ID of the student:

13.02.2018, moed B

Tel-Aviv University Engineering Faculty

Final exam on "Calculus 1B"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours.
- 2. The use of any material is forbidden except the plane calculator and two personal lists (4 pages) of formulas prepared by the student. The size of the lists is the standard A4 format.
- 3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

- 1. There are 5 questions in the exam. You should answer to <u>only</u> 4 questions.
- 2. The grade of each question is 25 points.
- 3. Indicate on the first page of the exam which questions should be checked.
- 4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!

Question 1 (25 points)

Investigate and draw a graph of the function $y = f(x) = \frac{\ln x}{x}$ (the domain of

definition, the intersection points with the coordinate axis, symmetry, extreme points, monotonicity, convexity, inflection points, asymptotes, the graph).

Question 2

- (a) (13 points) Calculate $\int_{1}^{2} \frac{dx}{(x+1)^{2}(x+2)}$.
- **(b)** (12 points) Prove that the equation $x^5 + ax^3 + bx + \sin x = 0$ $(a \ge 0, b > 1)$ has a unique real solution.

Question 3

(a) (13 points) Given the function $f(x) = \begin{cases} \frac{1}{|x|}, & |x| \ge 1, \\ ax^2 + b, & |x| < 1 \end{cases}$. Find a and b such that

there exists the derivative f'(1).

(b) (12 points) Check the series $\sum_{n=1}^{\infty} (-1)^n \frac{2n + \sin n}{n^3 + 3n^2 + 1}$ for

conditionally convergence/absolute convergence/divergence.

Question 4

- (a) (14 points) Calculate the improper integral $\int_{0}^{\pi/2} \frac{\cos x}{\sqrt[3]{\sin^2 x}} dx$ if it exists.
- **(b)** (11 points) Calculate the limit $\lim_{x \to +\infty} \left(1 + \frac{\ln x}{e^x}\right)^{\frac{2e^x + 1}{\ln x + 2}}$.

Question 5

(a) (14 points) Prove, by the Cauchy characterization of convergence, that the

sequence
$$a_n = \frac{\sin(e^{1!})}{1 \cdot 2} + \frac{\sin(e^{2!})}{2 \cdot 3} + \dots + \frac{\sin(e^{n!})}{n \cdot (n+1)}$$
 converges.

(b) (11 points) Find the radius and the interval of convergence (including the endpoints) of the power series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^3 e^n} x^n.$

2