any two nodes. He approximated the single k-machine line by aset of k � 1 two-machine lines and developed an algorithm to calculate the parameters ofthe modi�ed system.Altiok [1] studied a system of single-server queues in series with �nite waiting-roomcapacities and blocking, where service times have phase-type distributions. He presentedan approximation method, indicating that exact results for the steady-state queue-lengthdistributions are generally not attainable.Langaris [14] considered a two-stage service system with a single server at each stage,�nite waiting space in both stages and blocking. He developed the �nite set of balanceequations required for the solution of the two-dimensional steady-state probabilities, andshowed how these equations can be modi�ed to present the case of multiple servers in bothstages.G�un and Makowski [11] analyzed a two-node tandem queueing system with a singleserver at each node and phase-type service times. Bu�ers are limited and feedback isallowed at both stages. They showed that the invariant probability vector of the underlying�nite-state quasi-birth-and-death process admits a matrix-geometric representation for allvalues of the arrival parameter �. A closed-form expression for the corresponding ratematrix provides the basis for an e�cient calculation of the invariant probability vector.Recently, Chao and Pinedo [5] studied a system with two single-server stations intandem, with no intermediate bu�er, where customers arrive in batches. Assuming arbi-trary service times at the two stations, they derived an expression for the expected timein system, and discussed its various properties.3



Multi-server systems with two types of servers were considered by Green [7,8]. Thereare primary servers and auxiliary servers, and two types of customers: those who aresatis�ed with a service given by a primary server, and those who request a combined serviceof a primary server and an auxiliary one working together. Clearly, such a customer is beingserved only when two di�erent servers (primary and auxiliary) are available simultaneously.Another model analyzed by Green [9,10] is also characterized by two types of servers:the general-use server may perform any job, whereas the limited-use server may performonly speci�c jobs. Accordingly, there are two types of customers: those who request thegeneral service, and those who are content with a limited service.Our model di�ers from these two studies in two main points: (i) a customer is servedseparately at each queue, and (ii) a customer is forced to leave the system if he is blockedbefore the second stage.We formulate our model as a two-dimensional continuous-time markov chain, whereeach of the coordinates of the system-state (i; j) represents the number of customers wait-ing and being served at the corresponding stage. By following the method used by Levyand Yechiali [15] and by Bocharov and Al'bores [4], we obtain expressions for the partialgenerating functions �j(z) = 1Pi=0 pi;jzi determining the steady-state distribution of thesystem fpi;jg (i = 0; 1; : : :; j = 0; 1, : : :,M), where M is the maximal total number ofcustomers at stage 2. The determination of the partial generating functions f�j (z)gMj=0 isbased on a detailed analysis of an Hessenberg matrix obtained from the set of linear equa-tions in the unknown generating functions. This analysis exploits interlacing properties ofthe roots of the determinant of the above Hessenberg matrix.In Section 2 the model is described in detail, and the set of balance equations forthe steady-state probabilities fpi;jg is derived. In Section 3 we obtain a linear set ofequations A(z) � �(z) = b(z), where �(z) is an M + 1-dimensional vector of the abovegenerating functions; b(z) is a vector whose entries are comprised of the parameters ofthe system (�; �1; �2; S1; S2; p) and a set of S1(M + 1) so-called \boundary" probabilitiesfpi;jg (i = 0; 1; : : : ; S1 � 1; j = 0; 1; : : : ;M); and A(z) is a tridiagonal matrix involvingonly the parameters of the system.In Section 4, M + 1 roots of the determinant of A(z), lying in the interval (0; 1],4



are used to obtain additional equations in the probabilities fpi;jg, the knowledge of whichdetermines completely the set of generating functions f�j (z)gMj=0. An example is presentedto show how these equations can be solved.In Section 5 we investigate the properties of an Hessenberg matrix, derived from A(z)by elementary row operations, and show that its determinant possesses 2M + 2 distinctreal roots. This is done by exploring the interlacing structure resulting from the specialform of the matrix. Furthermore, we show that M + 1 roots lie in the interval (0; 1], andthe remaining M + 1 in the interval (1;1).In the Appendix we present a few numerical results of the actual values of the rootsof the equation jA(z)j = 0, for various values of the parameters (�; �1; �2; S1; S2; p).2. THE MODEL AND BALANCE EQUATIONSConsider a two-echelon multi-server tandem queueing system, where customers arriveto the �rst (lower) echelon according to a Poisson process with rate �, and are served thereby S1 identical servers. Service times at the �rst stage are exponentially distributed withparameter �1, and the waiting room is unlimited. After being served at the lower echelon,a customer leaves the system (i.e., service is complete) with probability q, or moves on andrequests additional service at the second stage (higher echelon) with probability p = 1� q.There are S2 identical servers at the second stage, and service times of individual customersare exponentially distributed with parameter�2. However, the intermediate bu�er betweenthe two stages is limited to M �S2 (at mostM customers at the second stage), such thata customer who requests service at the higher echelon and �nds the bu�er full, leaves thesystem with probability 1.We formulate the system as a two-dimensional birth-and-death process, and writedown the balance equations for the steady-state probabilities of the system. Clearly, anecessary and su�cient condition for ergodicity is � < S1�1, as the �rst stage is simplyan M=M=S1 queue, and the second stage, being a �nite-capacity bu�er queue, regulatesitself and is ergodic for any �nite arrival and service rates. However, the �rst and secondqueues are dependent, as the input to stage 2 depends on the output of stage 1.5



Let pi;j be the steady-state probability of the system, where i and j denote the num-ber of customers (waiting and in-service) at the �rst and second echelon, respectively(i = 0; 1; 2; :::; j = 0; 1; 2; :::;M).The balance equations, representing the various distinct transitions between the states,take the form:For j = 0 :�p0;0 = �2p0;1 + q�1p1;0 (2.1)pi;0(� + i�1) = �pi�1;0 + �2pi;1 + q(i+ 1)�1pi+1;0 1 � i � S1 � 1 (2.2)pi;0(� + S1�1) = �pi�1;0 + �2pi;1 + qS1�1pi+1;0 S1 � i <1 (2.3)For 1 � j � S2 � 1:p0;j(�+ j�2) = (j + 1)�2p0;j+1 + q�1p1;j + p�1p1;j�1 (2.4)pi;j(�+ j�2 + i�1) = �pi�1;j + (j + 1)�2pi;j+1 + q(i + 1)�1pi+1;j + p(i + 1)�1pi+1;j�11 � i � S1 � 1 (2.5)pi;j(�+ j�2 + S1�1) = �pi�1;j + (j + 1)�2pi;j+1 + qS1�1pi+1;j + pS1�1pi+1;j�1S1 � i <1 (2.6)For S2 � j �M � 1:p0;j(�+ S2�2) = S2�2p0;j+1 + q�1p1;j + p�1p1;j�1 (2.7)pi;j(�+ S2�2 + i�1) = �pi�1;j + S2�2pi;j+1 + q(i + 1)�1pi+1;j + p(i+ 1)�1pi+1;j�11 � i � S1 � 1 (2.8)pi;j(�+ S2�2 + S1�1) = �pi�1;j + S2�2pi;j+1 + qS1�1pi+1;j + pS1�1pi+1;j�1S1 � i <1 (2.9)For j =M :p0;M (�+ S2�2) = �1p1;M + p�1p1;M�1 (2.10)pi;M (� + S2�2 + i�1) = �pi�1;M + (i + 1)�1pi+1;M + p(i+ 1)�1pi+1;M�11 � i � S1 � 1 (2.11)pi;M (� + S2�2 + S1�1) = �pi�1;M + S1�1pi+1;M + pS1�1pi+1;M�1 S1 � i <1 (2.12)6



3. GENERATING FUNCTIONSA closed-form solution for equations (2.1) - (2.12) is not known. It turns out thatthe solution of the above equations depends on knowledge of the values of the \boundary"probabilities fpi;jg (i = 0; : : : ; S1 � 1; j = 0; : : : ;M).In order to be able to calculate these probabilities, we de�ne the following partialgenerating functions: �j(z) = 1Pi=0 pi;jzi for 0 � j � M and jzj � 1. �j(z) is the marginalgenerating function of the number of customers at stage 1, when there are j customersat stage 2 (0 � j � M), so that �j (1) = 1Pi=0 pi;j � p:j is the marginal probability of jcustomers at the second stage.Consider �rst j = 0. For each i in equations (2.1), (2.2) and (2.3), multiply thecorresponding equation by zi, and sum over all i. This results, after some algebraicmanipulations, in�0(z) h�(1� z) + S1�1 �1� qz�i� �2�1(z) = b0(z) (3:1)where b0(z) = �qz � 1��1 S1�1Xi=1 ipi;0zi + �1� qz �S1�1 S1�1Xi=0 pi;0zi (3:2)Similarly, for j = 1; 2; : : : ; S2 � 1, we obtain�pS1�1z �j�1(z)+�j (z) h�(1� z) + j�2 + S1�1 �1� qz�i�(j+1)�2�j+1(z) = bj (z) (3:3)where bj (z) = � qz � 1��1 S1�1Xi=1 ipi;jzi + �1� qz�S1�1 S1�1Xi=0 pi;jzi+ p�1z S1�1Xi=1 ipi;j�1zi � pS1�1z S1�1Xi=0 pi;j�1zi (3:4)In the same manner, for j = S2; : : :, M � 1, we derive�pS1�1z �j�1(z) + �j(z) h�(1 � z) + S2�2 + S1�1 �1� qz �i� S2�2�j+1(z) = bj (z) (3:5)7



where bj (z) = � qz � 1��1 S1�1Xi=1 ipi;jzi + �1� qz�S1�1 S1�1Xi=0 pi;jzi+ p�1z S1�1Xi=1 ipi;j�1zi � pS1�1z S1�1Xi=0 pi;j�1zi (3:6)Finally, for j =M , the calculations lead to�pS1�1z �M�1(z) + �M (z) ��(1� z) + S2�2 + S1�1(1� 1z )� = bM (z) (3:7)where bM (z) = �1z � 1��1 S1�1Xi=1 ipi;M zi +�1� 1z�S1�1 S1�1Xi=0 pi;Mzi+ p�1z S1�1Xi=1 ipi;M�1zi � pS1�1z S1�1Xi=0 pi;M�1zi (3:8)The collection (3.1) - (3.8) comprises a set of M +1 equations in the M +1 unknowngenerating functions �j(z); 0 � j � M , where the S1(M + 1) \boundary" probabilitiesfpi;jg (i = 0; : : : ; S1 � 1; j = 0; : : : ;M) appearing in the expressions for the bj (z) are yetto be determined. Hence, if expressions for these S1(M +1) probabilities can be obtained,one is left with a linear set of M +1 equations in the M +1 unknown generating functions�j(z), 0 � j � M . Once the set f�j(z)gMj=0 is obtained, the entire two-dimensionalprobability distribution fpi;jg (0 � i <1; 0 � j �M) can be calculated.As a result of the above considerations, we �rst focus our attention on �nding thevalues of the \boundary" probabilities fpi;jg (0 � i � S1 � 1; 0 � j �M).For this purpose we make use of the balance equations (2.1), (2.4), (2.7) and (2.10),where i = 0; 0 � j �M , and equations (2.2), (2.5), (2.8) and (2.11), where 1 � i � S1�2;0 � j �M . These equations comprise a set of (S1�1)(M+1) linear equations in S1(M+1)variables. We therefore need additionalM+1 equations in the above unknown probabilitiesfpi;jg.To this end we exploit the information concentrated within the generating functions.We can rewrite equations (3.1), (3.3), (3.5) and (3.7) in a matrix form as A(z)��(z) = b(z),where �(z) is a vector of the M + 1 generating functions �j(z), 0 � j � M ; A(z) is8



Figure 1: The Coe�cient Matrix A(z) in the Equation A(z) ��(z) = b(z)9



an M + 1-dimensional square matrix, and b(z) is an M + 1-dimensional vector whosecomponents are de�ned by equations (3.2), (3.4), (3.6) and (3.8). Figure 1 representsspeci�cally the coe�cients of the matrix A(z) in the equation A(z) � �(z) = b(z), whereq(z) � �(1� z) +S1�1(1� qz ). Note that the columns of A(z) are numbered from 0 to M .By Cramer's rule, for each value of z such that A(z) is non-singular,jA(z)j � �j (z) = jAj(z)j; 0 � j �M (3:9)where Aj (z) is the matrix obtained fromA(z) by replacing column j by the right-hand-sidevector b(z), and jAj is the determinant of A.Since for every jzj � 1 the system A(z) � �(z) = b(z) always possesses a solution, itfollows that whenever A(z) is singular, so is Aj (z), and (3.9) holds in this case as well.That is, for any root zk of the equation jA(z)j = 0, and for each 0 � j � M; we canwrite jAj(zk)j = 0, which is a linear equation in the unknowns fpi;jg (0 � i � S1 � 1;0 � j �M), appearing in the vector b(z).It will be shown in Section 5 that the equation jA(z)j = 0 hasM +1 distinct roots inthe interval (0; 1]. M roots fzkg will be utilized in Section 4 to obtain M linear equationsof the form jAM (zk)j = 0, and the remaining root will result in a redundant equation. Thelast equation will be derived separately, and will complete the set of S1(M + 1) equationsin the desired \boundary" probabilities fpi;jg.4. SOLUTION OF THE SYSTEMIn this section we solve for the S1(M + 1) unknowns fpi;jg (0 � i � S1 � 1;0 � j � M); which are required for the complete knowledge of the generating functionsf�j(z)g, 0 � j � M . Clearly, by knowing the generating functions, one can derive theentire set of the two-dimensional stationary probabilities and various other parameters ofthe system.In Section 2 we derived a set of (S1 � 1) (M + 1) independent equations in the aboveS1(M+1) \boundary" probabilities. In order to obtain additionalM+1 equations, we willinvestigate in the next section the equation in z; jA(z)j = 0, and will show that the polyno-mial jA(z)j hasM+1 distinct roots in (0; 1], denoted �z1(M+1); z2(M+1); : : : ; zM (M + 1);10



zM+1(M + 1) = 1�, such that each root zk � zk(M + 1) results (see (3.9)) in an equationjAM (z�)j = 0, 1 � k �M + 1, in the unknowns fpi;jg (0 � i � S1 � 1; 0 � j �M).Note, however, that the equation obtained from the root zM+1(M + 1) = 1 is redun-dant. This can easily be seen by examining the matrix AM (z), obtained from A(z) byreplacing its last column with the vector b(z). Indeed, for z = 1, the sum of all the termsin each column of A(z) is 0, and so is the sum of the elements of b(1). Therefore, jAM (1)jis the zero polynomial, so that the equation jAM (zM+1)j = 0 is redundant. Thus, we needan additional equation to be able to solve for the required fpi;jg.It was indicated in Section 2 that the �rst echelon comprises a regular M=M=S1queue whose stationary (one-dimensional) probabilities for i customers are the marginalprobabilities of our two-dimensional system, i.e., pi� � MPj=0 pi;j , 0 � i <1. It could easilybe derived from equations (2.1) - (2.12) that for i � 0, �pi� = Ni+1�1pi+1;� as in theclassical M=M=S1 queue, where Ni = min(i, S1). We therefore readily have the knownresult (cf. Kleinrock [12]) thatp0� = 264S1�1Xk=0 � ��1�kk! + � ��1�S1S1!  11� �S1�1 !375�1 (4:1)However, p0� = MPj=0 p0;j so that equation (4.1), with fp0;jgMj=0 on the left-hand side, com-pletes the set of S1(M + 1) equations in the S1(M + 1) \boundary" probabilities fpi;jg.Once the \boundary" fpi;jg are determined and expressions for f�j(z)gMj=0 are ob-tained, the mean total number of customers, L1 and L2, at the two echelons can becalculated: L1 = 1Xi=1 ipi� = p0� " (�=�1)S1 �1S1!(1� �1)2 #+ ��1where �1 = �S1�1 and p0� is given by (4.1).L2 = MXj=1 jp�j = MXj=1 j�j(1) :11



Example The method of solution is illustrated for the case S1 = 2, S2 = 1, M = 1.In this case there are four unknown \boundary" probabilities fpi;jg (i = 0; 1; j = 0; 1).Equations (2.1) and (2.10) get the form�p0;0 = �2p0;1 + q�1p1;0 (4:2)p0;1(� + �2) = �1p1;1 + p�1p1;0 (4:3)Equation (4.1) is written asp0;0 + p0;1 = "1 + ��1 + �22�21 � 11� �2�1 !#�1 (4:4)The fourth equation will be derived with the aid of the root z0 (0 < z0 < 1) ofjA(z)j = 0, where A(z) = 26664 �(1� z)+2�1 �1� qz � ... ��2: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :�2p�1z ... �(1� z) + �2+2�1 �1� 1z � 37775 (4:5)Substituting z = z0 in b(z) results inb0(z0) = 2�1�1� qz0� p0;0 + �1�1� qz0� z0p1;0 (4:6)and b1(z0) = �2p�1z0 p0;0 + 2�1�1� 1z0� p0;1 � p�1p1;0 + �1�1� 1z0� z0p1;1 (4:7)Replacing the second column of A(z0) by b(z0) yields the matrix A1(z0). The equationjA1(z0)j = 0 leads to the following equation in the four unknowns:p0;0 �� (1� z0)��2p�1z0 �� + p0;1 ���(1� z0) + 2�1�1� qz0���2�1�1� 1z0���+ p1;0 [�(1� z0)(�p�1)] + p1;1 ���(1� z0) + 2�1�1� qz0���1�1� 1z0� z0� = 0 (4:8)Solution of the system of equations (4.2), (4.3), (4.4), and (4.8) gives the desired\boundary" probabilities for this case. 12



5. THE INTERLACING THEOREMWe transform the basic matrix A(z) (see Figure 1) into an equivalent matrix H(z)(possessing the same determinant) which is of the so-called Hessenberg form (cf. Wilkinson[18]). For this purpose we perform elementary operations on the rows of the matrix A(z)as follows: we add theM th row to theM �1st row, then we add the modi�edM �1st rowto the M � 2nd row, and continue in this manner up to the �rst (i.e. 0th) row. The matrixthus obtained has its ith row, 0 � i �M , as the sum of the rows from i toM in the originalmatrix A(z). The resulting matrix is characterized by the fact that the elements belowthe secondary diagonal (the one below the main diagonal) are all zero. Such a matrix iscalled an upper Hessenberg matrix, and is represented in Figure 2. Note that in our caseall the elements of the 0th row of the Hessenberg matrix obtained from A(z) are the same,and equal to p(z) � �(1� z) + S1�1(1� 1z ) = q(z) � S1�1 pz .Let Bn(z) denote the determinant of the square sub-matrix of H(z) comprised of its�rst n rows and n columns (i.e. rows i = 0; 1; : : : ; n � 1, and columns j = 0; 1; : : : n� 1).Let Cn(z) be the determinant of the above n-dimensional sub-matrix, with the excep-tion that the lower right element is p(z) instead of p(z) +Kn�2, where Kn = min(n; S2).Now, calculating Bn(z) and Cn(z); n = 1; 2; : : : ;M + 1, we writeBn(z) = (p(z) +Kn�1�2)Bn�1(z) + pS1�1z Cn�1(z) (5:1)Cn(z) = p(z)Bn�1(z) + pS1�1z Cn�1(z) (5:2)Subtracting (5.2) from (5.1), we haveCn(z) = Bn(z) �Kn�1�2Bn�1(z) (5:3)Using (5.3) for Cn�1(z) and substituting in (5.1) yieldsBn(z) = �p(z) +Kn�1�2 + pS1�1z �Bn�1(z) � pS1�1z Kn�2�2Bn�2(z) (5:4)13



Figure 2: The Hessenberg Matrix H(z)14



We rewrite equation (5.4) asBn(z) = fn�1(z)Bn�1(z) � gn�2(z)Bn�2(z) (5:5)where fn(z) = p(z) +Kn�2 + pS1�1z (5:6)and gn(z) = pS1�1z Kn�2 (5:7)By factoring out p(z) (see Figure 2), we writeBn(z) = p(z)Dn(z); 1 � n �M + 1 (5:8)where Dn(z) is the determinant of the matrix determining Bn(z), with the modi�cationthat all the elements of the �rst row equal 1. Thus, by dividing the recursion formula (5.5)by p(z), a recursion formula for Dn(z) is obtained:Dn(z) = fn�1(z)Dn�1(z) � gn�2(z)Dn�2(z) (5:9)Our goal is to show that jA(z)j = jH(z)j = BM+1(z) = p(z)DM+1(z) has M + 1 realroots in the closed interval (0; 1].First note that p(z) has two roots: z1 = 1 and z2 = S1�1� . As z2 > 1 (stationarycondition for the system), it follows that p(z) has a single root in (0; 1]. Therefore, showingthat DM+1(z) possesses M real roots in (0; 1] is equivalent to showing that BM+1(z) hasM + 1 real roots in that interval.Thus, we will inductively show that for every 1 � n �M + 1, Dn(z) possesses n� 1real roots in (0; 1]. Moreover, it will be shown that all n roots are distinct .Dn(z) is a rational function with zn�1 as its denominator, and a polynomial eDn(z)of degree 2n� 2 as its numerator, such that Dn(z) = eDn(z)zn�1 .In the sequel it will be proved that eDn(z) has n� 1 of its roots in the open interval(0; 1), and the remaining n�1 roots in (1;1). The proof requires a few preliminary results.15



Theorem 5.1. For every n, eDn(z) is a polynomial with alternating signs. That is,eDn(z) = 2n�2Pi=0 (�1)idi(n)zi, where all di(n) have the same sign. Furthermore, all di(n)are non-zero, and for any two consecutive polynomials eDn�1(z) and eDn(z), the coe�cientsd0(n � 1) and d0(n) have opposite signs.Proof: As B1(z) = p(z) , we readily have D1(z) � 1.Also, since B2(z) = p(z)f1(z), thenD2(z) = f1(z) = p(z) + �2 + pS1�1z= ��z2 + z(� + S1�1 + �2)� qS1�1z = eD2(z)zClearly, eD2(z) has alternating signs, no zero coe�cients, and d0(2) = �qS1�1 has anopposite sign to that of d0(1) = 1.We now assume that Theorem 5.1 holds true for all values up to n� 1, and prove itsvalidity for n > 2.Considering (5.9), concentrate �rst on the term fn�1(z)Dn�1(z). As was done forf1(z), equation (5.6) is rewritten asfn�1(z) = ��z2 + z(� + S1�1 +Kn�1�2)� qS1�1z (5:10)The numerator in (5.10) is a polynomial with alternating signs. The numerator ofthe product fn�1(z)Dn�1(z) is also a polynomial with alternating signs, since by theinduction assumption so is eDn�1(z), and the product of two such polynomials results in apolynomial with the same property. It is also clear that multiplying Dn�1(z) by fn�1(z)changes the sign of d0(n� 1) (the zero coe�cient of eDn�1(z)), since the zero coe�cient ofthe numerator of fn�1(z) is negative. Furthermore, the denominator of the above productis z � zn�2 = zn�1.Next, consider the second term of (5.9). As gn�2(z) = pS1�1z Kn�2�2, the numeratorof �gn�2(z)Dn�2(z) is again, by the induction assumption, a polynomial with alternatingsigns, and the sign of the zero coe�cient of its numerator is di�erent from that of d0(n�2).Its denominator is z � zn�3 = zn�2. 16



As d0(n � 1) and d0(n � 2) di�er in sign, so do the zero coe�cients of the numer-ators of fn�1(z)Dn�1(z) and �gn�2(z)Dn�2(z), as both fn�1(z) and �gn�2(z) have anegative zero coe�cient. Recall that the denominator of the �rst term is zn�1, whilethat of the second term is zn�2. Multiplying both the numerator and the denominator of�gn�2(z)Dn�2(z) by z results in an expression with a numerator that is still a polynomialwith alternating signs but with no zero coe�cient. The sign of the coe�cient of z1 (pre-viously the zero element) equals the sign of the coe�cient of z1 in the numerator of theproduct fn�1(z)Dn�1(z). Hence, the coe�cient of each power comprises the sum of twonon-zero expressions having the same sign.It follows that eDn(z) has alternating signs, and that d0(n), which is in fact the zerocoe�cient of fn�1(z)Dn�1(z), is opposite in sign to d0(n� 1). Q. E. D.Corollary. eDn(z) = 2n�2Pi=0 (�1)idi(n)zi possesses no negative roots.Proof: As for every n all di(n) have the same sign, we �x n and assume di(n) > 0 forall i. If z < 0, then (�1 � z)i > 0 for every i, so that eDn(z) = 2n�2Pi=0 (�1)idi(n)zi > 0.Similarly, if all di(n) < 0, then eDn(z) < 0 for z < 0.As a result, it is su�cient to consider only values of z in the domain (0;1).Remark: eDn�1(z) and eDn(z) have no common roots, for if they had one, then, bythe recursion formula (5.9), eDn�2(z) would have had the same root. Continuing in thismanner leads to eD1(z) having the same root. But eD1(z) � 1 has no roots, which is acontradiction. Hence, no two consecutive polynomials have common roots.The Interlacing Theorem.a) The polynomial eDn(z) has n � 1 distinct roots in the open interval (0; 1). Betweenany two roots of eDn(z) in this interval lies exactly one root of eDn�1(z). The smallestroot of eDn(z) in (0; 1) is smaller than that of eDn�1(z), and the greatest root of eDn(z)in that interval is greater than that of eDn�1(z).b) The same properties hold in the interval (1;1).Proof: Again, eD1(z) = 1, and eD2(z) = ��z2 + z(� + S1�1 + �2) � qS1�1, such thateD2(0) = �qS1�1 < 0; eD2(1) = pS1�1 + �2 > 0; and eD2(1) < 0:17



It readily follows that the quadratic function eD2(z) has a single root in the openinterval (0; 1); and a single root in (1;1).Thus, the theorem is true for eD1(z) and eD2(z).We now assume that the theorem holds for all values up to n�1, and prove its validityfor n > 2.For the inductive step, we need several propositions. Using the induction assumption,the n� 2 distinct roots of eDn�1(z) in (0; 1) are denoted by0 < z1(n� 1) < z2(n � 1) < : : : < zn�2(n� 1) < 1:Proposition 5.1. Between any two roots of eDn�1(z) in (0; 1) there is a root of eDn(z).Proof: Let zi(n�1) and zi+1(n�1) be two consecutive roots of eDn�1(z) in the interval(0; 1). Then, from (5.9), for j = i; i+ 1,Dn�zj(n� 1)� = fn�1�zj(n� 1)�Dn�1�zj(n� 1)�� gn�2�zj(n� 1)�Dn�2�zj(n� 1)�(5:11)Since zj(n � 1) is a root of eDn�1(z), it is also a root of Dn�1(z), so thatDn�1�zj(n � 1)� = 0 for j = i; i+ 1.Hence, Dn�zj (n� 1)� = �gn�2�zj(n� 1)�Dn�2�zj(n � 1)� (5:12)Since gn(z) > 0 for all z > 0 and all n, the signs of Dn�2�zj (n�1)� and Dn�zj(n�1)�are opposite (both values are non-zero by the remark), and so are the signs of eDn�2�zj(n�1)� and eDn�zj(n�1)� for j = i, i+1. By the induction assumption, eDn�2(z) has a uniqueroot between zi(n � 1) and zi+1(n � 1), and therefore changes its sign between the tworoots. That is, eDn�2�zi(n� 1)� � eDn�2�zi+1(n� 1)� < 0. Therefore, by (5.12), eDn(z) alsochanges its sign between zi(n � 1) and zi+1(n � 1). Thus, eDn(z) has an odd number ofroots (at least one) between zi(n� 1) and zi+1(n� 1).Proposition 5.2. Proposition 5.1 holds true, word for word, for the interval (1;1), wherethe distinct n� 2 roots are denoted by1 < zn�1(n� 1) < zn(n� 1) < � � � < z2n�4(n � 1) < 1 .18



Proposition 5.3. The smallest root of eDn(z), denoted z1(n), lies to the left of the smallestroot of eDn�1(z). That is, z1(n) < z1(n � 1).Proof: As before, by (5.12), the signs of eDn(z1(n�1)) and eDn�2�z1(n�1)� are opposite.However, eDn(0) and eDn�2(0) have the same sign. This follows since eDn(0), eDn�1(0) andeDn�2(0), being the zero coe�cients of the corresponding polynomials, satisfy (by Theorem5.1), eDn(0) � eDn�1(0) < 0 and eDn�1(0) � eDn�2(0) < 0, so that eDn(0) � eDn�2(0) > 0: By theinduction assumption, eDn�2(z) has no root in (0; z1(n�1)), and therefore does not changeits sign in (0; z1(n� 1)). Thus, eDn(z) does change its sign in (0; z1(n� 1)), which impliesthat it has an odd number of roots (at least one) there. Therefore, z1(n) < z1(n � 1).Proposition 5.4. For every n; eDn(1) > 0.Proof: Since eD1(1) = 1 > 0, it is enough to show thateDn(1)eDn�1(1) > pS1�1 > 0 (n > 1) (5:13)Clearly, eD2(1)eD1(1) = pS1�1+�21 > pS1�1.We now assume that (5.13) holds up to n� 1, and prove its validity for n > 2.Since z = 1 is a root of p(z), and Dn(1) = eDn(1), we have, from (5.6), (5.7) and (5.9),eDn(1)eDn�1(1) = Kn�1�2 + pS1�1 � pS1�1Kn�2�2 eDn�2(1)eDn�1(1) (5:14)Using the induction assumption for eDn�2(1)eDn�1(1) , we readily haveeDn(1)eDn�1(1) > Kn�1�2 + pS1�1 � pS1�1Kn�2�2 � 1pS1�1= pS1�1 + �2(Kn�1 �Kn�2) � pS1�1 (5:15)Proposition 5.5. Let bz(n) denote the largest root of eDn(z) in (0; 1). Then, bz(n) >zn�2(n � 1), i.e., bz(n) is greater than the largest root of eDn�1(z) in that interval.Proof: Again, by (5.12), eDn�zn�2(n � 1)� and eDn�2�zn�2(n � 1)� di�er in sign. Onthe other hand, by Proposition 5.4, eDn(1) and eDn�2(1) have the same (positive) sign.19



However, by the induction assumption, eDn�2(z) has no roots in �zn�2(n � 1); 1�, andtherefore does not change sign in that interval. Thus, eDn(z) must change its sign in�zn�2(n� 1); 1�, and hence has an odd number of roots there. That is, its largest root in(0; 1), bz(n), is greater than zn�2(n � 1).Proposition 5.6. Let z(n) denote the smallest root of eDn(z) in (1;1). Then z(n) <zn�1(n � 1).Proof: Similar to Proposition 5.5, eDn�2(�) and eDn(�) have opposite signs atzn�1(n � 1), and the same sign at z = 1. Since, by the induction assumption, eDn�2(z)has no roots in �1; zn�1(n� 1)�, it follows that eDn(z) has an odd number of roots in thatinterval, which implies that the smallest one, z(n), lies to the left of zn�1(n � 1).Proposition 5.7. Let z(n) denote the largest root of eDn(z) in (1;1). Then z(n) >z2n�4(n� 1).Proof: As before, eDn�z2n�4(n � 1)� � eDn�2�z2n�4(n � 1)� < 0. We wish to show thateDn(1) � eDn�2(1) > 0. In order to do this it is enough to show that eDn(1) � eDn�1(1) <0. As (by Theorem 5.1) eDn(z) and eDn�1(z) are (alternating signs) polynomials of evendegrees, the signs of the leading power and the zero element are the same. Also, as thesign of d0(n) is opposite to that of d0(n� 1), it follows that the sign of the leading powerof eDn(z) di�ers from that of eDn�1(z). Clearly, the sign of the leading power determinesthe sign of eDn(1).Since eDn�2(z) does not change sign in �z2n�4(n�1);1�, necessarily eDn(z) does, andtherefore has an odd number of roots there, which implies that z(n) > z2n�4(n � 1).To complete the proof of the Interlacing Theorem, it remains only to show that eDn(z)possesses exactly n� 1 roots in (0; 1) and n� 1 roots in (1;1).By the induction hypothesis, eDn�1(z) has exactly n�2 roots in (0; 1). We have shown(Proposition 5.1) that between any two consecutive roots of eDn�1(z) there is a set of roots(at least one) of eDn(z), so that there are at least n� 3 such roots. In addition, there is anon-empty set of roots of eDn(z) in each of the intervals �0; z1(n�1)� and �zn�2(n�1); 1�.Hence, eDn(z) has at least n � 1 roots in (0; 1). The same situation occurs in (1;1), so20



that eDn(z) has at least 2n � 2 roots in (0;1). But the degree of the polynomial eDn(z)is 2n� 2, which implies that each of the above sets consists of exactly one root of eDn(z).Thus, eDn(z) has exactly n�1 roots in (0; 1) and the same number of roots in (1;1), withall roots being distinct . Q.E.D.To summarize, it has been shown that the determinant of the Hessenberg matrixjH(z)j = BM+1(z) has M +1 real roots in (0; 1], since DM+1(z) possesses M real roots in(0; 1) and p(z) has z = 1 as its only root in (0; 1].In the Appendix we present a few numerical results regarding the calculation of theroots of BM+1(z) for various values of (�; �1; �2; S1; S2; p). Observe that Bn(z), 1 � n �M + 1, can be considered as a homogenous polynomial in �, �2 and S1�1, as is easilyseen from the recursion formula (5.4) and the expressions for B1(z) and B2(z). Thus,multiplying �, �2 and S1�1 by the same factor, leaving the other parameters unchanged,results in an equation having the same roots.For example, the roots of the equation jH(z)j = 0 with parameters (1; 2; 2; 2; 1; 1=2),as appearing in the �rst row of Table 1 in the Appendix, are equal to the roots of thatequation with parameters (1:5; 3; 3; 2; 1; 1=2), which appear in the tenth row of Table 1.ACKNOWLEDGEMENTWe wish to thank Prof. N. Dyn for suggesting the interlacing approach, and for veryvaluable advice. REFERENCES[1] Altiok, T., \Approximate Analysis of Queues in Series with Phase-Type Service Timesand Blocking", Operations Research, 37, 601-610 (1989).[2] Avi-Itzhak, B. and Yadin, M., \A Sequence of Two Servers with No IntermediateQueue", Management Science, 11, 553-564 (1965).[3] Avi-Itzhak, B., \A Sequence of Service Stations with Arbitrary Input and RegularService Times", Management Science, 11, 565-571 (1965).[4] Bocharov, P.P. and Al'bores, F.K., \On Two-Stage Exponential Queueing Systems21
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APPENDIXFor various values of the parameters (�; �1; �2; S1; S2; p), we present a few numericalexamples of the actual values of the roots fzkg, obtained from the solution of the equationjH(z)j = 0:As was proved in Section 5, this equation has 2M +2 roots for every M . M +1 rootsare in (0; 1] and the other M + 1 are in (1;1). As was shown, for every M , z = 1 is aroot, and z = S1�1� is another root in (1;1). (It is also observed that the root z = S1�1� isalways the next one after z = 1.)Table 1: Values of the Roots of jH(z)j for M = 2.� �1 �2 S1 S2 p Values of roots1 2 2 2 1 1/2 (0.17, 0.53, 1, 4, 5.82, 7.46)1 2 2 2 1 2/3 (0.09, 0.43, 1, 4, 5.81, 7.66)1 2 3 2 1 2/3 (0.07, 0.41, 1, 4, 6.70, 8.80)1 2 3 2 1 1/2 (0.13, 0.49, 1, 4, 6.76, 8.12)1 3 3 2 1 1/2 (0.17, 0.55, 1, 6, 8.63, 10.68)1 3 3 2 1 2/3 (0.09, 0.45, 1, 6, 8.58, 10.86)2 3 3 2 1 2/3 (0.08, 0.41, 1, 3, 4.45, 6.03)2 3 3 2 1 3/4 (0.05, 0.36, 1, 3, 4.46, 6.12)1.5 3 3 2 1 2/3 (0.05, 0.37, 1, 4, 5.81, 7.75)1.5 3 3 2 1 1/2 (0.17, 0.53, 1, 4, 5.82, 7.46)1.5 3 2 2 1 2/3 (0.11, 0.43, 1, 4, 5.25, 6.85)1.5 3 2 2 1 1/2 (0.20, 0.55, 1, 4, 5.23, 6.66)Table 2: Values of the Roots of jH(z)j for M = 3.� �1 �2 S1 S2 p Values of roots2 2 2 2 1 1/2 (0.12, 0.26, 0.62, 1, 2, 2.79, 3.73, 4.44)2 2 2 2 1 3/4 (0.03, 0.12, 0.48, 1, 2, 2.78, 3.87, 4.69)3 2 2 2 1 3/4 (0.03, 0.11, 0.41, 1, 1.33, 2.02, 2.88, 3.52)3 2 2 2 1 1/2 (0.11, 0.24, 0.56, 1, 1.33, 2, 2.75, 3.31)3 4 3 2 1 1/2 (0.15, 0.30, 0.66, 1, 2.66, 3.38, 4.36, 5.12)3 4 3 2 1 2/3 (0.07, 0.19, 0.56, 1, 2.66, 3.37, 4.46, 5.31)4 4 3 2 1 2/3 (0.07, 0.18, 0.52, 1, 2, 2.62, 3.56, 4.27)4 4 3 2 1 1/2 (0.14, 0.28, 0.63, 1, 2, 2.60, 3.46, 4.11)5 4 5 2 1 1/2 (0.10, 0.23, 0.58, 1, 1.6, 2.47, 3.36, 4.03)5 4 5 2 1 2/3 (0.05, 0.15, 0.51, 1, 1.6, 2.44, 3.44, 4.18)5 3 4 2 1 2/3 (0.04, 0.13, 0.45, 1, 1.2, 2, 2.86, 3.49)5 3 4 2 1 3/4 (0.03, 0.10, 0.41, 1, 1.2, 2.01, 2.89, 3.55)23


