ID of the student:

04.08.2017, moed B

Tel-Aviv University Engineering Faculty

Final exam on "Calculus 2B"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours.
- 2. The use of any material is forbidden except the plane calculator and three personal lists (6 pages) of formulas, **including a list of quadratic surfaces**, prepared by the student. The size of the lists is the standard A4 format.
- 3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

- 1. There are 5 questions in the exam. You should answer to **only** 4 questions.
- 2. The grade of each question is 25 points.
- 3. Indicate on the first page of the exam which questions should be checked.
- 4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

Good luck!

Question 1 (a) (13 points) Prove, by the Cauchy definition, that the function

$$f(x,y) = \begin{cases} \frac{\ln(1+x^4+y^4)}{x^2+y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$
 is continuous at $(0,0)$.

(b) (12 points) Find the directional derivative of the function at the point (1,0) in the direction $\vec{u} = (-1,-1)$. Calculate also $\max_{\hat{v} \in \mathbb{R}^2} D_{\hat{v}} f(1,0)$.

Question 2 (a) (13 points) Given a function of a single variable $f(u) = u^{-\frac{1}{2}}$. If $u = x^2 + y^2 + z^2$, show that $f_{xx} + f_{yy} + f_{zz} = 0$ at any point $(x, y, z) \neq (0, 0, 0)$.

(b) (12 points) Find all points on the ellipsoid $2x^2 + 2y^2 + z^2 = 1$ for which the tangent plane is parallel to the given plane z = -x + y - 1. Write the equation of the tangent plane at a point with positive x-coordinate.

Question 3 (a) (14 points) Find the absolute min/max for the function $f(x, y) = e^{-(x^2+y^2)}(2x^2+3y^2)$ in the domain $x^2+y^2 \le 4$. What are the points of the absolute min/max?

(b) (11 points) Calculate $\iint_D xydxdy$, when D is a domain (in x > 0, y > 0) bounded by circles $x^2 + y^2 = 4$, $x^2 + y^2 = 9$ and hyperbolas $x^2 - y^2 = 1$, $x^2 - y^2 = 3$.

Question 4 (a) (15 points) Calculate
$$\int_{C} \frac{x+1}{\sqrt{(x+1)^2 + y^2}} dx + \left(\frac{y}{\sqrt{(x+1)^2 + y^2}} + \frac{x^2}{2} \right) dy$$

where C is the left half-circle: $x^2 + y^2 = \frac{1}{4}, x \le 0$, oriented clockwise.

(b) (10 points) Find all critical points of the function $f(x, y) = e^{x/2}(x + y^2)$ and classify them (local min/max or saddle points).

Question 5 (a) (20 points) Calculate the flux of

 $\vec{F} = (x^3 - \cos y, y^3 + \sqrt{x^2 + z^2}, z + 5xy)$ through the positive oriented surface *S* which is a part of the elliptic paraboloid $z = 4 - x^2 - y^2$ situated above the plane- xy.

(b) (5 points) Is the above \vec{F} a conservative vector field?