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ABSTRACT

We consider a two-echelon multi-server tandem queueing system fed by a Poissonian
stream of arrivals. There are S servers at stage k where service times are exponentially
distributed with parameter ps (k = 1,2). The first stage has an unlimited waiting capacity,
while the second stage has a finite buffer of size M —S5. Upon service completion at the first
stage, a customer leaves the system with probability g, or moves on to request additional
service at the second stage. If the intermediate buffer is full, the customer leaves the
system with probability 1.

Such a model describes, for example, a telephone information system where a cus-
tomer, after being served by a regular operator, may request a higher-echelon-service from
a supervisor.

We formulate the problem as a two-dimensional continuous-time Markov chain and
derive a set of linear equations, A(z)-II(z) = b(z), where II(2) is an M + 1-dimensional vec-
tor of unknown partial generating functions which determine the steady-state probabilities
of the system. The tridiagonal matrix A(z), which contains the parameters, is trans-
formed into an Hessenberg matrix whose determinants yield polynomials with interesting
interlacing properties. These properties are exploited to obtain a set of equations in
“boundary” probabilities that are required for the complete specification of the generating
functions. An example and numerical results are presented.
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1. INTRODUCTION

We consider a system of two multi-server queues in tandem with limited intermediate
buffer. External arrival is Poissonian with rate A, and service times of individual customers
at queue k are exponential with parameter uy. There are Si identical servers at stage k
(k = 1,2). Upon service completion at the first queue (lower echelon), a customer may
request (with probability p=1—q) an additional service at the second stage (higher echelon).
If such a service is requested and the intermediate buffer is full, the customer is forced to

leave the system immediately.

Such a model describes, for example, a telephone information system where a cus-
tomer, after being served by a regular operator, may request a higher-echelon-service from

a supervisor.

Systems with a sequence of queues in tandem, where intermediate buffers are limited,
have been studied in the literature from the early stages of queueing theory. One of the
earliest works was a study by Avi-Itzhak and Yadin [2] of a sequence of two single-server
stations with no intermediate queue. They derived the moment generating function of the
steady-state number of customers in the various parts of the system under the assumption
of Poisson arrivals and arbitrarily distributed service times in both stations. The results
were then extended to the case of a finite intermediate buffer. Avi-Itzhak [3] further ex-
tended this work to a sequence of several stations, each of which consists of the same
number of servers, with deterministic service times. He derived several properties regard-
ing waiting times, which enable one to obtain waiting time distributions of such queueing
processes. Neuts [16] analyzed a two-stage single-server network with a finite intermediate
buffer and blocking, where service times have a general distribution function at the first
stage, and exponential distribution at the second stage. He emphasized equilibrium con-
ditions and obtained several limit theorems of practical interest. Konheim and Reiser [13]
studied a two-stage single-server queueing network with feedback and a finite intermediate
waiting room, where the first server is blocked whenever M requests are present in the
second stage. Under Markovian assumptions they provided an algorithmic solution for the
state probabilities of the network. For the above model, apart from blocking, Bocharov

and Al’bores [4] allowed for two additional disciplines: loss of the blocked customer, and
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repeated service by the first server. When there is no feedback and the loss discipline is

considered, this model coincides with ours whenever §; = 53 = 1 and ¢ = 0.

A brief literature review (up to 1980) of the considerable number of papers devoted to
the study of systems consisting of two gqueues in tandem, separated by a finite intermediate
buffer, where the physical phenomenon of primary interest is blocking, is given in Chapter
5 of Neuts [17]. The excellent exposition indicates various results and emphasizes the
relationships between these blocking models and their matrix-geometric solutions.

Gershwin [6] considered a system of k single-server stations in tandem with limited
storage capacity between any two nodes. He approximated the single k-machine line by a
set of k — 1 two-machine lines and developed an algorithm to calculate the parameters of
the modified system.

Altiok [1] studied a system of single-server queues in series with finite waiting-room
capacities and blocking, where service times have phase-type distributions. He presented
an approximation method, indicating that exact results for the steady-state queue-length
distributions are generally not attainable.

Langaris [14] considered a two-stage service system with a single server at each stage,
finite waiting space in both stages and blocking. He developed the finite set of balance
equations required for the solution of the two-dimensional steady-state probabilities, and
showed how these equations can be modified to present the case of multiple servers in both
stages.

Giin and Makowski [11] analyzed a two-node tandem queueing system with a single
server at each node and phase-type service times. Buffers are limited and feedback is
allowed at both stages. They showed that the invariant probability vector of the underlying
finite-state quasi-birth-and-death process admits a matrix-geometric representation for all
values of the arrival parameter A. A closed-form expression for the corresponding rate
matrix provides the basis for an efficient calculation of the invariant probability vector.

Recently, Chao and Pinedo [5] studied a system with two single-server stations in
tandem, with no intermediate buffer, where customers arrive in batches. Assuming arbi-
trary service times at the two stations, they derived an expression for the expected time

in system, and discussed its various properties.

3



Multi-server systems with two types of servers were considered by Green [7,8]. There
are primary servers and auxiliary servers, and two types of customers: those who are
satisfied with a service given by a primary server, and those who request a combined service
of a primary server and an auxiliary one working together. Clearly, such a customer is being
served only when two different servers (primary and auxiliary) are available simultaneously.

Another model analyzed by Green [9,10] is also characterized by two types of servers:
the general-use server may perform any job, whereas the limited-use server may perform
only specific jobs. Accordingly, there are two types of customers: those who request the
general service, and those who are content with a limited service.

Our model differs from these two studies in two main points: (i) a customer is served
separately at each queue, and (ii) a customer is forced to leave the system if he is blocked
before the second stage.

We formulate our model as a two-dimensional continuous-time markov chain, where
each of the coordinates of the system-state (¢, ) represents the number of customers wait-
ing and being served at the corresponding stage. By following the method used by Levy
and Yechiali [15] and by Bocharov and Al’bores [4], we obtain expressions for the partial
generating functions 7;(z) = i p; jz* determining the steady-state distribution of the
system {p; ;} (: = 0,1,...; 5 Z::00,1, ...,M), where M is the maximal total number of
customers at stage 2. The determination of the partial generating functions {Wj(z)}é-\io is
based on a detailed analysis of an Hessenberg matrix obtained from the set of linear equa-
tions in the unknown generating functions. This analysis exploits interlacing properties of
the roots of the determinant of the above Hessenberg matrix.

In Section 2 the model is described in detail, and the set of balance equations for
the steady-state probabilities {p;;} is derived. In Section 3 we obtain a linear set of
equations A(z) - II(z) = b(z), where II(z) is an M + 1-dimensional vector of the above
generating functions; b(z) is a vector whose entries are comprised of the parameters of
the system (A, g1, 2,51, 52,p) and a set of S1(M + 1) so-called “boundary” probabilities
{pi;} ¢t=0,1,...,5—1; 5 =0,1,...,M); and A(z) is a tridiagonal matrix involving
only the parameters of the system.

In Section 4, M + 1 roots of the determinant of A(z), lying in the interval (0,1],
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are used to obtain additional equations in the probabilities {p; ;}, the knowledge of which
determines completely the set of generating functions {=; (z)}é\io. An example is presented
to show how these equations can be solved.

In Section 5 we investigate the properties of an Hessenberg matrix, derived from A(z)
by elementary row operations, and show that its determinant possesses 2M + 2 distinct
real roots. This is done by exploring the interlacing structure resulting from the special
form of the matrix. Furthermore, we show that M + 1 roots lie in the interval (0, 1], and
the remaining M + 1 in the interval (1, c0).

In the Appendix we present a few numerical results of the actual values of the roots

of the equation |A(z)| = 0, for various values of the parameters (A, p1, 2,51, S2,p).

2. THE MODEL AND BALANCE EQUATIONS

Consider a two-echelon multi-server tandem queueing system, where customers arrive
to the first (lower) echelon according to a Poisson process with rate A, and are served there
by 57 identical servers. Service times at the first stage are exponentially distributed with
parameter pq, and the waiting room is unlimited. After being served at the lower echelon,
a customer leaves the system (i.e., service is complete) with probability g, or moves on and
requests additional service at the second stage (higher echelon) with probability p =1 —gq.
There are S5 identical servers at the second stage, and service times of individual customers
are exponentially distributed with parameter 5. However, the intermediate buffer between
the two stages is limited to M — S, (at most M customers at the second stage), such that
a customer who requests service at the higher echelon and finds the buffer full, leaves the
system with probability 1.

We formulate the system as a two-dimensional birth-and-death process, and write
down the balance equations for the steady-state probabilities of the system. Clearly, a
necessary and sufficient condition for ergodicity is A < Sip1, as the first stage is simply
an M/M/S; queue, and the second stage, being a finite-capacity buffer queue, regulates
itself and is ergodic for any finite arrival and service rates. However, the first and second

queues are dependent, as the input to stage 2 depends on the output of stage 1.



Let p; ; be the steady-state probability of the system, where 7 and j denote the num-
ber of customers (waiting and in-service) at the first and second echelon, respectively
(1=0,1,2,...; =0,1,2,..., M).

The balance equations, representing the various distinct transitions between the states,

take the form:

For 3 =0:
APo,o = p2po,1 + quipi0 (2.1)
Pio(A+ip1) = Api—1,0 + p2pia + (2 + 1)papit1,0 1<e<85, -1 (2.2)
Pio(A+ Sip1) = Api—10 + paps1 + @S1papitri0 S1<i< oo (2.3)

For1 <j; <65, —1:
Po,j( A+ 7p2) = (5 + L)papo,j+1 + quip1,j + ppapi,j—1 (2.4)
Pi (A +Jp2 +ipa) = Apicaj + (7 + Dpepijr +q(0 + Dpapiv1,; + 2 + Dpapivj
1<i<8—1 (25)
Pij(A+ Jp2 + S1p1) = Api—1,; + (5 + Dpepij+1 + @S1p1pit1,5 + PS1p1Pi+1,j-1
S1<i< oo (2.6)
For S <7< M —1:
Po,j(A + Sap2) = Sapapoj+1 + qpap1,; + PRaPL, -1 (2.7)
Pi, (A + Sapa +ipa) = Aps_1,j + Sapepsjr1 +q(i + Dpapiva,; + p(i + Dpapiv1,;1
1<i<8 —1 (2.8)
Pij (A + Sapa + S1p1) = Api—1,; + S2papij+1 + @S1paPiv1,5 + PSP+, -1
S1<i<oo (2.9)
For 3 = M:
po,Mm (A + Sap2) = pipi,m + Ppip1,M—1 (2.10)
pim(A+ Sapz +ip1) = Apicam + (24 V)papis1,m + (@ + 1) papigr, m—1
1<i< S5 —-1 (2.11)
piMm(A+ Sapz + S1p1) = Apic1,m + S1paPi+1,M + PS1p1Pi+1, M1
Si<i<oo (212)



3. GENERATING FUNCTIONS

A closed-form solution for equations (2.1) - (2.12) is not known. It turns out that
the solution of the above equations depends on knowledge of the values of the “boundary”
probabilities {p; ;} (¢=0,...,51 —1; j=0,...,M).

In order to be able to calculate these probabilities, we define the following partial
generating functions: ;(z) = i p;;jz' for 0 < j < M and |z| < 1. m(2) is the marginal
generating function of the nu;;l())er of customers at stage 1, when there are 7 customers
at stage 2 (0 < 5 < M), so that m;(1) = i pi,j = p.; is the marginal probability of j

=0

K]
customers at the second stage.

Consider first j = 0. For each 7 in equations (2.1), (2.2) and (2.3), multiply the
corresponding equation by z*, and sum over all i. This results, after some algebraic

manipulations, in

mo0(2) [A(l —2) + Sip (1 - —)] — pami(2) = bo(2) (3.1)
where
bo(2) = (g — 1) U1 12: ipiozt + (1 — —) S1p1 lz_: Pi0Z2 (3.2)

Similarly, for j =1,2,...,5; — 1, we obtain

PO s () [N~ 2) i+ S (1 D) G Dy () = Bi(2) (33)
where
S1—1 S1—1
bj(z) = (g — 1) U1 ; ipi 2t + (1 — g) S1p1 ZZ_; pi ;2
P S1—1 . ' pSllul S1—1 '
+ ; 1P 12" — . ; Pij—12" (3.4)
In the same manner, for j = Ss,..., M — 1, we derive

PO @) () ML )+ Sapa + Su (1 D)] - Sopamiia () = bi() (35)
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where

q S,—1 q S,—1
bj(z) = (; — 1) U1 Z 1p; 2t + (1 — ;) S1p1 Z pi ;2"
pp1 = pSip1 T~
1 ) i 1441 s
+ 7 ; P, j—12 — > Zz:; Pi,j—12 (36)

Finally, for j = M, the calculations lead to

—P51,u1
Z

mm—1(2) + T (z) {)\(1 — 2) + Sapa + S1pa (1 — %)} = by (2) (3.7)

where

1 Sl—l 1 Sl_l
bar(z) = (; - 1) p ) ipime (1 - ;) S Y piz’

pp1 pSip1 T~
1 . 11 ;
+ — Z 1P M—12" — Z Pi,M—12" (3.8)

The collection (3.1) - (3.8) comprises a set of M + 1 equations in the M + 1 unknown
generating functions m;(z),0 < j < M, where the S;(M + 1) “boundary” probabilities
{pij} 2=0,..., 8 —1;57 =0,..., M) appearing in the expressions for the b;(z) are yet
to be determined. Hence, if expressions for these S;1(M + 1) probabilities can be obtained,
one is left with a linear set of M + 1 equations in the M + 1 unknown generating functions
mj(z), 0 < j < M. Once the set {Wj(z)};-\i
probability distribution {p; ;} (0 <i < 00; 0 < j < M) can be calculated.

o is obtained, the entire two-dimensional

As a result of the above considerations, we first focus our attention on finding the
values of the “boundary” probabilities {p; ;} (0 <7< 51 —1;0<j < M).

For this purpose we make use of the balance equations (2.1), (2.4), (2.7) and (2.10),
where i = 0; 0 < 7 < M, and equations (2.2), (2.5), (2.8) and (2.11), where 1 <1 < 57 —2;
0 <j < M. These equations comprise a set of (57 —1)(M +1) linear equations in S; (M +1)
variables. We therefore need additional M +1 equations in the above unknown probabilities
{pi,i}.

To this end we exploit the information concentrated within the generating functions.
We can rewrite equations (3.1), (3.3), (3.5) and (3.7) in a matrix form as A(z)-II(z) = b(z),
where II(2) is a vector of the M + 1 generating functions m;(z), 0 < 7 < M; A(z) is
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Figure 1: The Coefficient Matrix A(z) in the Equation A(z) - II(2)
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an M + 1-dimensional square matrix, and b(z) is an M + 1-dimensional vector whose
components are defined by equations (3.2), (3.4), (3.6) and (3.8). Figure 1 represents
specifically the coeflicients of the matrix A(z) in the equation A(z) - II(z) = b(z), where
g(z) = M1 —2) + S1p1(1 — Z). Note that the columns of A(z) are numbered from 0 to M.

By Cramer’s rule, for each value of z such that A(z) is non-singular,
[A(2)] - mj(2) = [4;(2), 0<j<M (3.9)

where A;(z) is the matrix obtained from A(z) by replacing column j by the right-hand-side
vector b(z), and |A| is the determinant of A.

Since for every |z| < 1 the system A(z) - II(2) = b(z) always possesses a solution, it
follows that whenever A(z) is singular, so is 4;(z), and (3.9) holds in this case as well.
That is, for any root z; of the equation |A(z)] = 0, and for each 0 < j < M, we can
write |A4;(z;)| = 0, which is a linear equation in the unknowns {p; ;} (0 <i < §; —1;
0 <j < M), appearing in the vector b(z).

It will be shown in Section 5 that the equation |A(z)| = 0 has M + 1 distinct roots in
the interval (0,1]. M roots {zx} will be utilized in Section 4 to obtain M linear equations
of the form |Apr(2x)| = 0, and the remaining root will result in a redundant equation. The
last equation will be derived separately, and will complete the set of S1(M + 1) equations
in the desired “boundary” probabilities {p; ;}.

4. SOLUTION OF THE SYSTEM

In this section we solve for the Si(M + 1) unknowns {p;;} (0 < ¢ < §; — 1;
0 < j < M), which are required for the complete knowledge of the generating functions
{mj(2)}, 0 < j < M. Clearly, by knowing the generating functions, one can derive the
entire set of the two-dimensional stationary probabilities and various other parameters of
the system.

In Section 2 we derived a set of (51 — 1) (M + 1) independent equations in the above
S1(M +1) “boundary” probabilities. In order to obtain additional M +1 equations, we will
investigate in the next section the equation in z, |A(z)| = 0, and will show that the polyno-

mial |A(z)| has M +1 distinct roots in (0, 1], denoted (zl(M—I—l),zz(M—l—l), vz (M 4 1),
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1 (M+1) = 1), such that each root zp = z;(M + 1) results (see (3.9)) in an equation
|Apm(zx)| =0,1 <k <M +1,in the unknowns {p; ;} (0 << 85 —1;0 <35 < M).

Note, however, that the equation obtained from the root zpry1(M + 1) =1 is redun-
dant. This can easily be seen by examining the matrix Aps(z), obtained from A(z) by
replacing its last column with the vector b(z). Indeed, for z = 1, the sum of all the terms
in each column of A(z) is 0, and so is the sum of the elements of b(1). Therefore, |Aar(1)]
is the zero polynomial, so that the equation |Apr(zpr+1)| = 0 is redundant. Thus, we need
an additional equation to be able to solve for the required {p; ;}.

It was indicated in Section 2 that the first echelon comprises a regular M/M/S,
queue whose stationary (one-dimensional) probabilities for ¢ customers are the marginal
probabilities of our two-dimensional system, i.e., p;. = % Pij, 0 <1 < oo. It could easily
be derived from equations (2.1) - (2.12) that for ¢ > ]0_,0 Api. = Niyi1pipit1,. as in the
classical M/M/S1 queue, where N; = min(i, S1). We therefore readily have the known

result (cf. Kleinrock [12]) that

-1

RGN ()

M

However, po. = Y, po,;j so that equation (4.1), with {po,j};vio on the left-hand side, com-
i=0

pletes the set of S7(M + 1) equations in the S7(M + 1) “boundary” probabilities {p; ;}.

M

Once the “boundary” {p; ;} are determined and expressions for {m;(2)};Z, are ob-

tained, the mean total number of customers, L; and Ls, at the two echelons can be

calculated:
- (Ap1)™ pr A
L == 1p;. = . _— _|_ N
1 ; D Po !51!(1 —p1)2 i
where p; = ﬁ and po. is given by (4.1).
M M
Ly, = ij-j = Zjﬂ'j(l)-
j=1 j=1

11



Example The method of solution is illustrated for the case §; =2, S, =1, M = 1.
In this case there are four unknown “boundary” probabilities {p; ;} (: = 0,1; j = 0,1).
Equations (2.1) and (2.10) get the form

APo,o = p2po,1 + quipi0 (4.2)

Po,1(A+ p2) = pap1,1 + ppapio (4.3)

Equation (4.1) is written as

~1
A A2 1
Poo +po1 = |1+ Z + 202 1T = (4.4)

2p1

The fourth equation will be derived with the aid of the root zo (0 < zp < 1) of
|A(z)| = 0, where

Al —2) .
w2u (1-%) e
Al2) = | e (4.5)
—2ppy A1 — 2) + po
z +2p1 (1 - 7)

Substituting z = 2o in b(z) results in

bo(Zo) = 2,[1/1 (]_ - i) po’o —|— M1 (]_ - i) Zopl’o (46)
20 20
and
-2 1 1
b1(20) = P Po,o + 211 (1 — —) Po,1 — PU1P1,0 + M1 (1 — —) 20P1,1 (4.7)

Replacing the second column of A(zp) by b(z0) yields the matrix A;(29). The equation

|A1(20)| = 0 leads to the following equation in the four unknowns:

Poo {A(l — 20) (_2;;#1)} + po,1 KA(I — z0) + 2p (1 - %)) (2,u1 (1 - j—o))}

a0 (L= 20)(pin)] +pu | (AL =20) + 201 (1 2) ) (1= 1) o] =0 (49

20 20

Solution of the system of equations (4.2), (4.3), (4.4), and (4.8) gives the desired

“boundary” probabilities for this case.
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5. THE INTERLACING THEOREM

We transform the basic matrix A(z) (see Figure 1) into an equivalent matrix H(z)
(possessing the same determinant) which is of the so-called Hessenberg form (cf. Wilkinson
[18]). For this purpose we perform elementary operations on the rows of the matrix A(z)
as follows: we add the M row to the M — 15t row, then we add the modified M — 15 row
to the M — 274 row, and continue in this manner up to the first (i.e. 0**) row. The matrix
thus obtained has its i*? row, 0 < i < M, as the sum of the rows from i to M in the original
matrix A(z). The resulting matrix is characterized by the fact that the elements below
the secondary diagonal (the one below the main diagonal) are all zero. Such a matrix is
called an upper Hessenberg matrix, and is represented in Figure 2. Note that in our case
all the elements of the 0" row of the Hessenberg matrix obtained from A(z) are the same,
and equal to p(z) = A(1 — 2) + S1p1 (1 — %) =q(z) — S1m L.

Let B, (z) denote the determinant of the square sub-matrix of H(z) comprised of its
first n rows and n columns (i.e. rows ¢ =0,1,...,n — 1, and columns j =0,1,...n —1).

Let Cy(z) be the determinant of the above n-dimensional sub-matrix, with the excep-
tion that the lower right element is p(z) instead of p(z) + Knua, where K,, = min(n, S3).

Now, calculating B, (z) and Cph(2), n =1,2,..., M + 1, we write

Ba(2) = (p(2) + Knai2) Baa () + P20, (2) (5.1)

Cnlz) = pl2)Baa () + P20, (2) (5.2)

Subtracting (5.2) from (5.1), we have
Cn(2) = Bn(2) — Kn—1p2Bn_1(2) (5.3)

Using (5.3) for C\,_1(2) and substituting in (5.1) yields

S S
Bn(z) = (P(Z) + Kn—l,u/Z + P ;'ul) Bn—l(z) - P i'ul Kn—Z,U/ZBn—Z(z) (54)
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Figure 2: The Hessenberg Matrix H(z)
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We rewrite equation (5.4) as

Ba(2) = fa1(:)Ba_1(2) — gn-2(2)Bn2(2) (55)
where
S
Fal2) = p(z) + Knppz + 2222 (5.6)
and
pS1p1
gn(z) = . Koo (5.7)
By factoring out p(z) (see Figure 2), we write
B,.(z) = p(z)D,(2), 1<n<M+1 (5.8)

where D,,(z) is the determinant of the matrix determining B, (z), with the modification
that all the elements of the first row equal 1. Thus, by dividing the recursion formula (5.5)

by p(z), a recursion formula for D, (z) is obtained:
Da(z) = fa1(2)Dn 1(2) ~ gn-2(-) D3 () (59

Our goal is to show that |A(z)| = |H(2)| = Bm+1(2) = p(2)Dar+1(z) has M + 1 real
roots in the closed interval (0,1].

First note that p(z) has two roots: z; = 1 and 2z = % As z3 > 1 (stationary
condition for the system), it follows that p(z) has a single root in (0,1]. Therefore, showing
that Dpry1(z) possesses M real roots in (0,1] is equivalent to showing that Basy1(z) has

M + 1 real roots in that interval.
Thus, we will inductively show that for every 1 <n <M + 1, D,(z) possesses n — 1

real roots in (0,1]. Moreover, it will be shown that all n roots are distinct.

! as its denominator, and a polynomial ﬁn(z)

D,(2)

zn—1 °

D, (z) is a rational function with 2™~
of degree 2n — 2 as its numerator, such that D, (z) =
In the sequel it will be proved that ﬁn(z) has n — 1 of its roots in the open interval

0,1), and the remaining n—1 roots in (1, 00). The proof requires a few preliminary results.
s 1) g 5 p q p y
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Theorem 5.1. For every n, ﬁn(z) is a polynomial with alternating signs. That is,
_ an—2 .
D.(z) = > (—1)*di(n)z*, where all d;(n) have the same sign. Furthermore, all d;(n)

=0

are non-zero, and for any two consecutive polynomials D1 (z) and ﬁn(z), the coeflicients

do(n — 1) and do(n) have opposite signs.

Proof: As Bi(z) = p(z) , we readily have D;(z) = 1.
Also, since B2(z) = p(2)f1(z), then

P51,u1

Dy (2) = fi(z) = p(z) + pa +

—Az% + 2Z(A+ S1p1 + p2) — ¢S . 132(2)

z z

Clearly, 132(2) has alternating signs, no zero coeflicients, and do(2) = —¢Sip1 has an
opposite sign to that of do(1) = 1.

We now assume that Theorem 5.1 holds true for all values up to n — 1, and prove its
validity for n > 2.

Considering (5.9), concentrate first on the term f,_1(2)Dn_1(2). As was done for

f1(z), equation (5.6) is rewritten as

A2+ 2(X Kn1pz) —
faca(z) = 22 T2 Si ¥ Knoapiz) = a5am (5.10)

z

The numerator in (5.10) is a polynomial with alternating signs. The numerator of
the product fn_1(2)Dn—1(2) is also a polynomial with alternating signs, since by the
induction assumption so is ﬁn_l(z), and the product of two such polynomials results in a
polynomial with the same property. It is also clear that multiplying D,,_1(z) by fn—_1(2)
changes the sign of do(n — 1) (the zero coeflicient of ﬁn_l(z)), since the zero coefficient of
the numerator of f,_1(z) is negative. Furthermore, the denominator of the above product
is z-2""2 = "L,

Next, consider the second term of (5.9). As g,_2(z2) = pSlT’“Kn_z,uz, the numerator
of —gn_2(2)Dn—_2(2) is again, by the induction assumption, a polynomial with alternating
signs, and the sign of the zero coeflicient of its numerator is different from that of do(n—2).

Its denominator is z - 2773 = 22,
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As do(n — 1) and do(n — 2) differ in sign, so do the zero coeflicients of the numer-
ators of f,_1(2)Dn_1(2) and —gn_2(2)Dn_2(z), as both f,_1(z) and —g,_2(z) have a
negative zero coefficient. Recall that the denominator of the first term is 2"~ !, while
that of the second term is 2"~ 2. Multiplying both the numerator and the denominator of
—gn—2(2)Dn_2(z) by z results in an expression with a numerator that is still a polynomial
with alternating signs but with no zero coefficient. The sign of the coefficient of 2! (pre-
viously the zero element) equals the sign of the coefficient of z! in the numerator of the
product fn—1(2)Dn,_1(z). Hence, the coeflicient of each power comprises the sum of two
non-zero expressions having the same sign.

It follows that ﬁn(z) has alternating signs, and that do(n), which is in fact the zero

coeflicient of f,_1(2)Dn—1(2), is opposite in sign to do(n — 1). Q. E.D.
—_ 2n—2 . .
Corollary. D,(z) = ). (—1)'d;(n)z* possesses no negative roots.
=0

Proof: As for every n all d;(n) have the same sign, we fix n and assume d;(n) > 0 for
. —_ 2n—2 . .
all 3. If z < 0, then (—1-2)* > 0 for every 1, so that D,(2) = Y (—1)'d;(n)z* > 0.
=0

Similarly, if all d;(n) < 0, then ﬁn(z) < 0 for z < 0.

As a result, it is sufficient to consider only values of z in the domain (0, ).

Remark: ﬁn_l(z) and ﬁn(z) have no common roots, for if they had one, then, by
the recursion formula (5.9), ﬁn_z(z) would have had the same root. Continuing in this
manner leads to D (z) having the same root. But 131(2) = 1 has no roots, which is a

contradiction. Hence, no two consecutive polynomials have common roots.

The Interlacing Theorem.

a) The polynomial ﬁn(z) has n — 1 distinct roots in the open interval (0,1). Between
any two roots of ﬁn(z) in this interval lies exactly one root of ﬁn_l(z). The smallest
root ofﬁn(z) in (0,1) is smaller than that ofﬁn_l(z), and the greatest root ofﬁn(z)
in that interval is greater than that of ﬁn_l(z).

b) The same properties hold in the interval (1, 00).

Proof: Again, 131 (z) =1, and 132(2) = —Xz2 + z2(A + S1p1 + p2) — qS1p1, such that
D5(0) = —gS1p1 <0, 132(1) =pSip1 +p2 >0, and l~)2(oo) < 0.
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It readily follows that the quadratic function 132(2) has a single root in the open
interval (0,1), and a single root in (1, c0).

Thus, the theorem is true for D, (z) and 132(2).

We now assume that the theorem holds for all values up to n —1, and prove its validity
for n > 2.

For the inductive step, we need several propositions. Using the induction assumption,

the n — 2 distinct roots of ﬁn_l(z) in (0,1) are denoted by
0<zifn—1)<z(n—1)<...<zpa(n—1) < 1.

Proposition 5.1. Between any two roots ofﬁn_l(z) in (0,1) there is a root ofﬁn(z).

Proof: Let z;(n—1) and z;41(n — 1) be two consecutive roots of ﬁn_l(z) in the interval

(0,1). Then, from (5.9), for j =1, 1+ 1,

Dp(zj(n = 1)) = fa-1(2i(n = 1)) Dn-1(2j(n = 1)) = gn—2(2j(n — 1)) Dn—s(2j(n — 1))
(5.11)
Since zj(n — 1) is a toot of Dn_1(z), it is also a root of D, 1(z), so that
Dp_1(zj(n—1)) =0forj =1, i+ 1.
Hence,

Dn(zj(n —1)) = —gn-2(2j(n — 1)) Du—2(zj(n — 1)) (5.12)

Since gn(z) > 0 for all z > 0 and all n, the signs of D,,_» (z]- (n— 1)) and D,, (z]- (n— 1))
are opposite (both values are non-zero by the remark), and so are the signs of Dy_s (z]- (n—
1)) and D, (z]- (n— 1)) for j = 1,17+ 1. By the induction assumption, ﬁn_z(z) has a unique
root between z;(n — 1) and z;+1(n — 1), and therefore changes its sign between the two
roots. That is, ﬁn_z (zz(n — 1)) -ﬁn_z (zi_|_1(n — 1)) < 0. Therefore, by (5.12), ﬁn(z) also
changes its sign between z;(n — 1) and z;41(n — 1). Thus, ﬁn(z) has an odd number of

roots (at least one) between z;(n — 1) and z;41(n — 1).

Proposition 5.2. Proposition 5.1 holds true, word for word, for the interval (1, 00), where
the distinct n — 2 roots are denoted by

l<zp_in—1)<zpn—1) < - <zap4(n—1) < oo.
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Proposition 5.3. The smallest root ofﬁn(z), denoted z1(n), lies to the left of the smallest
root ofﬁn_l(z). That is, z1(n) < z1(n — 1).

Proof: As before, by (5.12), the signs of ﬁn(zl (n—1)) and Dy_s (zl (n— 1)) are opposite.
However, ﬁn(O) and ﬁn_z(O) have the same sign. This follows since ﬁn(O), ﬁn_l(O) and
ﬁn_z(O), being the zero coeflicients of the corresponding polynomials, satisfy (by Theorem
5.1), Dn(0)-Dy,_1(0) < 0 and D,,_1(0) - D,_3(0) < 0, so that D,(0)- Dp_5(0) > 0. By the
induction assumption, ﬁn_z(z) has no root in (0, z;(n — 1)), and therefore does not change
its sign in (0, z1(n — 1)). Thus, ﬁn(z) does change its sign in (0, 21 (n — 1)), which implies

that it has an odd number of roots (at least one) there. Therefore, z;(n) < z1(n — 1).

Proposition 5.4. For every n, D,(1) > 0.

Proof: Since 131(1) =1 >0, it is enough to show that

;nii(ll()l) > pSipr >0 (’I’L > 1) (513)

Clearly, D=(1) _ p51“11+“2 > pSipa.

D,(1)
We now assume that (5.13) holds up to n — 1, and prove its validity for n > 2.

Since z = 1 is a root of p(z), and D, (1) = ﬁn(l), we have, from (5.6), (5.7) and (5.9),

Dy,(1) Dy_»(1)
= =Kn_1p2 + pSipp1 — pSip1 Kn—opis == (5.14)
D, (1) D,_1(1)
Using the induction assumption for g"_iﬂi;, we readily have
D.(1 1
# > Kpn—1p2 +pSip1 — pSip1 Kn—apa -
D,_1(1) pS1p1

=pSip1 + pa(Kn—1 — Kn—2) > pS1p1 (5.15)

Proposition 5.5. Let 2(n) denote the largest root of Dy(z) in (0,1). Then, Z(n) >

Zn—2(n — 1), i.e., Z(n) is greater than the largest root of ﬁn_l(z) in that interval.

Proof: Again, by (5.12), D, (zn_z(n — 1)) and D, (zn_z(n — 1)) differ in sign. On
the other hand, by Proposition 5.4, ﬁn(l) and ﬁn_z(l) have the same (positive) sign.
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However, by the induction assumption, ﬁn_z(z) has no roots in (zn_z(n — 1),1), and
therefore does not change sign in that interval. Thus, ﬁn(z) must change its sign in
(zn_z(n — 1), 1), and hence has an odd number of roots there. That is, its largest root in

(0,1), z(n), is greater than z,_s(n —1).

Proposition 5.6. Let z(n) denote the smallest root of Dy(z) in (1,00). Then z(n) <

Zn—1(n —1).

Proof: Similar to Proposition 5.5, ﬁn_z(-) and ﬁn() have opposite signs at
Zn—1(n — 1), and the same sign at z = 1. Since, by the induction assumption, ﬁn_z(z)
has no roots in (1, Zn—1(n — 1)), it follows that ﬁn(z) has an odd number of roots in that

interval, which implies that the smallest one, z(n), lies to the left of z,_1(n — 1).

Proposition 5.7. Let z(n) denote the largest root of Dy(z) in (1,00). Then z(n) >

Zzn_4(’n — ]_)

Proof: As before, ﬁn (22n_4(n — 1)) -ﬁn_z (22n_4(n — 1)) < 0. We wish to show that
ﬁn(w) -ﬁn_z(oo) > 0. In order to do this it is enough to show that ﬁn(w) -En_l(oo) <
0. As (by Theorem 5.1) ﬁn(z) and ﬁn_l(z) are (alternating signs) polynomials of even
degrees, the signs of the leading power and the zero element are the same. Also, as the
sign of do(n) is opposite to that of do(n — 1), it follows that the sign of the leading power
of ﬁn(z) differs from that of ﬁn_l(z). Clearly, the sign of the leading power determines
the sign of ﬁn(w)

Since ﬁn_z(z) does not change sign in (22n_4(n —1), oo), necessarily ﬁn(z) does, and

therefore has an odd number of roots there, which implies that z(n) > z2,—4(n — 1).

To complete the proof of the Interlacing Theorem, it remains only to show that ﬁn(z)
possesses exactly n — 1 roots in (0,1) and n — 1 roots in (1, 00).

By the induction hypothesis, ﬁn_l(z) has exactly n—2 roots in (0,1). We have shown
(Proposition 5.1) that between any two consecutive roots of ﬁn_l(z) there is a set of roots
(at least one) of ﬁn(z), so that there are at least n — 3 such roots. In addition, there is a
non-empty set of roots of ﬁn(z) in each of the intervals (0, z1(n — 1)) and (zn_z(n —1), 1).

Hence, ﬁn(z) has at least » — 1 roots in (0,1). The same situation occurs in (1,00), so
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that ﬁn(z) has at least 2n — 2 roots in (0,00). But the degree of the polynomial ﬁn(z)
is 2n — 2, which implies that each of the above sets consists of exactly one root of ﬁn(z)
Thus, ﬁn(z) has exactly n — 1 roots in (0,1) and the same number of roots in (1, 00), with
all roots being distinct. Q.E.D.

To summarize, it has been shown that the determinant of the Hessenberg matrix
|H(z)| = Bym+1(z) has M + 1 real roots in (0, 1], since Dasy1(z) possesses M real roots in
(0,1) and p(z) has z = 1 as its only root in (0,1].

In the Appendix we present a few numerical results regarding the calculation of the
roots of Bps11(z) for various values of (A, u1, g2, S1, S2, p). Observe that B,(z), 1 <n <
M 4+ 1, can be considered as a homogenous polynomial in A, ps and Sip1, as is easily
seen from the recursion formula (5.4) and the expressions for B;(z) and B2(z). Thus,
multiplying A, ps and Sip; by the same factor, leaving the other parameters unchanged,
results in an equation having the same roots.

For example, the roots of the equation |H(z)| = 0 with parameters (1,2,2,2,1,1/2),
as appearing in the first row of Table 1 in the Appendix, are equal to the roots of that
equation with parameters (1.5,3,3,2,1,1/2), which appear in the tenth row of Table 1.
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APPENDIX

For various values of the parameters (A, p1, g2, S1, 92, p), we present a few numerical
examples of the actual values of the roots {2}, obtained from the solution of the equation
|H(z)| = 0.

As was proved in Section 5, this equation has 2M + 2 roots for every M. M + 1 roots
are in (0,1] and the other M + 1 are in (1,00). As was shown, for every M, z = 1 is a

root, and z = Sl}\"l is another root in (1,00). (It is also observed that the root z = % is

always the next one after z = 1.)

Table 1: Values of the Roots of |H(z)| for M = 2.

A 11 72} S1 S5 P Values of roots

1 2 2 2 1 1/2 | (0.17,0.53, 1, 4, 5.82, 7.46)

1 p p p 1 2/3 | (0.09,0.43, 1, 4, 5.81, 7.66)

1 2 3 2 1 2/3 (0.07, 0.41, 1, 4, 6.70, 8.80)

1 2 3 2 1 1/2 | (0.13,0.49, 1, 4, 6.76, 8.12)

1 3 3 2 1 1/2 (0.17, 0.55, 1, 6, 8.63, 10.68)

1 3 3 2 1 2/3 (0.09, 0.45, 1, 6, 8.58, 10.86)

p 3 3 p 1 2/3 | (0.08,0.41, 1,3, 4.45, 6.03)

2 3 3 2 1 3/4 | (0.05,0.36, 1,3, 4.46, 6.12)

1.5 3 3 2 1 2/3 (0.05, 0.37, 1, 4, 5.81, 7.75)

1.5 3 3 p 1 1/2 | (0.17,0.53, 1, 4, 5.82, 7.46)

1.5 3 P p 1 2/3 | (0.11,0.43, 1, 4, 5.25, 6.85)

1.5 3 9 9 1 1/2 | (0.20,0.55, 1, 4, 5.23, 6.66)

Table 2: Values of the Roots of |H(z)| for M = 3.

A 11 72} S1 S5 P Values of roots
2 ) ) ) 1 1/2 | (0.12,0.26, 0.62, 1, 2, 2.79, 3.73, 4.44)
p p p p 1 3/4 | (0.03,0.12,0.48, 1,2, 2.78, 3.87, 4.69)
3 2 2 2 1 3/4 | (0.03,0.11, 0.41, 1, 1.33, 2.02, 2.88, 3.52)
3 2 2 2 1 1/2 | (0.11, 0.24, 0.56, 1, 1.33, 2, 2.75, 3.31)
3 4 3 2 1 1/2 (0.15, 0.30, 0.66, 1, 2.66, 3.38, 4.36, 5.12)
3 4 3 2 1 2/3 (0.07, 0.19, 0.56, 1, 2.66, 3.37, 4.46, 5.31)
4 4 3 p 1 2/3 | (0.07,0.18, 0.52, 1, 2, 2.62, 3.56, 4.27)
4 4 3 2 1 1/2 | (0.14, 0.28, 0.63, 1, 2, 2.60, 3.46, 4.11)
5 4 5 p 1 1/2 | (0.10, 0.23, 0.58, 1, 1.6, 2.47, 3.36, 4.03)
5 4 5 2 1 2/3 | (0.05,0.15, 0.51, 1, 1.6, 2.44, 3.4, 4.18)
5 3 4 2 1 2/3 | (0.04,0.13,0.45, 1, 1.2, 2, 2.86, 3.49)
5 3 4 2 1 3/4 | (0.03,0.10, 0.41, 1, 1.2, 2.01, 2.89, 3.55)
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