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ABSTRACT We present an efficient method for
flexible comparison of protein structures, allowing
swiveling motions. In all currently available method-
ologies developed and applied to the comparisons of
protein structures, the molecules are considered to
be rigid objects. The method described here extends
and generalizes current approaches to searches for
structural similarity between molecules by viewing
proteins as objects consisting of rigid parts con-
nected by rotary joints. During the matching, the
rigid subparts are allowed to be rotated with re-
spect to each other around swiveling points in one
of the molecules. This technique straightforwardly
detects structural motifs having hinge(s) between
their domains. Whereas other existing methods de-
tect hinge-bent motifs by initially finding the match-
ing rigid parts and subsequently merging these
together, our method automatically detects recur-
ring substructures, allowing full 3 dimensional rota-
tions about their swiveling points. Yet the method is
extremely fast, avoiding the time-consuming full
conformational space search. Comparison of two
protein structures, without a predefinition of the
motif, takes only seconds to one minute on a worksta-
tion per hinge. Hence, the molecule can be scanned
for many potential hinge sites, allowing practically
all Ca atoms to be tried as swiveling points. This
algorithm provides a highly efficient, fully auto-
mated tool. Its complexity is only O(n2), where n is
the number of Ca atoms in the compared molecules.
As in our previous methodologies, the matching is
independent of the order of the amino acids in the
polypeptide chain. Here we illustrate the perfor-
mance of this highly powerful tool on a large num-
ber of proteins exhibiting hinge-bending domain
movements. Despite the motions, known hinge-bent
domains/motifs which have been assembled and
classified, are correctly identified. Additional
matches are detected as well. This approach has
been motivated by a technique for model based
recognition of articulated objects originating in
computer vision and robotics. Proteins 1999;34:232–
254. Published 1999 Wiley-Liss, Inc.†
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INTRODUCTION

There are numerous approaches to finding recurring
substructural motifs in protein structures, where the
substructure recurs as a rigid body.1–16 Yet there are few
methods which can detect motifs, allowing hinge(s) within
them. The scarcity in such automated methods is owing to
the more difficult task which is involved. Automatically
finding a recurring substructure between two (whether
globally similar or dissimilar) protein structures, without
a predefinition of the motif, and doing so at high speed is a
very difficult problem. Here we present an algorithm
designed to accomplish such a goal. It is very fast: compari-
son of two protein structures takes only seconds on a
Silicon Graphics Indigo 2 R4400, 150 MHZ workstation. As
in our previous structural comparison algorithms, it car-
ries out the comparisons in a manner which is independent
of the order of the amino acids on the polypeptide chains,
hence allowing a change in the directionality of the chains,
as well as insertions and deletions. In the implementation
illustrated here, only one hinge is allowed. However, the
approach is general, and several hinges can be straightfor-
wardly implemented. Currently, hinges are allowed in only
one of the molecules. The speed of the comparison enables
scanning the molecule for many potential hinge sites,
with, for example, every Ca atom serving as a hypothetical
trial swiveling point.

A structural comparison technique which allows swivel-
ing motions of domains (or, subdomains), is a very useful
tool. Proteins are flexible entities. Domain and subdomain
motions have been repeatedly observed.17,18 A comprehen-
sive survey of domain movements in proteins has been
presented by Gerstein et al.19 The authors have analyzed
the ability of different segments of a protein to move with
respect to each other with small changes in energy. Their
conclusion was that there are two predominant types of
motions—hinge motions and shear motions. Among the
frequently noted cases are ‘‘open’’ versus ‘‘closed’’ forms of
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enzymes. Domain motions are essential components in
allosteric enzymes, in protein assembly, and in cell motil-
ity. Moreover, domain motions have been observed in
domain (or part) ‘‘swapping.’’20 Swapping of structural
parts during protein folding can bring about misfolding
and aggregation. Detection of hinge-bent motifs between
otherwise similar—or dis-similar—protein structures can
indicate which residues may play a critical role in substruc-
tural swiveling. Hence, a technique that carries out such
structural comparisons rapidly is very powerful. The only
input are the atomic coordinates and potential hinge
location(s) in one of the structures being compared. In a
rigid structural comparison between a pair of molecules,
one of the molecules is allowed all translational and
rotational degrees of freedom in 3-D space. However, in our
case here we allow this molecule, in addition to the
previous motion, to have all the internal rotational degrees
of freedom at the hinge point as well. This is done in an
efficient manner avoiding a full conformational space
search.

From the computational point of view, methods search-
ing for molecular similarity are closely related to 3-D
object recognition techniques developed in the field of
Computer Vision.21 The recognition of three-dimensional
objects in cluttered scenes is a classical problem in com-
puter vision. Currently the only successful recognition
techniques are model-based. One is given a set of model
objects in advance, with the goal of detecting those models
which can fit in a geometrically consistent way into the
overall shape of the scene. In the most challenging sce-
nario the objects may be partially occluded and the scene
may contain additional clutter which cannot be fitted to
the models in the database. The best one can hope for is
partial matching of the model objects. From a geometric
viewpoint the problem of searching for structural molecu-
lar similarity is identical to this challenging partially-
occluded object recognition goal. The target molecule is the
visually cluttered scene. We search for a partial fit between
the structure of a target molecule, with candidate model
molecules. The occlusion reflects mismatches, insertions
and deletions. In a manner analogous to a robot moving its
limbs or rotating and tilting its head, we allow molecular
parts such as domains, subdomains, and loops, to rotate
around preselected point-hinges. By allowing them com-
plete 3D rotations around a point, rather than the simpler
case of rotation around a covalent bond, we implicitly take
into account several consecutive, or nearby rotatable bonds.

The method presented here was initially conceived for
articulated object recognition.22 An articulated object is
defined there as an object consisting of rigid subparts
which are connected by rotational or sliding joints. It was
developed as an extension of the ideas of the Generalized
Hough Transform23 and the Geometric Hashing24 para-
digms for rigid object recognition. The problem it solves is
formulated as follows: Given a target molecule repre-
sented by a set of geometric features (e.g. the centers of its
Ca atoms) and a database of molecules, each of which can
possess hinges, find those molecules that under an appro-
priate translation and rotation of the whole molecule in

addition to appropriate rotations at the hinges, will have a
large enough set of its geometric features superimposed
with those of the target molecule.

This problem arises frequently in searches for hinge-
based motifs in protein structures and in computer-
assisted drug design, where one is looking for molecules
which have structural similarity with a given lead com-
pound. In the description of the algorithm below, the
database consists of a single molecule, and the question
reduces to the decision of whether this molecule and the
target molecule have a large common substructure, allow-
ing rotations at hinge points.

The major steps of our method can be outlined briefly as
follows:

1. Each of the model molecules is represented by means of
its transformation independent features (invariants).
Recall that the transformations consist of translations
and rotations of different parts of the model object. This
transformation invariant molecular information, along
with any additional details we wish to retain, is stored
in a hash table.

2. The target molecule is represented by its transforma-
tion independent features as well, which are compared
to the information stored in the hash table. Based on
this comparison several potential matches are gener-
ated. The use of a hash table for storing transformation-
independent features of model objects makes the com-
parison extremely efficient.

3. The potential matches are subsequently verified by
transforming the model molecules onto the target and
evaluating the extent of the match.

Almost all existing molecular structure comparison meth-
ods consider (and compare) the molecules as rigid objects.
The method presented here generalizes and extends ap-
proaches to molecular structure similarity by considering
molecules as articulated objects with predefined joints (or
hinges). To illustrate the logic of our algorithm, let us
consider the molecule as an ordered set of its Ca atoms. We
may select a specific Ca atom and divide the molecule into
two parts. Now, consider the molecule as an object com-
prised of two rigid parts connected by the selected Ca atom.
This Ca atom can be viewed as a joint connection or hinge
between the two parts. Hence, these parts may swivel with
respect to each other around that Ca atom. There is no
limitation in the selection of the hinge site. The hinge may
be positioned anywhere in 3D space and need not be
specifically one of the Ca atoms of the molecule. It may be
inside a loop, enabling two secondary structure elements
to swivel with respect to each other; or it may be anywhere
within the interior of the molecule. Alternatively, it may be
positioned outside the molecule, for example, at the inter-
section of vectors describing secondary structure elements,
extending the repertoire of allowed motions. Comparing
molecules as articulated objects, enables revealing struc-
tural similarities which cannot be discovered by methods
which consider molecules as strictly rigid objects. Clearly,
the rigid case is a particular case, where there is no
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rotation at the hinge. Consequently, if the optimal match is
such that the molecules are superimposed as if they were
rigid, with no internal motion involved, it would be de-
tected as well.

The ability of our technique to detect similarities be-
tween molecules when these are considered articulated
objects illustrates its inherent ability to automatically
handle domain movements. Gerstein et al.19 have indi-
cated two potential ways a protein can accommodate large
domain movements while still maintaining its packing.
Shear motions provide one such possible structural mecha-
nism. These motions involve small sliding movements
between closely packed segments of the polypeptide chain,
such as helices. The culmination of shear movements both
within and between domains may result in large overall
movements. A hinge mechanism provides an alternative
way for protein domains to move while still maintaining
their packing. Domains may move as rigid bodies with
their deformations confined to their linking hinge regions.
Here, we implement our structural comparison method for
hinge-bending motions. We apply it to a large number of
cases, picked from the protein motions database main-
tained by Gerstein. In all cases, the movements have been
reconstructed satisfactorily. In additiion, we have applied
it to a collection of structures taken from the structurally
non-redundant dataset generated from the PDB.25

Our method can be straightforwardly generalized en-
abling a molecule to be divided into several parts. In such a
case, hinges would be defined for every pair of neighboring
subparts (subdomains) of the molecule. In particular, we
note that despite the fact that the method provides broader
capabilities for discovering structural similarities between
molecules, its run-time complexity is only of the order of n2

operations, although with a big constant factor, where n is
the number of Ca atoms in the compared molecules. We
have previously applied a similar method for the docking
of flexible molecules (Sandak et al.26,27). These attributes
allow extensive database comparisons. The procedure is
automated to scan potential hinge sites in all, or a large
portion of the Ca atoms in the model molecule, iteratively
picking model molecules from a list.

Recently, Wriggers and Schulten28 have published a
method for the automatic detection of hinges in protein
molecules.

DETECTION OF HINGE-BENT MOTIFS:
THE ROBOTICS-BASED ALGORITHM

Our technique was inspired by the Generalized Hough
Transform method22,23 which was originally developed for
rigid-body matching. Here we describe its rationale in very
general terms. We show how it has been elegantly ex-
tended to a general algorithm which can detect motifs in
proteins, where these are allowed to have swiveling points
between their (rigid) parts.22 Here we consider proteins
with only one swiveling point. However, the algorithm can
be straightforwardly extended to deal with multiple such
points.

Let us consider structural comparison of a pair of
proteins, which are modeled as rigid shapes. Let us nick-

name the first protein the model and the second protein
the target. Assume that these proteins are represented by
the sets of their Ca atoms. The goal is to detect their best
superimposition, namely, the translation and rotation of
the model protein which superimposes a maximal number
of its Ca atoms on the Ca atoms of the target protein. Since
the proteins are not identical, not all their Ca’s will be
superimposed and we have no a-priori knowledge of the
matching set.

The rotation and translation of a rigid shape can be
conveniently described as the rotation and translation of a
3-D Cartesian reference frame associated with this shape
(see Figure 1a). The initial location and orientation of this
reference frame can be arbitrary, as long as it is rigidly
positioned relative to the shape. After defining a reference
frame on the model protein, the structural comparison is
equivalent to the determination of the position of this
reference frame with respect to the target protein so that
the proteins are maximally superimposed. Since the shapes
are not identical we cannot compare them using some
global shape characteristics such as the diameter of the
shape† and local information should be applied. We con-
sider local shape features, which have characteristics
invariant to rotation and translation (e.g. lengths of tri-
angle sides). Similarity of the shape characteristics of two
features, one in the model protein and the second in the
target protein implies that these features should be super-
imposed. Such an alignment of the features generates a
new position for the model reference frame. Thus, similar-
ity of local feature characteristics can be translated into
potential model reference frame locations. One can rank
these locations by the number of local feature alignments
that contributed to them. Eventually, the high scoring
frame locations are translated to favorable candidate
superimpositions. The idea presented here can be imple-
mented in an efficient way which allows comparison of a
target protein against a database of model proteins.

To illustrate the situation when hinges are introduced,
let us consider the model shape in Figure 1a. Assume that
we have two target shapes. The first is the original model
which has undergone only a translational and rotational
transformation (Fig. 1b). The second is the same model.
However, it has undergone not only translation and rota-
tion, but additionally, one of its parts has been rotated with
respect to the other around a hinge point (Fig. 1c). Let us
apply the above mentioned comparison technique to each
of the target shapes. In the first case, since the model is
identical to the target up to a rigid transformation, we
obtain one candidate reference frame whose score of
contributed ‘‘votes’’ strongly outnumbers the score of other,
random candidate frames. However, in the second case we
obtain two high-scoring candidate reference frames, match-
ing either the first or the second of the rigid parts of the
model shape. Assuming that these two parts are roughly
the same size and have the same number of relevant shape

*http://bioinfo.mbb.yale.edu/MolMovDB
†A diameter of a shape is defined as a vector connecting its most

distant points.
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features, each of the candidate reference frames obtains
votes from about half of the features which contributed to
the best candidate reference frame of the first (rigid) case.

The situation would be more complicated if there is a large
number of different proteins in the database. These would
yield many candidate reference frames, some of which may
obtain an equal or larger number of votes than either of the
two. This is likely to happen if the database contains
structures similar to that of our original model shape. In
this case, these candidate reference frames would be
rejected during filtering the low-scoring reference frames.
Hence they would escape identification.

However, the technique we have presented can be
further extended to deal with such hinge-bent shapes.
Note that in the Generalized Hough Transform algo-
rithm,23 the protein’s reference frame may be positioned
anywhere and its coordinate axes may be defined arbi-
trarily, without affecting the correctness of the algorithm
or its complexity. This unlimited freedom in the definition
of one of the algorithm elements points to additional,
hidden power in the method which has previously not been
explored.22 Let us see how a judicious choice of this
reference frame location allows us to integrate shape
information from both parts which are connected by the
hinge.

Assume that we are dealing with the same task as
described in Figure 1, however, this time we have located
the origin of the model reference frame at the hinge point
(see Figure 2a). Applying the same recognition technique
to the second target shape, we again obtain two different
reference frames with a relatively high score of votes, one
for each rigid part. However, these reference frames have
the same origin (Fig. 2b), although (possibly) at different
orientations. Thus if one scores only the locations of the
reference frame origin, the information obtained from both
parts is combined. These considerations underlie the Articu-
lated Object Recognition technique,22 which we have
adopted here.

METHODS

In this section we provide a detailed description of the
flexible hinge-based structural comparison algorithm.

The input is comprised of two proteins which are repre-
sented by their set of geometric features. In this study we
have represented the proteins as sets of their backbone Ca

atoms in 3-D space. Other representations, e.g. by second-
ary structures,16 can be used in this scheme as well. We
refer to one of the proteins as the model protein and to the
other as the target protein. The model protein is the one
possessing a hinge point and hence is comprised of two
parts, each of which may be rotated around the hinge point
with respect to the other. Based on previous analysis, we
choose some point in space—whether encapsulated by the
molecular surface envelope and thus within the protein, or
outside the protein—to be the hinge point. In the implemen-
tation shown here, we have picked a Ca atom to serve as a
hinge. This choice divides the single set of points into a
pair of ordered sets in 3-D space. The target molecule is
also represented by the centers of its Ca atoms. We can
associate additional information with each interest point.
Here a label of a point is comprised of the protein’s name
and the part number to which it belongs. However, addi-

Fig. 1. The Generalized Hough Transform for rigid object recognition. ‘‘O’’
is the model shape. (top ) The reference frame of ‘‘O’’ is chosen arbitrarily.
(middle ) ‘‘O’’ has undergone a rigid translational and rotational transformation.
During the structural comparison phase we receive one candidate reference
frame whose score of votes strongly outnumbers the scores of votes of other
candidate frames. (bottom ) ‘‘O’’ has undergone not only translation and
rotation, but also one of its parts has been rotated with respect to the other
around the hinge. During the structural comparison phase we obtain two
candidate reference frames whose score of votes is relatively high. In essence,
the positions of these reference frames represent rigid matchings of the target
shape with either the first or the second part of the model shape.
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tional information may be added, such as residue name
and type, atom type (if atoms other than Ca are utilized), etc.

Partial similarity of protein shapes is captured by the
similarity of local shape fragments, which remains con-
served under rotation and translation. This local, rigid
transformation, invariant shape fragment similarity plays
an important role in our approach. We define a frame-
invariant as a local shape fragment (feature) with the
following properties:

i) an unambiguous Cartesian reference frame is defined
based on this shape feature;

ii) a numerical vector of indices, which is invariant under
rotation and translation of the shape is calculated for
this feature. We call this vector the shape signature
of the feature.

Let us demonstrate this definition for a shape feature
that we use—a triplet of Ca atoms, which are not on one

line, namely a non-degenerate triangle. One can easily
define an unambiguous reference frame which is posi-
tioned on this triangle. We take, for example, the origin as
the vertex opposite to the shortest triangle side. The x-axis
is the direction of the longest side. The y-axis direction is
the cross product of the two longer sides. The z-axis
direction is the cross product of the x and y axes. If some of
the triangle sides are almost equal, one needs to exploit
the order of the points or define several redundant frames.
The numerical rotation and translation invariant in this
example is the triplet of the triangle sides lengths.

A possible superimposition of a model molecule onto the
target molecule is determined by accumulating informa-
tion on the candidate positions of the model’s (hinge based)
reference frame with respect to the target. This informa-
tion is based on local comparisons of the frame-invariants
which induce such positions. Hence, each candidate posi-
tion of a reference frame is labeled by the model protein’s
name and the rigid subpart to which the frame-invariant
inducing it belongs. Two labeled coordinate frames are
defined as consistent if they have the same origin and their
labels differ only in their subpart number field of the label.

The flexible hinge-based structural comparison method
consists of two major steps:

1. Preprocessing.
(a) Define the hinge point of the model protein.
(b) Define the model protein reference frame, with the

origin at the hinge point.
(c) For each frame-invariant of the model protein:

i. Compute the coordinate frame associated with it;
ii. Compute the coordinate transformation between

this coordinate frame and the (hinge-based) refer-
ence frame of the protein and label it with (the
protein name, the part number) label;

iii. Compute the shape signature of the frame-invari-
ant and use it as an address to a table (nicknamed
R-Table) for storing the labeled coordinate transfor-
mation.

If the database contains more than one model protein the
preprocessing step is done for each model protein. Note, that
this step can be done off-line without the knowledge of the
target protein. Hence, one can prepare the R-table in advance.

2. Recognition.
(a) For each frame-invariant of the target protein:

i. Compute the coordinate frame associated with it;
ii. Compute the shape signature of the frame-invari-

ant and use it as an R-Table entry address. For
each record in this R-table entry apply its coordi-
nate transformation on the frame-invariant’s coor-
dinate frame to compute a candidate reference
frame. Label this candidate reference frame with
the label of the applied coordinate transformation.
If this coordinate frame with this label has already
been obtained, increase its vote score by 1. Other-
wise, create a new record to store this coordinate
frame.

(b) Search for consistent, high-scoring pairs of candidate
(c) Verify the consistent, high-scoring pairs of candidate

reference frames.

Fig. 2. The extension of the Generalized Hough Transform method for
articulated object recognition. (top ) Unlike in Figure 1, this time the origin
of the reference frame of the articulated object has been located at the
hinge. (bottom ) During the comparison phase we again obtain two
different reference frames with relatively high scores of votes. However,
this time these reference frames have the same origin.
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Verification of hypothetical transformations is done by
superimposing the model and target proteins, detecting
matching Ca atom centers, and recomputing a transforma-
tion which aligns these matching pairs with minimal
RMSD. The transformations are ranked again by the
number of matching atoms.

Below we describe briefly the implementation of each of
the phases.

Preprocessing (R-Table Precomputation)
(a) Interest features

In the current implementation Ca atoms are the interest
features of the model protein. We define a frame-invariant
to be a triangle with vertices at the interest features that
belong to the same part of the molecule. The run-time
complexity of the algorithm is heavily dependent on the
number of interest features and the number of frame-
invariants in the compared objects. To gain increased
efficiency in the preprocessing stage, we reduce the
number of interest features and the number of frame-
invariants in the model molecules by imposing geometri-
cal constraints. A triplet of Ca atoms can be a frame-
invariant if:

1. The distance between any two Ca atoms of the triplet is
not too large (not larger than max_triangle_side
_length).

2. The distance between any two Ca atoms of the triplet is
not too small (not smaller than min_triangle_side
_length).

3. All elements of the triplet are sufficiently close to each
other in the ordered set they belong to. Namely, the
triplet members are not far away from each other on the
chain.

Below, these constraints will be collectively referred to
as the proximity constraints.

(b) Coordinate frames and coordinate
transformations

During the preprocessing phase of this flexible hinge-
based structural comparison method, we compute the
spatial transformation between the local coordinate frames
associated with the frame-invariants of the protein and
the protein reference frame. Our definitions of the model
protein reference frame and the local coordinate frames
associated with the frame-invariants of the protein facili-
tate performing this task. The coordinate frames are
defined as orthonormal coordinate frames, i.e. the basis 5cW1,
cW2, cW36 of each coordinate frame meets the following condi-
tions:

;i [ 51, 2, 36 ;j [ 51, 2, 36 (cW i, cW j) 5 5
1 if i 5 j

0 if i Þ j
(1)

where (·, ·) is the scalar product of vectors in R3. We exploit
this fact during computation of the spatial transformation
between the local and the reference coordinate frames. We
use 5xW , yW , zW 6 instead of 5cW1, cW2, cW36 to denote the basis of a
coordinate frame. Here xW denotes a unit vector of the

X-axis of a coordinate frame, yW is a unit vector of the Y-axis
and zW is a unit vector of the Z-axis.

Derivation of local coordinate frames. There are a
number of ways to define a local coordinate frame for a
given frame-invariant. We compute the lengths of the
triangle’s edges. The vertex joining the longest and the
middle–length edge is the origin of a local coordinate
frame. We take a unit vector along the longest edge of the
triangle, with the beginning at the origin, as an X-axis unit
vector xW . A unit vector along the middle length edge of the
triangle, with the beginning in the origin is vW . The Y-axis
unit vector yW is defined as the normalized cross product of
xW and vW :

yW 5
xW 3 vW

\xW 3 vW \

where \ · \ is a norm in R3. Note that the length of yW is equal
to 1, and according to the cross product definition it is
orthogonal to xW . It suffices to store only unit vectors of the
coordinate axes X and Y of a coordinate frame. The unit
vector zW of the coordinate axis Z, can easily be computed as
a cross product of the first two unit vectors: zW 5 xW 3 yW . The
triplet of vectors 5xW , yW , zW 6 is an orthonormal basis in R3.

The reference frame. We define the model protein
reference frame as follows: The hinge point of the molecule
is chosen to be the origin of the reference frame; vector eW1 5
(1, 0, 0) is the X-axis unit vector xW ; vector eW2 5 (0, 1, 0) is the
Y-axis unit vector yW ; vector eW3 5 (0, 0, 1) is the Z-axis unit
vector zW. This reference frame basis complies with the
definitions and conditions set above, and hence is orthonor-
mal.

Coordinate transformations. The spatial transforma-
tion between two coordinate frames in R3 has two compo-
nents, rotational, and translational. Due to the fact that
we consider orthonormal bases and the target basis vec-
tors are eW1 5 (1, 0, 0), eW2 5 (0, 1, 0), and eW3 5 (0, 0, 1), the
rotational transformation which transforms the orthonor-
mal basis 5xW , yW , zW 6, where xW 5 (x1, x2, x3), yW 5 (y1, y2, y3), zW 5
(z1, z2, z3), into 5eW1, eW2, eW36, can be easily computed from the
coordinates of the basis vectors.

The translational transformation may be represented by
one vector, the shift vector. It is computed by subtracting
from the coordinates of the origin of the reference frame,
the coordinates of the origin of the local coordinate frame.
To apply a spatial transformation on an orthonormal basis,
we apply the rotational transformation to each of the basis
vectors. New unit vectors of coordinate axes are obtained.
The new origin is obtained by computing the shift vector in
the new coordinate basis and adding it to the origin of the
basis.

(c) R-Table structure

A major consideration in the choice of appropriate data
structure for the R-Table is efficiency in accessing times
during the preprocessing and recognition phases. The
R-Table has been implemented as a three-dimensional
hash table. Triangles with Ca atom vertices, satisfying the
proximity constraints, are defined to be the frame-
invariants of the object protein. Their ordered (rounded)
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edge-lengths serve as address to the R-Table. A triplet (i, j,
k) belongs to the address space of the R-Table if its
elements satisfy the following inequalities:

min_triangle_side_length # i # j

# k # max_triangle_side_length

Implementing the R-Table as a 3D hash table with the
second dimension size dependent on the first index of the
address, and the third dimension size dependent on the
first two address indices, saves considerable space. This
approach reduces the size of the R-Table. We have approxi-
mately six times fewer entries than in a straightforward
implementation of the R-Table as an ordinary 3D hash
table. Technically, the R-Table is allocated and constructed
dynamically.

(d) R-Table entry structure

An R-Table entry is a linked list of records. Each record
contains the name of the protein, the part number and the
coordinate transformation. During the R-Table precompu-
tation, for each frame-invariant (a triangle with Ca atom
vertices, as defined above) of the model protein, we com-
pute its local coordinate frame and the spatial transforma-
tion between this local coordinate frame and the previ-
ously defined reference frame of the model protein. We
insert the molecule name and part number to which the
frame-invariant belongs and its spatial transformation
into the R-Table, at the address specified by the ordered
triangle edges lengths.

Recognition
(a) Space net

During the recognition step, for each frame-invariant
(the triangle with Ca atom vertices) of the target molecule
we compute its local coordinate frame. The triplet of
ordered triangle edge-lengths serves as an address to the
R-Table entry, where all relevant coordinate transforma-
tions are already stored. Both the respective hash table
bin, and its neighbors are visited to allow for some error in
the matching. For each of the R-Table entries, we inspect
the linked list of records. For each record we apply its
coordinate transformation on the frame-invariant associ-
ated coordinate frame. The resulting coordinate frame
receives the same labels (‘‘protein name’’ and ‘‘part num-
ber’’) as the applied coordinate transformation. It consti-
tutes a candidate reference frame of that part and protein.
We store the triplet (coordinate frame, protein name, part
number) in a hash table we call SpaceNet. The (rounded)
coordinates of the origin of the triplet coordinate frame
divided by the resolution form the address of the SpaceNet
entry where this triplet is stored. This type of division
enables controlling the bin size in the SpaceNet.

A SpaceNet entry contains two linked lists of records, for
each of the (two) parts. Each record contains the triplet
data and a counter for votes. This two-part list separation
facilitates searching the SpaceNet entry for the pair of
candidate reference frames which belong to different parts
of the protein. It also reduces the complexity of the new

record insertion operation. Insertion of a new record
consists of two steps:

1. To store the triplet (coordinate frame, name of a pro-
tein, part number) in the hash table SpaceNet, we
inspect the relevant linked list and verify consistency
with the record.

2. If we find such a record we update it as follows:
(a) recompute the axis vectors and the origin of the

frame;
(b) orthonormalize the updated coordinate frame;
(c) increase its votes counter by 1.
Otherwise, we create a new record, copy to it the
triplet’s data and set its votes counter to 1.

After all frame-invariants of the target molecule are
processed and all candidate reference frames are com-
puted, we inspect all candidate reference frames and select
only those which have accumulated a relatively high vote
score. These are likely to constitute matching reference
frames.

(b) High-scoring candidate joint (hinge) locations:
selection and clustering

Selection. To facilitate subsequent processing we uti-
lize a special data structure for storing the best candidate
_joint_location_list_size high-scoring candidate refer-
ence center locations. To perform the task efficiently and to
achieve low space complexity, we have implemented it as a
minimum heap of size candidate_joint_location_list
_size. This takes only O(log candidate_joint_location
_list_size) time to insert a new element into the heap,
with a constant factor close to 1 (see Cormen et al.29).

To select high-scoring candidate center locations, we
inspect the SpaceNet hash table. We unite pairs of candi-
date reference frames occupying the same table entry and
associated with different parts of the same model mol-
ecule. The votes score that the candidate reference center
location receives is the sum of those accumulated by the
candidate reference frames. We compare its votes score
with ‘‘the current maximal votes score,’’ the maximal score
among all candidate reference center locations encoun-
tered. If the candidate reference center votes score is
greater than the current maximum, we update it and
insert this candidate reference center location into the
high-scoring candidate reference center locations heap.
Otherwise we insert it into the high-scoring candidate
reference center locations heap provided that its votes
score is greater than a lower_coefficient multiplied by
the current maximal votes score, and that its score is
larger than the score of the head of the heap. The high-
scoring candidate reference center locations are clustered.

Clustering. To cluster, for each coordinate frame F of
high-scoring candidate reference center location, we com-
pute the average of the origins and of the axes vectors of
the coordinate frames with the origin and the vectors
sufficiently close to those of F. The respective candidate
votes are summed. Each high-scoring candidate reference
center location contains two clusters of candidate coordi-
nate frames, one for each part. Since they have the same
origin, their average is computed. The candidate coordi-
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nate frames are assigned to that average. For the sake of
convenience, we omit the word ‘‘cluster’’ and refer to these
clusters of candidate coordinate frames as ordinary coordi-
nate frames.

Any technique for finding a threshold value for filtering
low scoring among high-scoring candidate reference center
locations may be applied. We discard all candidates whose
votes score is less than a specified percentage of the best
obtained score. To further reduce the number of candidate
reference center locations, we discard those which are
close to higher scoring candidates. The selected high-
scoring candidate reference center locations are verified.

(c) High-scoring candidate reference center
locations verification

Each high-scoring candidate reference center location
has a label, the model protein name, and two coordinate
frames, considered hypothetical reference frames. Let us
label a high-scoring candidate reference center location
‘‘A.’’ We label the two coordinate frames associated with it,
RF1 and RF2. In this step, we verify the similarity between
the target molecule and protein ‘‘A’’ following transforma-
tion of each of its two parts to RF1 and RF2 respectively.

Coordinate transformation computations. We take
advantage of the convenient (and simple) choice of the
reference frame of the model molecules. As noted, vectors
eW1 5 (1, 0, 0), eW2 5 (0, 1, 0), eW3 5 (0, 0, 1), have been chosen
as unit vectors of coordinate axes of the reference frame of
the model molecule. The hinge, hW 5 (h1, h2, h3), has been
chosen as the origin of the reference frame. Given a
coordinate frame in R3 with the basis xW 5 (x1, x2, x3), yW 5
(y1, y2, y3), zW 5 (z1, z2, z3) and the origin oW 5 (o1, o2, o3), the
translational and the rotational components of the spatial
transformation which transforms the model molecule ref-
erence frame into this coordinate frame can be easily
computed from the coordinates of the basis vectors.

Molecular comparison. Let us call the image of pro-
tein ‘‘A,’’ following applications of the two aforementioned
spatial transformations on its parts, ‘‘Ã.’’ To compare ‘‘Ã’’
with the target molecule we compute matching pairs of Ca

atoms of these two molecules. A Ca atom ‘‘a’’ of molecule ‘‘Ã’’
and a Ca atom ‘‘b’’ of the target molecule match if ‘‘a’’ is the
closest Ca atom of ‘‘Ã’’ to ‘‘b,’’ ‘‘b’’ is the closest Ca atom of the
target molecule to ‘‘a,’’ and the distance between ‘‘a’’ and ‘‘b’’
is less than or equal to a matching_parameter. Owing to
the third condition, the matching pairs computation task
can be performed in linear time on the size of the input. To
this end, we map the target molecule onto the 3-D space
which is implemented as a 3-D hash table of points. For the
model molecule ‘‘A’’ we compute ‘‘Ã,’’ and for each Ca atom
of ‘‘Ã’’ we compute its hash address. We access a hash table
entry at this address, and its neighbors as determined by
the matching_parameter. We seek the closest Ca in the
target molecule. It is easy to see that the complexity of this
procedure depends linearly on the size of the target and
model molecules. After all matching pairs between ‘‘Ã’’ and
the target molecule have been assembled, we compute the
RMSD between these molecules when only matching Ca

pairs are taken into account. The number of matching
pairs and the RMSD between ‘‘Ã’’ and the target molecule

are used to measure the degree of similarity between the
molecules.

Complexity Analysis

In the preprocessing, for each frame-invariant of a
model molecule, we compute its coordinate frame and
spatial transformation which transforms this coordinate
frame to the reference frame of the molecule. This compu-
tation takes O(1). Insertion of this transformation along
with additional data into the R-table takes O(1) as well.
Hence, the complexity of the step is O(Sm km), where km is
the number of frame-invariants of the m–th model mol-
ecule, and m runs through all model molecules in the
database. According to the last proximity constraint, the
number of frame-invariants of a model molecule is O(n),
where n is the number of Ca atoms in the model molecule.
The complexity of this preprocessing step is, therefore,
O(Sm nm), where nm is the number of Ca atoms in the m–th
model molecule. m runs through all model molecules in the
database.

The complexity of the candidate reference frames compu-
tation and insertion into SpaceNet hash-table is
O(PRT 1 PSN) , where PRT is the sum of products of the form
dipi, di is the number of frame-invariants of all model
molecules in the i–th and neighboring bins of the R-Table,
pi is the number of frame-invariants of the target molecule
with the same R-Table address as the i–th bin of the
R-Table. i runs through all hash-addresses of the R-Table,
and PSN is the sum of items of the form lj

2. lj is the number
of candidate reference frames which have the same
SpaceNet address as the j–th bin of the SpaceNet, and j
runs through all hash addresses of the SpaceNet.

The complexity of high-scoring candidate joint locations
selection is O(PSN). As previously, the computation of
matching pairs takes O(n1 1 n2), where n1 and n2 are the
numbers of Ca atoms in the compared molecules. Thus, the
overall complexity of the verification stage is O(Sm8nm8 1
Mntarget), when nm8 is the number of Ca atoms in the m8–th
molecule, ntarget is the number of Ca atoms in the target
molecule, M is the number of high-scoring candidate
reference centers and m8 runs through high scoring mol-
ecules. Hence, the overall complexity of the recognition
step of the method is O(PRT 1 PSN 1 Sm8nm8 1 Mntarget).
Accordingly, the complexity of the method is O(Smnm 1
PRT 1 PSN 1 Mntarget), when m runs through all model
molecules in the database.

RESULTS

Our results are summarized in three tables. Table I
describes the cases we have used in this study, and Table II
presents the results we have obtained for them: the
number of matching pairs in each of the parts, the RMSDs
which have been obtained, and the rotation angles. Table
III lists the CPU times used in the comparisons, in
seconds, on a Silicon Graphics Indigo R4400, 150MHz
workstation. Some of the cases are described in detail
below. We have divided these examples to two types. First
we provide a comparison of our results with the ones
obtained earlier for the rigid molecule comparison. Next
we present results demonstrating the ability of the pro-
gram to discover domain motions in proteins.
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TABLE I. The Molecules Used in This Study

PDBcode Name Identifying information Source

3cts Oxo-acid-lyase Citrate synthase (e.c.4.1.3.7)—(co*a,
citrate) complex

Chicken (Gallus gallus) heart muscle

1cts Oxo-acid-lyase Citrate synthase (e.c.4.1.3.7)—citrate
complex

Pig (Sus scrofa) heart

1hkg Transferase Hexokinase a and glucose complex
(e.c.2.7.1.1)

Yeast (Saccharomyces cerevisiae)

2yhx Transferase (phosphoryl, alcohol
acceptr)

Yeast hexokinase b (e.c.2.7.1.1) complex
with ortho-toluoylglucosamine

Baker’s yeast (Saccharomyces cerevisiae)

3wrp DNA binding regulatory protein trp aporepressor Escherichia coli
1wrp DNA binding regulatory protein trp repressor (trigonal form) Escherichia coli
5er2 Hydrolase (acid proteinase) Endothia aspartic proteinase (endothia-

pepsin) (e.c.3.4.23.6) complex with
cp-69,799

Chestnut blight fungus (Endothia para-
sitica)

4ape Hydrolase (acid proteinase) Acid proteinase (e.c.3.4.23.10), endothia-
pepsin

Chestnut blight fungus (Endothia para-
sitica)

1ama Transferase (aminotransferase) Aspartate aminotransferase (e.c.2.6.1.1)
complex with alpha-methyl aspartate-
pyridoxal-58-phosphate

Chicken (Gallus gallus) heart mitochon-
dria

9aat Transferase (aminotransferase) Aspartate aminotransferase (e.c.2.6.1.1)
complex with pyridoxal-58-phosphate
at ph 7.5

Chicken (Gallus gallus) heart mitochon-
dria

1bp2 Hydrolase Phospholipase (e.c.3.1.1.4) Bovine (box taurus 1.) pancreas
1pp2 Hydrolase Calcium-free phospholipase (e.c.3.1.1.4) Western diamondback rattlesnake (Cro-

talus atrox)
2gd1 Oxidoreductase (aldehyde(d)-nad(a)) Apo-*d-*glyceraldehyde-3-phosphate

dehydrogenase (e.c.1.2.1.12)
Bacillus sterothermophilus/nca 1503

1gd1 Oxidoreductase (aldehyde(d)-nad(a)) Holo-*d-*glyceraldehyde-3-phosphate
dehydrogenase (e.c.1.2.1.12)

Bacillus sterothermophilus/nca 1503

1cll Calcium-binding protein Calmodulin (vertebrate) Human (Homo sapiens) recombinant
form

4cln Calcium-binding protein Calmidulin Drosophila melanogaster expressed in
(Escherichia coli)

2bbm Calcium-binding protein Calmodulin (calcium-cound) complexed
with rabbit skeletal myosin light
chain kinase (calmodulin-binding
domain) (nmr, minimized average
structure)

Calmidulin: Drosophila melanogaster;
peptide: synthetic

8adh Oxidoreductase (nad(a)-chol(d)) Apo-liver alcohol dehydrogenase
(e.c.1.1.99.8)

Horse (Equus caballus) liver

6adh Oxidoreductase (nad(a)-choh(d)) Holo-liver alcohol dehydrogenase
(e.c.1.1.1.1) complex with nad and
dmso

Horse (Equus caballus) liver

1196 Hydrolase (0-glycosyl) Lysozyme (e.c.3.2.1.17) mutant with ile 3
replaced by pro (I3p) (space group p 32
2 1)

Bacteriophage t4 (mutant gene derived
from the m13 plasmid by cloning the
t4 lysozyme gene)

1197 Hydrolase (o-glycosyl) Lysozyme (e.c.3.2.1.17) mutant with ile 3
replaced by pro (I3p) (space group p 21
21 2)

Bacteriophage t4 (mutant gene derived
from the m13 plasmid by cloning the
t4 lysozyme gene)

1lfh Iron transport Lactoferrin (apo form) Human (Homo sapiens)
1lfg Transferrin Lactoferrin (diferric) Human (Homo sapiens)
2lao Amino-acid binding protein Lysine-, arginine-, ornithine-binding

protein (lao)
Salmonella typhimurium

1lst Amino-acid binding protein Lysine-, arginine-, ornithine-binding
protein (lao) complexed with lysine

Salmonella typhimurium

3gapa Chain A of gene regulatory protein Catabolite gene activator protein—cy-
clic/amp complex

Escherichia coli

3gapb Chain B of gene regulatory protein Catabolite gene activator protein—cy-
clic/amp complex

Escherichia coli

1ddt Toxin Dimeric diphtheria toxin Corynebacterium diphtheriae
1mdt Toxin Monomeric diphtheria toxin Corynebacterium diphtheriae
2tbvc Virus (chain c) Tomato bushy stunt virus Tomato bushy stunt virus
2tbva Virus (chain a) Tomato bushy stunt virus Tomato bushy stunt virus
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Comparisons With Previously Obtained
Similarities
(a) Phospholipase A2

We compare two representatives of phospholipase A2
protein family: bovine pancreas (PDB code 1bp2, Bern-

stein et al.25) and domain R from Crotalus atrox venom
(1pp2). We define the R domain from Crotalus atrox
venom (1pp2) to be the model molecule and bovine pan-
creas (1bp2) to be the target molecule. To simulate a rigid
comparison, we position the hinge at the sixth Ca atom of
1pp2. Our program provides an excellent match of these
two proteins. During the verification stage we transform
the model molecule, each part with its respective transfor-
mation. As a result of these transformations, the two parts
of 1pp2 are rotated with respect to each other by 1.69
degrees. Since one of the parts has only five Ca atoms, the
match may be considered rigid. Moving the hinge along the
domain R from the Crotalus atrox venom (1pp2) similar
matchings are observed in all cases. 110 matching pairs of
Ca atoms are obtained (versus 98 pairs by Bachar et al.,
199330). Consequently, the RMSD calculated now is larger
(1.39 Å versus 0.89 Å previously).

The first match we obtain is:

The match reported in Bachar et al.30 is 1–12, 16–30,
34–55, 67–75, 89–109, and 113–126 in both molecules.

(b) Glyceraldehyde dehydrogenase

The reaction mechanism and the structure of d-glyceral-
dehyde-3-phosphate dehydrogenase have been studied ex-
tensively owing to its biological importance and interest-
ing properties regarding cooperativity of coenzyme binding.
The amino acid sequences of the enzyme from various

TABLE II. Hinge-bending Matching Results†

Model
molecule
and hinge
position

Target
molecule

Model
size

Target
size

First
part
votes
score

Second
part
votes
score

First
part

matching
value

First
part
RMS

Second
part

matching
value

Second
part
RMS

Matching
value RMS

Inter-
domain
rotation
angle

1cts(71) 3cts 437 429 11 226 64 1.45 312 1.26 376 1.29 2.65
2yhx(71) 1hkg 457 457 15 27 66 1.50 337 1.31 403 1.34 1.74
1wrp(71) 3wrp 103 101 56 10 62 0.9 30 1.16 92 0.99 1.74
4ape(71) 5er2 330 334 105 249 70 0.67 259 0.87 329 0.83 2.29
9aat(71) 1ama 802 401 4 298 58 1.62 301 0.96 359 1.09 3.84
1pp2(6) 1bp2 244 123 3 54 5 1.1 105 1.41 110 1.4 1.7
1gd1(171) 2gd1 1336 1336 113 451 170 0.88 1142 1.08 1312 1.05 4.12
2bbm(76) 1cll 174 144 12 6 37 1.62 64 1.73 101 1.69 173.78
2bbm(78) 4cln 174 148 27 9 33 1.45 54 1.71 87 1.61 172.01
6adh(171) 8adh 748 374 170 201 167 0.6 201 1.14 368 0.93 7.79
1197(74) 1196 328 162 74 13 67 1.07 89 1.3 156 1.21 30.63
1lfg(250) 1lfh 691 691 183 342 166 1.0 434 1.15 600 1.11 57.53
1lfg(250) 1lfh 691 691 112 333 131 1.49 432 1.04 563 1.16 7.68
1lst(91) 2lao 238 238 177 165 87 1.18 106 0.89 193 1.03 51.91
1lst(91) 2lao 238 238 177 98 90 0.68 72 1.26 162 0.98 1.92
3gapb(130) 3gapa 205 208 45 19 122 0.94 74 1.13 196 1.02 30.01
1mdt(373) 1ddt 1046 523 306 96 366 0.99 143 1.50 509 1.16 179.27
2tbva(165) 2tbvc 287 322 293 261 164 0.4 120 1.09 284 0.77 21.54
†The first column gives the PDB file name of the model molecule. The number given in parenthesis is the location of the hinge. The second column
lists the corresponding target PDB file name. The next two columns list the sizes of the two corresponding molecules. The 5th and 6th columns give
the number of votes scored by each of the two parts. The 7th column lists the number of matching Ca pairs in the first part of the model molecule.
The next (8th) column gives the RMSD obtained by the first part. The 9th column tabulates the number of matching Ca pairs in the second part of
the model molecule, and the 10th column gives the RMSD obtained by this, second, part. The next (11th) column gives the sum of the matching Ca

pairs between the two—model and target—molecules obtained by both parts. The overall RMSD of the match is listed in the 12th column. The
interdomain rotation angle obtained following the transformation to obtain the match is given in the last column.

TABLE III. The CPU Times (in Seconds) Used in the
Comparisons†

Model Scene

Prepro-
cessing

(s)

Recog-
nition

(s) Comments

1. 1cts 3cts 0.42 103.38
2. 2yhx 1hkg 0.44 95.78
3. 1wrp 3wrp 0.10 16.86
4. 4ape 5er2 0.27 21.84
5. 9aat 1ama 0.84 148.58
6. 1pp2 1bp2 0.23 29.79
7. 1gd1(O) 2gd1(O) 0.28 24.79 Chain O vs. Chain O.
8. 2bbm 1cll 0.19 75.42
9. 2bbm 4cln 0.18 63.36

10. 6adh 8adh 0.63 79.75
11. 1197 1196 0.32 45.90
12. 11fg 11fh 0.25 66.73
13. 11st 21ao 0.21 21.58
14. 3gapb 3gapa 0.21 22.97
15. 1mdt 1ddt 0.56 76.30
16. 2tbva 2tbvc 0.28 22.16
†These are given separately for the preprocessing and the recogni-
tion stages of the algorithm. The runs were performed on a Silicon
Graphics workstation (Indigo station, 150MHZ MIPS R4400, 96 MB of
RAM). The only exception was 1lfg-1lfh, which needed more memory
and hence was run on a stronger SGI machine (4-processors 195 MHZ
MIPS R10000 with 1024 of RAM).

1pp2 : 1–14, 15–30, 33–55, 57–67, 72–76, 79–99, 102–115
1bp2 : 1–14, 16–31, 34–56, 66–76, 81–85, 89–109, 110–123
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sources show a high degree of homology between molecules
from different species. Here we compare apo-d-glyceralde-
hyde-3-phosphate dehydrogenase (2gd1) and holo-d-
glyceraldehyde-3-phosphate dehydrogenase (1gd1). Each
protein is comprised of four chains, each 334 residues long.
The chains in both proteins are labeled ‘‘O,’’ ‘‘P,’’ ‘‘Q,’’ and

‘‘R.’’ To distinguish between chains belonging to these two
proteins, we denote chains belonging to 1gd1 ‘‘O1,’’ ‘‘P1,’’
‘‘Q1,’’ and ‘‘R1,’’ and ‘‘O2,’’ ‘‘P2,’’ ‘‘Q2,’’ and ‘‘R2’’ the chains
belonging to 2gd1. We chose holo-d-glyceraldehyde-3-
phosphate dehydrogenase 2 to be the model molecule and
apo-d-glyceraldehyde-3-phosphate dehydrogenase 2 to be

Fig. 3. Calmodulin (calcium-bound) complexed with rabbit skeletal
myosin light-chain kinase (PDB code: 2bbm ) versus calmodulin of human
(1cll ). To match to 1cll , the two parts of 2bbm have been rotated with
respect to each other by 173.78 deg. (a) 2bbm ; (b) 1cll ; (c) the two

structures superimposed. (d) Calmodulin (calcium-bound) complexed
with rabbit skeletal myosin light chain kinase (2bbm ) versus calmodulin of
drosophila melanogaster (4cln ). To match to 4cln , the two parts of 2bbm
have been rotated with respect to each other by 172.01 deg.
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Figure 3. (Continued.)



the target one. Two runs were performed. In the first the
hinge is at the sixth Ca atom of 1gd1, and in the second at
the 151-st Ca. The results we have obtained in these two
runs are very similar, although those obtained in the first
case resemble the rigid matching more than the ones
obtained in the second. In the first case, the two parts of
1gd1 were rotated by about 1–2 degrees with respect to
each other, and in the second case by 4–5 degrees. In the

first case the size of the first part of 1gd1 is only 5 residues.
Here we provide the results of the second case.

We obtained four different matchings (ordered by the
number of matching Ca pairs):

1. The number of matching Ca atom pairs is 1312. The
RMS distance is 0.95 Å. The main continuous matching
fragments are:

Fig. 4. Chain A of Catabolite Gene Activator Protein (3gap ) versus chain B of the same protein.
To match to chain A, the two parts of chain B have been rotated with respect to each other by 30.0
deg.
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Fig. 5. Lysine-, arginine-, ornithine-binding protein (LAO) complexed
with lysine (1lst ) versus lysine-, arginine-, ornithine-binding protein (LAO)
(2lao ). (a) The first of two matches. To match to 2lao , the two parts of 1lst

have been rotated with respect to each other by 51.91 deg. (b) The
second match. To match to 2lao , the two parts of 1lst have been rotated
with respect to each other by 1.92 deg.



As one can easily see, in this match chain ‘‘O1’’ matches
to ‘‘R2,’’ ‘‘P1’’ to ‘‘Q2,’’ ‘‘Q1’’ to ‘‘P2,’’ and ‘‘R1’’ to ‘‘O2.’’

2. The number of matching Ca atom pairs is 1,308. The
RMSD is 1.03 Å. The main continuous matching frag-
ments are 1–367, 369–408, 420–431, 439–442, 447–
699, 703–742, 754–765, 771–778, 781–808, 811–1035,
1037–1075, 1081–1083, 1088–1112, 1115–1334, in both
molecules. Clearly, in this match chain ‘‘O1’’ matches to
‘‘O2,’’ ‘‘P1’’ to ‘‘P2,’’ ‘‘Q1’’ to ‘‘Q2,’’ and ‘‘R1’’ to ‘‘R2.’’

3. The number of matching Ca atom pairs is 1,307. The
RMSD is 0.97 Å. The main continuous matching frag-
ments are:

This time chain ‘‘O1’’ matches to ‘‘Q2,’’ ‘‘P1’’ to ‘‘R2,’’ ‘‘Q1’’ to
‘‘O2,’’ and ‘‘R1’’ to ‘‘P2.’’

4. The number of matching Ca atom pairs is 1,296. The
RMSD is 1.04 Å. The main continuous matching frag-
ments are

Now chain ‘‘O1’’ matches to ‘‘P2,’’ ‘‘P1’’ to ‘‘O2,’’ ‘‘Q1’’ to ‘‘R2’’
and ‘‘R1’’ to ‘‘Q2.’’

The matches between the chains in all four cases are
almost perfect. It is easy to see that these matches reveal a
remarkable structural similarity of all chains of both
proteins. Furthermore, these matchings indicate the spa-
tial arrangement of the chains of both proteins. Assem-
bling these results together, we get (the sign ‘‘⇔’’ implies
‘‘matches to’’):

Since all chains of both proteins are extremely similar to
each other we can consider these matchings as matchings
of 1gd1 (or 2gd1) with itself. Thus, we can divide the four
chains to two pairs, 5‘‘O,’’ ‘‘Q’’6 and 5‘‘P,’’ ‘‘R’’6, such that in
each pair a rotation by 180 deg around these axes will
transform one chain to another.

Domain Motions in Proteins
(a) Motion in calmodulin

Calmodulin (CaM) is a ubiquitous Ca21 binding protein.
It is involved in a wide range of cellular Ca21-dependent
signaling pathways. It regulates the activity of a large
number of proteins including protein kinases, protein
phosphatases, nitric oxide synthase, inositol triphosphate
kinase, nicotinamide adenine dinucleotide kinase, cyclic
nucleotide phosphodiesterase, Ca21 pumps, and proteins
involved in motility.31 Here we compare calmodulin (cal-
cium-bound) complexed with rabbit skeletal myosin light-
chain kinase (2bbm) (Fig. 3a) with human calmodulin
(1cll, Fig. 3b) and with calmodulin from Drosophila mela-
nogaster (4cln). We choose 2bbm to be the model protein
in both comparisons and 1cll, and 4cln the target ones.
Our program reveals a non-rigid matching between these
two protein pairs. In the first match, the hinge has been
put at the 76-th Ca atom of 2bbm (Fig. 3c). The two parts of
2bbm have been rotated with respect to each other by
173.8 degrees. 2bbm contains 148 residues and 1cll 144.
The number of matching Ca pairs is 101. The main
continuous matching fragments of these two proteins are

The RMSD between the transformed 2bbm and 1cll is
1.69 Å. Putting the hinge at the 26-th Ca atom of 2bbm we
obtain the following main continuous matching fragments
of the molecules

Comparing (2bbm with 4cln) we again pick 2bbm to be
the model molecule. The best match is obtained when the
hinge is put at the 78-th Ca atom of 2bbm (Fig. 3d). The
parts of 2bbm are rotated with respect to each other by
172 deg. Both 2bbm and 4cln are 148 residues long. The
number of matching Ca pairs of transformed 2bbm and
4cln are only 87. The main continuous matching frag-
ments between these proteins are 27–29, 43–62, 88–102,
115–129, 134–144, in both model (2bbm) and target (4cln)
molecules. The RMSD between transformed 2bbm and
4cln is 1.61 Å.

Model(1gd1) : 1–322, 335–410, 413–668, 669–675
Target(2gd1) : 1003–1334, 669–744, 747–1002, 335–341
Model(1gd1) : 677–699, 703–742, 755–765, 783–1000
Target(2gd1) : 343–365, 369–408, 421–431, 449–666
Model(1gd1) : 1003–1078, 1081–1112, 1114–1336
Target(2gd1) : 1–76, 79–110, 112–334

Model(1gd1) : 1–332, 335–340, 343–365, 369–408
Target(2gd1) : 335–666, 1–6, 9–31, 35–74
Model(1gd1) : 423–431, 449–668, 669–699, 703–742
Target(2gd1) : 89–97, 115–334, 1003–1033, 1037–1076
Model(1gd1) : 755–765, 772–778, 781–1000, 1003–1336
Target(2gd1) : 1089–1099, 1106–1112, 1115–1334, 669–1002

Model(1gd1) : 1–365, 369–408, 423–431, 449–668
Target(2gd1) : 669–1033, 1037–1076, 1091–1099, 1117–1336
Model(1gd1) : 671–699, 703–741, 755–765, 781–803
Target(2gd1) : 3–31, 35–73, 87–97, 113–135
Model(1gd1) : 806–809, 814–1001, 1003–1025, 1028–1078
Target(2gd1) : 138–141, 146–333, 335–357, 360–410
Model(1gd1) : 1081–1083, 1086–1112, 1115–1334
Target(2gd1) : 413–415, 418–444, 447–666

Match #1 Match #2 Match #3 Match #4

‘‘O1’’ ⇔ ‘‘R2’’ ‘‘O1’’ ⇔ ‘‘O2’’ ‘‘O1’’ ⇔ ‘‘P2’’ ‘‘O1’’ ⇔ ‘‘Q2’’
‘‘P1’’ ⇔ ‘‘Q2’’ ‘‘P1’’ ⇔ ‘‘P2’’ ‘‘P1’’ ⇔ ‘‘O2’’ ‘‘P1’’ ⇔ ‘‘R2’’
‘‘Q1’’ ⇔ ‘‘P2’’ ‘‘Q1’’ ⇔ ‘‘Q2’’ ‘‘Q1’’ ⇔ ‘‘R2’’ ‘‘Q1’’ ⇔ ‘‘O2’’
‘‘R1’’ ⇔ ‘‘O2’’ ‘‘R1’’ ⇔ ‘‘R2’’ ‘‘R1’’ ⇔ ‘‘Q2’’ ‘‘R1’’ ⇔ ‘‘P2’’

Model(2bbm) : 26–30, 42–63, 86–112, 115–142
Target(1cll) : 23–27, 39–60, 83–109, 112–139

Model(2bbm) : 6–21, 28–32, 56–73
Target(1cll) : 3–18, 25–29, 53–70
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(b) Motion in alcohol dehydrogenase (ADH)

We compare holo alcohol dehydrogenase complexed with
NAD and DMSO (PDB code 6adh) and apo alcohol dehydro-
genase (8adh). In his protein motion database, Gerstein et
al.19 classifies the domain motion in alcohol dehydrogenase
as a shear mechanism. Our program is still able to reveal
an almost perfect match between chain A of 6adh and
8adh (not shown). We define 6adh to be the model
molecule and put the hinge at the 171-st Ca atom. The two
parts of 6adh are rotated by 7.8 deg during the verification
stage of the algorithm. Both chain A of 6adh and 8adh are
374 residues long. The number of matching Ca pairs in the
two molecules is 368. The main continuous matching
fragments of these two proteins are 4–97, 100–295, 299–
352, and 358–374 in both model (6adh) and target (8adh)
molecules. The RMSD between the transformed model
molecule and the target molecule is 0.93 Å.

(c) Motion in catabolite gene activator
protein (CAP)

We compare chains A and B of catabolite gene activator
protein (3gap). Chain B has been defined to be the model
protein and chain A—the target one. We put the hinge at
the 130–th Ca atom of chain A. A non-rigid matching
between these two chains is observed. To match chain A,
the two parts of chain B are rotated with respect to each
other by about 30 degrees. Chain A is 208 residues long
and chain B consists of 205. The number of matching Ca

pairs is 196. The main continuous matching fragments are
residues 6–8 from the model (3gapb) with 7–9 from the
target (3gapa), and 10–53, 55–134, 138–152, and 155–204
from both molecules. The RMSD between the transformed
chain B and chain A of 3gap is 1.02 Å (Fig. 4).

(d) Motion in lysine/arginine/ornithine (LAO)
binding protein

We compare lysine-, arginine-, ornithine-binding protein
(LAO) complexed with lysine (1lst) with lysine-, arginine-,
ornithine-binding protein (LAO) (2lao). We choose 1lst to
be the model molecule and 2lao to be the target. The hinge
has been put arbitrarily at the 71–st Ca atom of 1lst. The
following two matches have been obtained:

1. The number of matching pairs of Ca atoms of 1lst and
2lao is 164. The main continuous matching fragments
are 1–91 and 189–238 in both model (1lst) and target
(2lao) molecules.

2. The number of matching pairs of Ca atoms of 1lst and
2lao is 141. The main continuous matching fragments
are residues 59–61 from the model (1lst) with 68–66
from the target (2lao), and 91–163 and 165–192 from
both molecules.

Three large fragments of the two proteins are matched:
1–91 (first match), 91–192 (second match), 189–238
(first match). Both proteins are 238 residues long. We
therefore put a hinge at the 91–st Ca atom of 1lst.
This time the following two matches were obtained (Fig.
5a,b):

1. The number of the matching pairs of Ca atoms of 1lst
and 2lao is 193. The main continuous matching frag-
ments are 1–7, 10–86, and 88–192 from both model
(1lst) and target (2lao) molecules. To match 2lao, the
two parts of 1lst are rotated with respect to each other
by 51.9 deg. The RMSD between the transformed model
molecule and the target molecule is 1.02 Å.

2. The number of matching pairs of Ca atoms of 1lst and
2lao is 162. The main continuous matching fragments
are 1–91, and 189–238 from both molecules. To match
to 2lao, the two parts of 1lst are rotated with respect to
each other by 1.92 deg, i.e., this is a rigid match. The
RMSD between the transformed model molecule and
the target molecule is 0.98 Å.

It is easy to see that here we have two hinges. The first is
at the 91-st Ca atom and the second close to the 192-nd Ca.
This example demonstrates the ability of our program to
reveal this type of domain motion.

(e) Motion in lactoferrin

We compare two lactoferrin conformations: lactoferrin
differic (1lfg) and lactoferrin apo form (1lfh). We pick 1lfg
to be the model molecule and 1lfh to be the target one. The
hinge has been put arbitrarily at the 71–st Ca atom of the
model molecule 1lfg. Both proteins are 691 residues long.
Four fairly similar matches have been obtained. The more
interesting one has 554 matching Ca pairs with the main
continuous matching fragments being 5–83 and 87–91 in
both model (1lfg) and target (1lfh) molecules; 235–237 in
the model with 197–199 in the target, and 250–274,
285–292, 295–302 in both. Clearly, two large fragments of
the two proteins match each other, 5–91 and 250–691. The
two obvious candidates to be the hinge are the 91–st Ca

atom and the 250-th Ca atom of 1lfg. However, if we put
the hinge at the 91-st Ca atom we divide the model
molecule into two parts such that in one part we have two
domains of essentially different sizes (249–90 5 159 resi-
dues versus 691–250 5 441 residues, i.e., one domain is
2.8 times larger than the other). In this case the larger part
provides substantially more votes to candidate reference
frames during the recognition stage of the algorithm. This
implies that during high-scoring candidate reference frame
selection, the votes for the smaller part will be largely
overlooked. On the other hand, if we put the hinge at the
250-th Ca atom of 1lfg, we divide the model molecule into
two parts in a way such that in one part we again obtain
two domains of different sizes. But this time the difference
is appreciably smaller (one domain is only 1.8 times larger
than the other). Putting the hinge at the 250-th Ca atom of
1lfg, seven matches are obtained. These matches may be
divided into two, fairly similar groups:

1. The number of matching pairs of Ca atoms is 600. The
main continuous matching fragments are 91–140, 143–
280, 283–292, 295–330, 333–417, and 422–691 in both
model (1lfg) and target (1lfh) molecules. To optimally
match 1lfh, the two parts of 1lfg have been rotated
with respect to each other by around 57.5 degrees. The
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Fig. 6. Lactoferrin differic (1lfg ) versus lactoferrin apo form (1lfh ). (a) The first of two matches. To match to 1lfh , the two parts of 1lfg have been rotated with
respect to each other by 57.5 deg. (b) The second match. To match to 1lfh , the two parts of 1lfg have been rotated with respect to each other by 7.68 deg.



RMSD between the transformed model and the target
molecule is 1.11 Å.

2. The number of matching pairs of Ca atoms is 563. The
main continuous matching fragments are 5–91, 250–
264, 266–272, 285–330, 332–417, and 422–691 in both
molecules. To match 1lfh, the two parts of 1lfg are
rotated with respect to each other by around 7.7 deg.
The RMSD between the transformed model molecule
and the target molecule is 1.16 Å.

Putting the hinge at the 250-th Ca atom of 1lfg has
shown that these two molecules are comprised of three
similar domains: 5–91 (second match), 91–250 (first match)
and 250–691 (both matches). Hence, one needs to put two
hinges, at the 91-st Ca atom and at the 250–th Ca atom of
1lfg to obtain a perfect match of these two proteins. The
two matches are displayed in Figure 6a,b.

(f) Motion in T4 lysozyme mutants: Ile3 = Pro
and Met6 = Ile

We compare a lysozyme mutant with ile3 replaced by pro
(I3P) (space group P 32 2 1) (1l96) with lysozyme mutant
(space group P 21 21 2) (1l97) (not shown). We choose 1l97
to be the model protein and 1l96 to be the target protein.
Again, we put the hinge at the arbitrarily chosen 71–st Ca

atom of the model molecule 1l97. 1l97 is comprised of two

chains, each containing 164 residues. 1l96 is 162 residues
long. The best of the five matches we have obtained has
157 matching pairs of Ca atoms with the main continuous
matching fragments being 12–162 in both molecules. To
match 1l96 the two parts of 1l97 have been rotated with
respect to each other by about 29.6 deg. The RMSD
between the transformed model molecule and the target
molecule is 1.19 Å. The results suggest that the first 12 Ca

atoms of 1l96 match those of 1l97. To verify it we put the
hinge at the twelfth Ca atom of 1l97. The two most
interesting results are:

1. The number of matching pairs of Ca atoms of the
compared molecules is 129. The main continuous match-
ing fragments are 1–14, and 74–162 in both molecules.
To match 1l96, the two parts of 1l97 have been rotated
with respect to each other by 13.8 deg.

2. The number of matching pairs of Ca atoms of the
compared molecules is 108. The main continuous match-
ing fragments are 1–82 in both molecules. To match
1l96, the two parts of 1l97 are rotated with respect to
each other by 27.3 deg.

These results confirm our assumption. Hence, to obtain
a perfect match between 1l96 and 1l97 we have to insert

Fig. 7. Chain A of tomato bushy stunt virus (2tbv ) versus chain C of the same protein. To match
to chain C, the two parts of chain A have been rotated with respect to each other by 21.53 deg.
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two hinges at the twelfth Ca and at the 71–st Ca atoms of
1l97.

(g) Motion in tomato bushy stunt virus (TBSV)
coat protein

We compare chains A and C of tomato bushy stunt virus
(2tbv). We choose chain A to be the model protein and
chain C to be the target protein. Chain A (2tbva) of tomato
bushy stunt virus has 287 residues and chain C (2tbvc)
has 321. The best match has been obtained when the hinge
was placed at the 165–th Ca atom of 2tbva, with 284
matching Ca pairs. The main continuous matching frag-
ments are

To match 2tbvc, the two parts of 2tbva are rotated with
respect to each other by 21.5 deg. The RMSD between the
transformed model molecule and the target is 0.77 Å (see
Figure 7).

(h) Motion in diphtheria toxin

We compare monomeric diphtheria toxin (1mdt) with
dimeric diphtheria toxin (1ddt). 1mdt is the model protein
and 1ddt is the target. Monomeric diphtheria toxin (1mdt)
is comprised of two chains each 523 residues long. Dimeric
diphtheria toxin (1ddt) is 523 residues long. The best
match was obtained when the hinge was placed at the
373-th Ca atom of 1mdt. The number of matching Ca pairs
is 509. The main continuous matching fragments are
1–187, 189–338, 340–367, 376–397, 399–426, 429–484,
491–510, and 514–523 in both model (1mdt) and target
(1ddt) molecules.

To match 1ddt, the two parts of 1mdt have been rotated
with respect to each other by about 179.3 deg. The RMSD
between the transformed model molecule and the target
molecule is 1.16 Å (Fig. 8).

FURTHER COMMENTS

Here we make some further comments about the applica-
bility and performance of the hinge-bending flexible struc-
tural comparison method.

First, how critical is the choice of the hinge position? As
hinges are often imprecisely known, errors in the assign-
ment of the hinge can be expected. Hence this question is
highly relevant. Certainly, if the exact location of the hinge
is known in advance, predefining it results in an efficient,
straightforward matching. However, even in the absence
of such exact knowledge we were able to obtain the
hinge-bending flexible matching. We have experimented
with shifting of the hinges three Ca’s to the left or to the
right of the ‘‘correct’’ hinge, and still obtained matching,
although with a deterioration of the quality of the superpo-
sition. However, this initial rough identification may be
followed by a refinement of the hinge by successive applica-
tions around this site. Second, if the location of the hinge is
unknown, the speed of the program allows repeated appli-

cations, systematically varying the hinge position. Since a
large number of Ca atoms can be tested as potential hinge
sites, an a priori knowledge of the hinge location is not a
prerequisite. A refinement of the hinge around a trial
hinge can follow. Third, by iteratively scanning the model
molecule for many trial hinge-sites, and inspecting the
quality of the obtained superpositions, several hinge sites
can be located.

In the applications presented here similar molecules
have been used. The ability of the program to handle some
noise is shown by the matching of both crystal and NMR
(2bbm) structures. Currently we are carrying out exten-
sive database analysis. We automatically scan the Ca

atoms in model proteins, iteratively carrying out the
matching with a large number of proteins in the set. A
particularly interesting set of cases which we are examin-
ing are the cytokine receptor superfamily. A straightfor-
ward match obtained by the program is of 1a21, the
extracellular domain of the rabbit tissue factor and 1hwh,
a human growth hormone mutant. The first part was
matched with an RMSD of 2.29 Å and the second with an
RMSD of 2.0 Å. Similarly, 1a21 was matched with a
domain hinge-bending movement with 1hwg.

As with rigid structure comparisons, an inherent limita-
tion of such comparisons is not always being able to judge
the biological meaning of an obtained geometrical match of
Ca atom-pairs between two proteins. Here, in addition,
each of the parts should be large enough to obtain meaning-
ful results. We have not experimented thoroughly enough
with the program to uniquely define what is a ‘‘large
enough’’ part.

CONCLUSIONS

Here we have presented a powerful novel approach for
automatically matching protein molecules, enabling do-
main, or subdomain swiveling. Since domain motions are
known to take place, the existence of such a methodology is
very useful. Whereas to date searches for motifs have been
strictly rigid-body ones, the existence of such a technique
enables instituting searches for hinge–bent motifs. Well
known examples are domain (or, part) swapping between
meta-stable conformations. Hence, such a technique can
be utilized to look for similar configurations, differing only
by the introduction of a swiveling hinge, as might be the
case in misfolded proteins. Superimposing the two struc-
tures can reveal the residues contributing to this conforma-
tional flip.

While this method is not as fast as its rigid-body
counterpart, it is still very efficient. For the protein–protein
cases we have examined, it took between 17 to 148 seconds
on an Indigo 2 SGI workstation. In addition, it still
possesses all the attributes of our previously presented
methods, i.e., it is independent of the order of the residues
on the polypeptide chain, and hence disregards insertions,
deletions and changes in chain directionality.

This approach is general. It can be utilized to compare
drugs, in searches for (flexible) pharmacophores, or motifs
in RNA structures. It can be straightforwardly imple-
mented to enable several, simultaneous hinges, and to a

Model(2tbva) : 1–168, 170–172, 175–243, 245–287
Target(2tbvc) : 36–203, 205–207, 210–278, 280–322
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comparison of a model to a database of molecules, in
searches for a recurring, hinge-bent motif. There is no
need to predefine the motif, nor the angular rotation. Both
of these would be found automatically, after the transforma-
tions have been computed. Hence, we avoid the extremely
time-consuming conformational searches through 3-D
space, making it an especially attractive tool.
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APPENDIX A
Parameters Definition

The program is written in C11.

Parameters

Here we provide a detailed description of each of the
parameters in the program.

neighborhood_radius During the recognition stage
we visit not only the R-Table entry with the computed
address, but also its neighbors provided neighbor-
hood_radius is greater than 0. This is done since the
matching cannot be expected to recur precisely. Setting
neighborhood_radius to value greater than 1, affects
the complexity of the algorithm.

index_difference To reduce the complexity of the algo-
rithm we impose additional constraints on the triple of Ca

atoms comprising the frame-invariant. One of these con-
straints requires that the difference between Ca atoms
indices be less than or equal to an index_difference.

research_radius In some cases it may be useful to limit
the set of Ca atoms used in the frame-invariant definition
by considering only those which are fairly close to the
chosen hinge. This is controlled by the research_radius
parameter.

max_coordinate This parameter, together with the
next one, defines the 3-D space of the program. The 3-D
space is a set of all points (x, y, z) in 3-D space which meets
the following conditions

min_coordinate # x, y, z # max_coordinate

min_coordinate This parameter, together with the
previous one, defines the 3-D space for the program.

max_triangle_side_length One of the conditions for a
triple of Ca atoms to be a frame-invariant is that the edges’
lengths of the triangle they form are less than or equal to
max_triangle_side_length.

min_triangle_side_length One of the conditions for a
triple of Ca atoms to be a frame-invariant is that the edges’
lengths of the triangle they form are greater or equal to
min_triangle_side_length.

matching_parameter One of the conditions in the
definition of a matching pair of Ca atoms where one
belongs to the transformed model molecule and the second
to the target molecule, is that the distance between them is
less than or equal to a matching_parameter.

epsilon Two coordinate frames are defined to be identi-
cal if the distance between their x-axes, and between their
y-axes is less than epsilon.

upper_coefficient To reduce the number of candidates,
during the computation of the high scoring candidate
reference center locations, we reject all candidate refer-
ence center locations whose votes score is less than the
best votes score multiplied by upper_coefficient.

lower_coefficient When the high scoring candidate
reference center locations are being selected, to reduce the
complexity of the algorithm we keep track of M, the
maximal votes score among all the candidate reference
center locations which have been encountered so far. We
insert the candidate reference center location in the heap
of the best candidate reference center locations only if its
votes score is greater than M multiplied by lower_coeffi-
cient.

candidate_joint_location_list_size Defines the size
of the heap where the high-scoring candidate reference
center locations are stored during the high-scoring candi-
date reference center locations selection.

best_matching_values_coefficient During verifica-
tion of the high-scoring candidate reference center loca-
tion, we apply appropriate coordinate transformation on
the corresponding parts of the model molecule and com-
pare the resulting transformed molecule with the target
one. We also keep track of the maximal number of match-
ing pairs, for the high scoring candidate reference center
locations. If for a high-scoring candidate reference center
location the number of matching pairs is greater than this
maximal number multiplied by best_matching_val-
ues_coefficient, we shift the transformed model molecule
in different directions in 3-D space in an attempt to
improve the result. There may be several high-scoring
candidate reference center locations which have been
verified. We reject those which obtain relatively few match-
ing pairs. Namely, if the number of matching pairs for
some model molecule is less than the maximal number of
matching pairs for this molecule multiplied by match-
ing_value_coefficient, then this candidate reference cen-
ter location is considered as inadequate in the verification
stage.

cluster_radius During the clustering of high-scoring
candidate reference frame locations, we go through the list
of high-scoring candidate reference center locations. For
each one, we compute the average of the origins and axes
vectors. Only high-scoring candidate reference center loca-
tions with origins and axes vectors sufficiently close to the
considered candidate reference center location are taken
into account. The proximity of the origins is controlled by
cluster_radius.

cluster_of_clusters_radius Following the clustering
of high scoring candidate reference frame locations, we go
through the clusters and reject those having another
high-scoring candidate reference frame location with a
higher votes score, and with an origin within the radius
cluster_of_clusters_radius.

store_results By default, the program outputs results on
the screen. If a user sets store_results parameter, the results
will also be written to the file 7target_molecule_name8.drs in
the directory specified by outputdir.

store_detailed_results If a user set store_results
parameter, the more detailed version of results will be
written to the file 7target_molecule_name8.drs in the direc-
tory specified by outputdir. The difference between de-
tailed and concise results is that in the first a user receives
also the coordinates of Ca atoms of the transformed model
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molecules and their matching Ca atoms of the target
molecule.

max_number_of_interest_features Defines the maxi-
mal size of the molecules (number of Ca atoms).

resolution Used to control the size of a bin in the
SpaceNet hash table.

self_identification If some molecule is in both data-
base file and scene file, the user can either take into
account or ignore the molecule in the database when this
molecule is run as a target molecule against the database.
This is done by setting this parameter on or off.

Parameters’ Default Values

Here we present the list of all the program’s parameters’
default values. These parameters enable to customize the
program to meet the different requirements which may
arise by consideration of different objects. (See Appendix
table.)
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