ID of the student:

12.07.2017, moed A

Tel-Aviv University Engineering Faculty

Final exam on "Calculus 2B"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours.
- 2. The use of any material is forbidden except the plane calculator and three personal lists (6 pages) of formulas, **including a list of quadratic surfaces**, prepared by the student. The size of the lists is the standard A4 format.
- 3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

- 1. There are 5 questions in the exam. You should answer to **only** 4 questions.
- 2. The grade of each question is 25 points.
- 3. Indicate on the first page of the exam which questions should be checked.
- 4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!

Question 1 (a) (11 points) Given the function $f(x, y) = \begin{cases} \frac{|x|^3 + y^4}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0) \end{cases}$

Do $f_x(0,0)$ and $f_y(0,0)$ exist? Is the function differentiable at (0,0)?

(b) (14 points) Calculate $f_x(x, y)$ and $f_y(x, y)$ at any point $(x, y) \neq (0, 0)$. Is the function $f_x(x, y)$ continuous at (0, 0)?

Question 2 (a) (8 points) Given two single variable differentiable functions f(t) and g(t). Show that the function $u(x,y) = f(e^{xy^2}) + g(\sin(xy^2))$ satisfies $2xu_x - yu_y = 0$. (b) (17 points) Given $\vec{F} = (\frac{2xy^2}{1+x^2y^2} + y^2\cos(xy^2), \frac{2x^2y}{1+x^2y^2} + 2xy\cos(xy^2) + 1)$. Show that \vec{F} is a conservative vector field, find f(x,y) such that $\vec{F} = \nabla f$, and calculate $\int_C \vec{F} \cdot \hat{T} ds$ when C is the curve $\vec{r}(t) = (\sqrt{1-t^2},t), \ t:-1 \to 1$.

Question 3 (a) (13 points) The function z of two variables x, y is an implicit function which is given by $xy + yz = \arctan(xz)$. Find formulas for $z_x(x, y)$ and $z_y(x, y)$. Calculate $z_x(1,0)$, $z_y(1,0)$ and the tangent plane to the graph of the function z(x, y) at the point z(x, y) and z(x, y)

(b) (12 points) Calculate the double integral $\iint_D \sin\left(\frac{\pi x}{2y}\right) dx dy$, where D is a domain defined by $y \ge x$, $y \ge \frac{1}{\sqrt{2}}$, $y \le \sqrt[3]{x}$.

Question 4 (a) (13 points) Find the absolute min/max for the function $f(x, y) = x^2 - y^2 + 8$ in the domain $D = \{(x, y) \mid x^2 + y^2 \le 4\}$.

Are there the absolute min/max for the function on the whole plane?

(b) (12 points) Calculate, using the triple integral, the volume of a solid, which is situated between the cone $z = \sqrt{2x^2 + 2y^2}$ and the half-sphere $z = \sqrt{3 - x^2 - y^2}$ above the upper-half disk: $x^2 + y^2 \le 1, 0 \le y \le 1$.

Question 5 (25 points) Justify the Gauss theorem for $\vec{F} = (x, y, z^2)$ and body E which is bounded by the cylinder $x^2 + y^2 = 9$ and the planes z = -1, z = 3.