ID of the student:

23.06.2016, moed A

Tel-Aviv University Engineering Faculty

Final exam on "Calculus 2B"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours.
- 2. The use of any material is forbidden except the plane calculator and three personal lists (6 pages) of formulas, **including a list of quadratic surfaces**, prepared by the student. The size of the lists is the standard A4 format.
- 3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

- 1. There are 5 questions in the exam. You should answer to **only** 4 questions.
- 2. The grade of each question is 25 points.
- 3. Indicate on the first page of the exam which questions should be checked.
- 4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!

Question 1 (a) (12 points) Given the function $f(x, y) = \begin{cases} \frac{x^4 + y^4}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0) \end{cases}$.

Calculate $f_x(x, y)$ and $f_y(x, y)$ for any $(x, y) \in \mathbb{R}^2$.

(b) (13 points) Check if the function differentiable or not at any point $(x, y) \in \mathbb{R}^2$.

Question 2 (a) (10 points) Given a single variable function f(t) twice differentiable. Show that the function $u(x, y) = f(e^x + \cos y)$ satisfies $(u_{xx} - u_x)\sin y = -e^x u_{xy}$.

(b) (15 points) Given the vector field $\vec{F} = (ye^x + xye^x + \frac{1}{1+x^2}, xe^x)$. Show that \vec{F} is a conservative vector field, find f(x, y) such that $\vec{F} = \nabla f$, and calculate $\int_C \vec{F} \cdot \hat{T} ds$ when C is a curve $y = \sin(\frac{\pi}{2}x)$, $x: 0 \to 1$.

Question 3 (a) (14 points) Find all critical points of the function $f(x, y) = (x^2 + y^2)e^{-x^2}$ and classify them (local min/max or saddle points).

(b) (11 points) Calculate the iterative integral $\int_{0}^{2\sqrt{\ln 3}} \int_{\frac{y}{2}}^{\sqrt{\ln 3}} e^{x^2} dx dy$.

Question 4 (a) (15 points) Find, using the Lagrange multipliers method, the maximum value of the function f(x, y, z) = xyz when (x, y, z) is situated on the straight line $\begin{cases} x + y + z = 40 \\ x + y - z = 0 \end{cases}$. Is there the minimum value?

(b) (10 points) Calculate, using the triple integral, the volume of a solid, which is a part of the infinite cylindrical solid $1 \le x^2 + y^2 \le 2$ bounded from below by z = 0 and from above by $z = \sqrt{x^2 + y^2}$.

Question 5 (25 points) Calculate the flux of $curl \vec{F}$ through the surface, given parametrically $\vec{r}(u,v) = (u\cos v, u\sin v, u)$, $0 \le u \le 1, 0 \le v \le 2\pi$, where $\vec{F} = (x^2y, 2y^3z, 3z)$. Is \vec{F} a conservative vector field?