
Name and ID of the student:  

24.01.2014
Tel-Aviv University
Engineering Faculty
Final exam on "Differential and Integral Methods"
Lecturer: Prof. Yakov Yakubov
Prescriptions:
1. The duration of the exam is 3 hours.
2. The use of any material is forbidden except the plane calculator and three 

    personal lists (6 pages) of formulas prepared by the student. The size of the 
    lists is the standard A4 format.
3. Do not use any methods which have not been studied in the classes.

The structure of the final exam:
1. There are 5 questions in the exam. You should answer to only 4 questions.

2. The grade of each question is 25 points.

3. Indicate on the first page of the exam which questions should be checked. 
4. In the case you solve all 5 questions and you do not indicate which
    questions should be checked, first 4 questions will be checked. 
Good luck!
Question 1
Investigate and draw a graph of the function 
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  (the domain of definition, the intersection points with the coordinate axis, symmetry, extreme points, monotonicity, convexity, inflection points, asymptotes, the graph). 
Question 2

(a) (11 points)   Calculate the limit  
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(b) (14 points)   Use the Lagrange mean value theorem 
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       function 
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  on 
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 and find all points 
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 that satisfy the 

       equality in the Lagrange mean value theorem. Remark: first, find
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Question 3

(a) (12 points)   Calculate the area between two functions 
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(b) (13 points)   Write the Taylor's formula for the function 
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, i.e., the Taylor's polynomial of order three and the Lagrange reminder 
      for the fourth derivative. Using the formula, show that, for any 
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      absolute value of the error is less than 
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Question 4

(a) (12 points)   Find all critical points of the function  
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      classify them (minimum and maximum points, saddle points).
(b) (13 points)   Change the order of integration in   
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Question 5
(a) (13 points)   Assume that the function 
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 is differentiable. Denote 
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      satisfies the equation 
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(b) (12 points)   Calculate the line integral   
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,   where 
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      is the curve 
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