Name and ID of the student:

16.07.2015, moed B

Tel-Aviv University Engineering Faculty

Final exam on "Differential and Integral Calculus"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours.
- 2. The use of any material is forbidden except the plane calculator and three personal lists (6 pages) of formulas, **including a list of quadratic surfaces**, prepared by the student. The size of the lists is the standard A4 format.
- 3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

- 1. There are 5 questions in the exam. You should answer to **only** 4 questions.
- 2. The grade of each question is 25 points.
- 3. Indicate on the first page of the exam which questions should be checked.
- 4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!

Question 1

- (a) (10 points) Calculate the limit $\lim_{n\to\infty} \sqrt[n]{1^4 + 2^4 + ... + n^4}$.
- **(b)** (**15 points**) Find the radius and interval of convergence (including endpoints) of the power series $\sum_{n=1}^{\infty} (-1)^n nx^{n-1}$ and calculate the sum.

Question 2

(a) (12 points) Given a sequence of the functions $f_n(x) = x^2 e^{-nx}$, where n = 1, 2, 3, ...

Does the series of functions $\sum_{n=1}^{\infty} f_n(x)$ converge uniformly on $[0,\infty)$? Prove.

(b) (13 points) Calculate the surface area of a part of the sphere $x^2 + y^2 + z^2 = 1$ which is situated between the planes z = 0 and $z = \frac{1}{2}$.

Question 3

(25 points) Calculate the triple integral $\iiint_E z^3 e^{\left(x^2+y^2+z^2\right)^{3/2}} dV$, where E is a body which is in $z \ge 0$, $y \ge 0$, $x \ge 0$ and bounded by $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$.

Question 4

(25 points) Verify the Stokes theorem for the vector-field $\vec{F} = (yz,1,z)$ and C is an intersection curve between the cylinder $x^2 + y^2 = 4$ and the half-sphere $x^2 + y^2 + z^2 = 16, z \ge 0$. The orientation on C is clockwise by observing from above. Remark. For surface S one can choose any smooth surface with boundary C.

Question 5

(a) (13 points) Given the numerical sequence $a_1 = c$, $a_{n+1} = \frac{a_n^2 + c^2 - 1}{2c}$, where c > 1.

Prove that the sequence converges and find the limit of the series.

(b) (12 points) Check absolute convergence/ conditional convergence/ divergence of the series $\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{1}{n^2}\right)$ and $\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^n$.