ID of the student:

15.07.2018, moed B

Tel-Aviv University Engineering Faculty

Final exam on "Calculus 2B"

Lecturer: Prof. Yakov Yakubov

Prescriptions:

- 1. The duration of the exam is 3 hours.
- 2. The use of any material is forbidden except the plane calculator and three personal lists (6 pages) of formulas, **including a list of quadratic surfaces**, prepared by the student. The size of the lists is the standard A4 format.
- 3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:

- 1. There are 5 questions in the exam. You should answer to **only** 4 questions.
- 2. The grade of each question is 25 points.
- 3. Indicate on the first page of the exam which questions should be checked.
- 4. In the case you solve all 5 questions and you do not indicate which questions should be checked, first 4 questions will be checked.

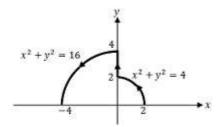
Good luck!

Question 1 (a) (13 points) Given the function

$$f(x,y) = \begin{cases} \frac{x + |y|}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 1, & (x,y) = (0,0) \end{cases}$$
. Calculate $f_x(0,0), f_y(0,0),$ and $f_x(1,0)$ if

they exist.

(b) (12 points) Find all continuity points $(x, y) \in \mathbb{R}^2$ of the function. Is the function differentiable at (0,0)?


Question 2 (a) (15 points) Given a differentiable function of two variables f(s,t) and $u(x, y, z) = x^2 f(s, t)$, where $s = \frac{y}{x}$ and $t = \frac{z}{x}$. Prove that $xu_x + yu_y + zu_z = 2u$.

(b) (10 points) Find the directional derivative of the function $h(x, y) = \cos x + e^{xy} + 1$ at the point (0,1) in the direction $\vec{u} = (2,1)$. Calculate also $\max_{\hat{v} \in \mathbb{R}^2} D_{\hat{v}} h(0,1)$.

Question 3 (a) (12 points) Find all critical points of the function $f(x, y) = x^3 + y^3 + 3x^2 - 3y^2 - 8$ and classify them (local min/max or saddle points).

(b) (13 points) Calculate $\iint_S z \sqrt{x^2 + y^2} dS$, where S is parametrically given by $x = u \cos v$, $y = u \sin v$, z = v and $0 \le u \le 2, 0 \le v \le 2\pi$.

Question 4 (a) (15 points) Calculate the line integral $\int_C (-\frac{1}{2}y + 2x)dx + (\frac{1}{2}x + y^2)dy$, where C is given on the illustration

(b) (10 points) Calculate the iterative integral $\int_{0}^{3} \int_{0}^{\sqrt{9-x^2}} \ln(1+x^2+y^2) dy dx$.

Question 5 (25 points) Calculate the flux of $\vec{F} = (x^3 - \cos y, y^3 + \sqrt{x^2 + z^2}, z + 5)$ through the surface S which is a part of the elliptic paraboloid $x^2 + y^2 = 4 - z$ above the xy-plane. Is \vec{F} a conservative vector field?

2