ID of the student:
17.02.2016, moed B

Tel-Aviv University
Engineering Faculty

Final exam on "Calculus 1B"
Lecturer: Prof. Yakov Yakubov

Prescriptions:
1. The duration of the exam is 3 hours.
2. The use of any material is forbidden except the plane calculator and two personal lists (4 pages) of formulas prepared by the student. The size of the lists is the standard A4 format.
3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:
1. There are 5 questions in the exam. You should answer to only 4 questions.
2. The grade of each question is 25 points.
3. Indicate on the first page of the exam which questions should be checked.
4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!
Question 1 (25 points)

Investigate and draw a graph of the function \(y = f(x) = \frac{x}{3 - x^2} \) (the domain of definition, the intersection points with the coordinate axis, symmetry, extreme points, monotonicity, convexity, inflection points, asymptotes, the graph).

Question 2

(a) (14 points) Given the function \(f(x) = \sqrt[3]{8 + x} \). Write its Taylor’s formula, including the Lagrange remainder, at \(a = 0 \) for \(n = 2 \). Calculate the approximate value of \(\sqrt[3]{12} \) using the formula and give the “error” estimation.

(b) (11 points) Prove that, for \(x > 0 \), it holds \(\frac{x}{x+1} < \ln(1+x) < x \).

Question 3

(a) (13 points) For which values of \(\alpha \) and \(\beta \) the function

\[
f(x) = \begin{cases}
\sin(2x), & x \leq 0, \\
\alpha e^{-x} + \beta \ln(1 + x), & x > 0
\end{cases}
\]

is differentiable at 0?

(b) (12 points) Check the series \(\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{\sqrt{n+1}}\right) \) for convergence/divergence.

Does it absolutely converge? Remark: \(\sin x \) is positive and increasing on \((0, \pi/2) \).

Question 4

(a) (14 points) Calculate the improper integral \(\int_{0}^{\infty} \frac{1}{(x+1)(x^2 + 1)} \, dx \). Hint: if necessary, use the property \(\ln A - \ln B = \ln \frac{A}{B} \).

(b) (11 points) Calculate the limit \(\lim_{x \to +\infty} \left(1 + (x^n + 1)e^{-x} \right)^{\frac{3x^n + 1}{x^n + 2}} \), where \(n \) is a fixed natural number. Hint: first, show that \(\lim_{x \to +\infty} (x^n + 1)e^{-x} = 0 \).

Question 5

(a) (13 points) Prove, by the Cauchy characterization of convergence, that the series

\[
a_n = \frac{\cos 1!}{1 \cdot 2} + \frac{\cos 2!}{2 \cdot 3} + \cdots + \frac{\cos n!}{n \cdot (n+1)}
\]

converges.

(b) (12 points) Find the radius and the interval of convergence (including the end-points) of the series \(\sum_{n=1}^{\infty} \frac{x^n}{3^n + 2^n} \).