ID of the student:

21.02.20, moed A

Tel-Aviv University Engineering Faculty

Final exam on "Calculus 1B"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours. Write the ID number on the top.
- 2. The use of any material is forbidden except the attached list of formulas.
- 3. Do not use any methods which have not been studied in the classes.
- 4. It is forbidden to keep any electronic device close to the exam place.
- 5. There are 4 questions in the exam. You should answer the all questions.
- 6. The grade of each question is 27 points but the maximal grade on the exam does not exceed 100.

Good luck!

Question 1

- (a) (13 points) Calculate the integrals: $\int \frac{x^3}{x^2+4x+5} dx$, $\int \frac{x}{\cos^2 x} dx$.
- (b) (14 points) Given the equation arctg(x) + x = 1. Prove that there is a solution to the equation and the solution is unique.

Question 2

- (a) (13 points) Prove that $\forall a \in \mathbb{R}$ it is true that $\lim_{n \to \infty} \frac{[a \cdot n]}{n} = a$, where [x] denotes the lower integer part of x.
- (b) (14 points) Calculate, by definition, the derivative of the function $f(x) = \ln(x^2 + 3)$ at any real point x_0 . Remark: the use of the L'Hospital rule at any step of the solution is forbidden.

Question 3

- (a) (10 points) Given a continuous function f(x) on [0,2] such that f(0) = f(2). Prove that there exists a point $x_0 \in (0,2)$ such that $f(x_0) = f(x_0 + 1)$.
- **(b)** (10 points) Calculate the all possible asymptotes of the function $f(x) = |x| + arctg\left(\frac{1}{x}\right)$
- (c) (7 points) Calculate the limit $\lim_{x\to 0} (\cos(x) + x^2)^{1/x^2}$.

Question 4

- (a) (9 points) Find all local extrema points of the function $f(x) = x^{4/3} 2x^{2/3}$.
- (b) (10 points) Prove, using the Lagrange mean-value theorem, that $\tan(x) > x$ for any $0 < x < \frac{\pi}{2}$.
- (c) (8 points) Does the series $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\sin(\frac{1}{n})}{n}\right)$ converge absolutely, converge conditionally, or diverge?