Name and ID of the student:

03.07.2015, moed A

Tel-Aviv University Engineering Faculty

Final exam on "Differential and Integral Calculus"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours.
- 2. The use of any material is forbidden except the plane calculator and three personal lists (6 pages) of formulas, **including a list of quadratic surfaces**, prepared by the student. The size of the lists is the standard A4 format.
- 3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

- 1. There are 5 questions in the exam. You should answer to **only** 4 questions.
- 2. The grade of each question is 25 points.
- 3. Indicate on the first page of the exam which questions should be checked.
- 4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!

Question 1

- (a) (10 points) Calculate the limit $\lim_{n\to\infty} \sqrt[n]{3n-\sqrt{n}}$.
- **(b) (15 points)** Find the radius and interval of convergence (including endpoints) of the power series $\sum_{n=1}^{\infty} a^{n^2} (x-1)^n$. Hint: one should consider three cases of the constant a > 0.

Question 2 Given a series $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^4 + \sqrt{n}}.$

- (a) (4 points) For which values of x does the series converge?
- (b) (6 points) For which values of x does the series absolutely converge?
- (c) (15 points) For which largest domain of x does the series uniformly converge?

Question 3

- (a) (13 points) Calculate the double integral $\iint_D \sin(xy) dA$, where D is a domain which is in $y \ge 0, x \ge 0$ and bounded by xy = 2, xy = 4, y = x and y = 2x.
- **(b) (12 points)** Find the limit $\lim_{(x,y)\to(1,0)} (x-1+y)\sin\left(\frac{1}{(x-1)^2+y^2}\right)$ and prove your answer or prove that the limit does not exist.

Question 4

(25 points) Verify the Gauss theorem for the vector-field $\vec{F} = (x, y, xz)$ and S is a lateral surface of a body which is bounded by the cone $z = \frac{1}{2}\sqrt{x^2 + y^2}$ and the plane z = 1. The inward normal on S is given.

Question 5

- (a) (13 points) Given the numerical sequence $a_1 = 5$, $a_{n+1} = \sqrt{3 + 2a_n}$. Prove that the sequence converges and find the limit of the sequence.
- **(b) (12 points)** Check absolute convergence/ conditional convergence/ divergence of the series $\sum_{n=1}^{\infty} \left(-1\right)^n \frac{1}{\sqrt{n}} \ln(1+\frac{1}{n}).$