ID of the student:

10.07.2016, moed B

Tel-Aviv University Engineering Faculty

Final exam on "Calculus 2B"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

1. The duration of the exam is 3 hours.
2. The use of any material is forbidden except the plane calculator and three personal lists (6 pages) of formulas, including a list of quadratic surfaces, prepared by the student. The size of the lists is the standard A4 format.
3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

1. There are 5 questions in the exam. You should answer to only 4 questions.
2. The grade of each question is 25 points.
3. Indicate on the first page of the exam which questions should be checked.
4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!

Question 1 (a) ($\mathbf{1 3}$ points) Given the function
$f(x, y)=\left\{\begin{array}{l}\frac{\ln \left(|x|+e^{|y|}\right)}{\sqrt{x^{2}+y^{2}}},(x, y) \neq(0,0), \\ 1, \quad(x, y)=(0,0)\end{array}\right.$. Do the iterated limits $\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right)$
and $\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)$ exist?
(b) (12 points) Does the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y) \quad$ exist?

Question 2 (a) ($\mathbf{1 5}$ points) Given a function of two variables $f(u, v)$ which satisfies the equation $f_{u u}+f_{v v}=0$. If $u=\frac{x^{2}-y^{2}}{2}$ and $v=x y$, show that the function $w=f(u, v)$ satisfies the equation $w_{x x}+w_{y y}=0$. Note that it is not given $f_{u v}=f_{v u}$.
(b) (10 points) Find the directional derivative of the function $h(x, y)=\sin x+y+1$ at the point $(0,1)$ in the direction $\vec{u}=(1,2)$. Calculate also $\max _{\hat{v} \in \mathbb{R}^{2}} D_{\hat{v}} h(0,1)$.

Question 3 (a) ($\mathbf{1 4}$ points) Find all critical points of the function $f(x, y)=\frac{1}{x^{2}+y^{2}-1}$, classify them (local min/max or saddle points), and find absolute \min / \max of the function in the disc $x^{2}+y^{2} \leq 1 / 2$.
(b) (11 points) Calculate the iterative integral $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{0} \frac{4 \sqrt{x^{2}+y^{2}}}{1+x^{2}+y^{2}} d x d y$.

Question 4 (a) (15 points) Calculate the line integral
$\int_{C}\left(e^{x} \sin y-x\right) d x+\left(e^{x} \cos y-x^{2}+e^{y}\right) d y$ where C is the bottom half-circle of $(x+1)^{2}+y^{2}=1$ oriented clockwise.
(b) ($\mathbf{1 0}$ points) Find all points on the cone $z=\sqrt{2 x^{2}+2 y^{2}}$ for which the tangent plane is parallel to the given plane $z=-x-y-9$.

Question 5 (a) (15 points) Calculate the flux of $\vec{F}=\left(5 x^{3}+12 x y^{2}, y^{3}+e^{y} \sin z, 5 z^{3}+e^{y} \cos z\right)$ through the surface S of a solid bounded by two spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=2$.
(b) ($\mathbf{1 0}$ points) Is the above \vec{F} a conservative vector field? What is the flux of $\operatorname{curl} \vec{F}$ through any smooth closed surface S_{0} ?

