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Abstract

We propose a method for the statistical analysis of fMRI data that
tests cluster units rather than voxel units for activation. The advan-
tages of this analysis over previous ones are both conceptual and sta-
tistical. Recognizing that the fundamental units of interest are the
spatially contiguous clusters of voxels that are activated together, we
set out to approximate these cluster units from the data by a clustering
algorithm especially tailored for fMRI data. Testing the cluster units
has a two-fold statistical advantage over testing each voxel separately:
the signal to noise ratio within the unit tested is higher, and the num-
ber of hypotheses tests compared is smaller. We suggest controlling
FDR on clusters, i.e. the proportion of clusters rejected erroneously
out of all clusters rejected, and explain the meaning of controlling this
error rate. We introduce the powerful adaptive procedure to control
the FDR on clusters. We apply our cluster based analysis (CBA) to
both an event-related and a block design fMRI vision experiment, and
demonstrate its increased power over voxel-by-voxel analysis in these
examples as well as in simulations.

Key words : fMRI, brain imaging, spatial clustering, FDR, adaptive FDR,
multiple testing, power, inference on clusters.



1 Introduction

The typical analysis of fMRI data uses one or both of two main analysis
approaches. The single-voxel approach creates activation maps by testing
each voxel separately (possibly after spatial pre-processing, e.g. smoothing)
for correlation with the experimental paradigm (predictor) and declaring
a voxel active if the p-value is less than some threshold. (The threshold
value may be pre-decided, or it may be adjusted adaptively by the data,
e.g. using FDR.) The second common approach is to pre-define a region
of interest (ROI), based on either anatomical or functional data (by an
already-established paradigm known to activate that region), and then to
perform statistical analysis on the ROI time-course obtained from the new
experiment.

Both of these analysis approaches have produced a wealth of important
findings. Nevertheless, they have several limitations. Activation maps ob-
tained by single-voxel analysis are inherently limited by the SNR of individ-
ual voxel data, which is typically low. Furthermore, the very large number
of statistical tests (a typical acquisition involves tens of thousands of voxels)
requires adjusting the p-values for multiple comparisons, imposing high sta-
tistical thresholds that may reveal only the voxels with the very highest SNR
but mask others that do have real effects. To avoid this loss in sensitivity,
activation maps are often presented with 'raw’ p-values, i.e. without adjust-
ing for multiple comparisons, choosing the threshold on a case-by-case basis;
but this hampers the replicability of the results because it makes it hard to
compare results from different experiments and/or observers. The ROI ap-
proach overcomes the low SNR inherent in single-voxel data, but introduces
other serious shortcomings. The most obvious problem is that it thwarts
researchers’ ability to discover effects of the experimental manipulations in
brain regions other than those already hypothesized and pre-defined. In ad-
dition, the chosen ROI itself may be comprised of sub-regions that behave
differently, but current ROI analysis methods do not allow researchers to
discover such microstructure. Finally, there are methodological problems:
the quality of the ROI data depends heavily on how reliably the region(s)
could be defined prior to the critical experiment. The pre-defined ROI is
likely to contain a mixture of voxels that do co-vary with the experimen-
tal manipulation with voxels that do not, and the latter add noise without
adding any signal.

In this paper we present a novel fMRI analysis method, a ’cluster-based
analysis’ (CBA) method. The approach can be thought of as a 'hybrid’
between the single-voxel and the ROI analyses, combining some of the ad-



vantages of each while avoiding many of their pitfalls. Like the single-voxel
approach, CBA creates complete activation maps: every voxel in the acqui-
sition volume has an a priori chance of being ’discovered’. The important
difference from the single-voxel approach is that the units of analysis are
now contiguous clusters of voxels, taking advantage of the increased SNR of
multi-voxel data, as in the ROI approach.

Our approach is based on a central tenet articulated by Penny and Fris-
ton (2003): "the fundamental quantities of interest to the neuroimager are
the location, shape, and temporal signature of clusters of voxels showing
task-related activity.” The clusters may be large, containing many voxels,
or they may be small such that they are comprised of only a few voxels
(e.g., the V1 ”blind spot”). In both cases, the unit of a 'voxel’ is arbi-
trarily determined by the measurement technique and does not represent
a primary neural entity. Although this is implicit in the way results are
reported in most studies, there is lack of adequate analysis methods to deal
with functionally-significant clusters. The correlation among neighboring
voxels is well recognized, and is commonly incorporated into the analysis by
applying a spatial filter prior to the tests for significance. The spatial reso-
lution of the resulting statistical maps depend in such cases on the spatial
filters used, losing the opportunity to capture a more refined microstructure
of correlations that may exist in the data.

The approach we propose here makes use of the correlation between
neighboring voxels while retaining the spatial resolution of the data. We
first identify clusters based on correlation between voxel time series during a
preparatory scan (e.g., a functional ROI localizer). We then perform on each
of the clusters a test for significant activation during the target experiment.
The null hypothesis we test is that all voxels within the cluster are non-
active. We define a cluster as “active” if it contains at least one voxel that
is active, and as “non-active” if it contains no active voxels. We will use the
terms “detected cluster” or “a cluster that is declared active” to refer to a
cluster whose null hypothesis is rejected. When testing whether to declare a
cluster as active, we use the time-course signal constructed from the average
of the constituent voxels’ time-courses. Other than that, testing proceeds as
in voxel-by-voxel analysis (e.g. a generalized linear model (GLM) analysis
of the correlation between the signal and the experimental paradigm). This
approach guarantees that each p-value is uniformly distributed under the
null hypothesis, thus validating our testing procedure.

Our approach has several advantages: (1) averaging data from multi-
ple voxels increases the SNR of each statistical comparison; (2) since the
statistical testing is now performed on clusters, the total number of tests



is reduced; (3) controlling the proportion of erroneously-detected clusters
is more relevant than merely the proportion of erroneously-detected voxels.
Indeed, a common practice is to eliminate from the activation maps isolated
voxels (mini-clusters) even if they passed the threshold. Similarly, smooth-
ing the activation map introduces signal into non-active voxels but creates
no new regions (i.e. aggregates of contiguous voxels). Both widely used pro-
cedures reveal the preference of investigators for inference on regions rather
than on individual voxels.

Note that the above procedure is based on two experimental stages, so
the clusters are defined on a different data set than the one used to test
for activation under the paradigm of interest. Furthermore, since the first
experimental stage is essentially the same as that used in the traditional ROI
approach, ROIs can still be pre-defined and, as we shall see later, used in
conjunction with the clusters in adaptive, more powerful statistical testing.
When a localizer experiment is not available or not possible to conduct, it is
still possible to use the CBA approach by performing the experiment twice,
using the data from the first experimental run to generate clusters and the
results of the second experiment are to test the clusters for paradigm-related
activation.

In section 2.1 we describe the first stage of the analysis, how to define
the units of analysis using a clustering method. In section 2.2 we describe
the second stage of the analysis, how to discover which clusters are active.
We may seek clusters of activity in the entire brain, or within a predefined
ROI. If the search is constraint to a relatively small ROI, we suggest a fur-
ther improvement in the statistical analysis in section 2.3, that describes a
more powerful method for controlling for multiple testing. This method may
be successfully applied also to test voxels of activity rather than clusters of
activity within the ROI. Next, we apply our analysis to both real and sim-
ulated fMRI data. The results are detailed in section 4 and our conclusions
in section 5.

2 The CBA Algorithm

2.1 Clustering Method

The CBA approach is based on using data driven clusters as the units of
analysis. The first step is therefore to form these clusters, based on fMRI
data other than the data used to test the experimental paradigm of interest.
We constrain the clusters to be contiguous regions in the brain. This is
in contrast to many clustering methods in fMRI that ignore the contiguity



constraint when grouping together similar voxels (e.g. Goutte et al. (1999),
Windischberger et al. (2003)).

The gain when using the CBA approach in the ability to detect a larger
proportion of truely active brain areas (the gain in power) will be larger
as the degree of homogeneity of the clusters (the proportion of the voxels
in the cluster that are truly active) is larger. The scientific importance of
homogenous similarly activated clusters was discussed in the introduction,
here we will focus on its importance in terms of the ability to discover
activated clusters and the interpretability of cluster FDR. The level of noise
in the cluster average time course is, by definition, smaller than the noise in
the a voxel-by-voxel time course. At the same time, if the cluster contains
only a few activated voxels then the average time course SNR can still be
smaller than the SNR in the activated voxels in the cluster, making it harder
to detect the cluster activation than it is to detect individual voxel activation.
Weighing these opposing factors, we favored a clustering algorithm that will
produce small clusters, even if this means that the activated clusters will
not correspond to whole activated modules but only to subsets of modules.

The spatial structure of the data is taken into account by allowing only
neighboring voxels to belong to the same clusters. The neighborhood is taken
per volume, ie where every voxel has 26 neighbors. Since the neighborood
extends across slices, the slices need to be corrected for different acquisition
times prior to clustering. This correction is especially important if the slice
acquisition order is interleaved.

The clustering algorithm is as follows:

1. For each voxel, the correlation with each of its neighbors is computed.

2. For every voxel, the neighbor with the highest correlation is found
(after adjusting correlation values for distance on acquisition grid, see
below). Note that this is not a symmetric property: given a voxel i
that is maximally correlated with neighbor j, voxel j may be maximally
correlated with another of its neighbors, k.

3. Each voxel and its maximally-correlated neighbor define an initial re-
gion, and if the same voxel is in two or more regions these regions
are joined together, iteratively until the process terminates in non-
overlapping clusters.

Figure 1 is a schematic display of step 3 in the algorithm. (For visual-
ization reasons it is shown on a slice rather than volume.) Note that the
resulting clusters’ sizes and shapes are data driven, unlike most smoothing



methods where neighboring voxels are joined into neighborhoods of fixed
sizes and shapes over which the signal is averaged.

Figure 1: A graphical display of step 3 of the clustering algorithm. Each
arrow starts from a different voxel and points to its maximally-correlated
neighbor. The different colors denote the clusters obtained for this set of
voxels.

To counteract biases in the comparison of correlations among nearest
neighbors that have unequal distances on the acquisition grid, the raw cor-
relation values were adjusted as follows. Let p(d) be the correlation at dis-
tance d and let p(0) = 1. Our goal is to keep the ratio of attenuations of the
correlations between p(1) and p(d) constant relative to the attenuations be-
tween p(0) to p(1) for any (d > 1). We estimate this constant robustly using
the median correlations at each distance. For example, for d = v/2 (eg, diag-

1/mq

ml/mﬁ

onal neighbors on the same slice), the constant is ¢ V3= , where my

and m s are the median correlation values of horizontal/vertical neighbors
and /2 distance diagonal neighbors respectively. Our adjusted correlation,

,o(Al), should therefore satisfy ¢ 5 = %, ie. p(Al) = /p(vV/2)mq, [

Similarly, for between slice neighbors that are a distance d = /3 apart,



p(Al) = /p(V/3)my s where mg is the median correlation of the between

slice diagonal neighbors.

Figure 2 shows the correlation adjustment process for correlations be-
tween a representative voxel and its neighbors. The voxel is paired with the
neighbor with whom the adjusted correlation is maximal.
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Figure 2: A graphical display of the procedure used to adjust the nearest-
neighbor correlation values for unequal distances on the acquisition grid.
The raw correlations are noted by a circle and displayed as a function of the
distance from the voxel at study. The adjusted correlations are noted by a
black triangle at distance 1, connected with a dashed line to the correspond-
ing raw value. The maximal correlation voxel is highlighted by an enclosing
large circle (in this example, it belonged to a d = /3 nearest-neighbor). The
median correlations are noted by black squares.

2.2 FDR on Clusters

The resulting clusters from the preparatory scan serve as our units of anal-
ysis in subsequent analysis of the experimental data. For each cluster we
calculate the average time-course of its constituent voxels, and use it as the



cluster’s signal. Then, p-values for the clusters are calculated. Each p-value
is uniformly distributed under the null hypothesis that none of the voxels in
the cluster are active.

Even though using clusters rather than voxels reduces the extent of the
problem of multiple hypotheses testing , this analysis still involves testing
thousands of clusters (eg, if we test at the 0.05 level of significance, then
even if all 1000 brain clusters are (in truth) non-active, we will declare, on
average, 50 clusters as active). One way to tackle this increased probability
of making false discoveries is to control the False Discovery Rate (FDR). The
FDR is the expected proportion of false discoveries among the discoveries.
Setting our threshold level at 0.05, this means that we expect that no more
than 5% of the discoveries to be false discoveries on the average. In our case
a discovery may be a detected voxel in single-voxel analysis or a detected
cluster in CBA. Note that for a rightfully-detected cluster, one can only
conclude that it contains at least one active voxel, not that all voxels are
truely active.

The BH procedure (Benjamini and Hochberg, 1995) has been adopted
in the fMRI community for controlling the FDR at any desired level g while
testing voxels (see Genovese et al. (2002), Stanley and Rubin (2003)), with
implementations in software packages such as SPM and Brain Voyager. The
results of Storey (2003) provide a Bayesian interpretation to the FDR. For
fMRI this implies that the posterior probability that the cluster is not active
given that it was detected is less than q.

The BH procedure makes use of the m p-values, calculated one for each
voxel for testing its activation. Sorting these p-values we get P) < ... <
Py .« Piny. Then find the largest p-value among all those satisfying
Py q%, call it Py, and declare the k voxels whose p-value is less or
equal to Py as active.

The procedure can be equivalently presented, and motivated, by describ-
ing it as an “adjustment” made to the raw p-values. If we choose F(;) as
the threshold to separate activated voxels from not activated ones, j voxels
will be chosen as active. Denoting by mg the number of voxels that are not
(truly) activae (out of the entire sample of m voxels), on average P;)mgo non
activated voxels will be (falsely) declared as active. Thus a crude estimate of

<
<

the proportion of false discoveries is w There may be a larger p-value
for which the crude estimate may be even smaller. Hence, taking a greedy
approach we may replace the estimate by mm{@h > j}. Since we ex-
pect the number of truly active voxels to be a small fraction of m (as typical
in brain imaging experiments), we may (pessimistically) approximate mg by



its upper bound m without great loss in sensitivity. Thus, we get the ”BH
FDR-adjusted p-values” as follow:

Pg)H = min{

S>3}

The BH adjusted p-values can now be compared with the desired level
of FDR, say ¢ = .05, and all those voxels for which P(’?)H < ¢ be declared as
active.

The BH procedure, in either form, controls the expected proportion of
falsely discovered voxels among all voxels discovered at the desired level.
Note that while the above provides an intuitive argument that the procedure
controls the FDR, the actual proof is much more involved (see Benjamini
and Hochberg (1995) and Benjamini and Yekutieli (2001)). In Benjamini
and Yekutieli (2001) it is proved to hold when the P-values at the differ-
ent voxels are independent and under a technical condition, called positive
regression dependence, that holds when the noise in the data is Gaussian
with nonnegative correlation across voxels and the tested hypotheses are
one-sided. According to Genovese et al. (2002) this is a reasonable assump-
tion in fMRI. They argue that while strict independence is hard to verify
and will often fail with neuroimaging data, it is often approximately true in
the sense that the correlations are local and tend to be positive. Nichols T.
(personal communication) has verified the assumption of fMRI data. This
assumption is widely accepted in fMRI literature. Moving to clusters, the
resulting test statistics also satisfy this technical condition, since if voxels
are positively correlated so are cluster averages:

cov(zn: a; X;, in: b;Y;) = Zn: iaibjcov(Xi,Yj) >0if
=1 =1

i=1 j=1
cov(X;,Y;) >0and a; >0,i=1,...,n,b; >0,j=1,....,m

where a; = 1/n,b; = 1/m for the averages of clusters of size n and m
respectively and the covariance between every pair of voxels cov(X;,Y;) is
non-negative ¢ = 1,...,n,7 = 1,...,m. We checked this assumption for

our analysis reported in section 4.1 and found that the average correlation
between the clusters was 0.57 and 0.25 in the block design and event related
experiments respectively, with only one statistically nonsignificant negative
correlation, at -0.02 (p — value > 0.4).

In CBA we use the same procedure on the p-values obtained for the
clusters, replacing the total number of clusters m. for the total number of
voxels used above. Thus, the procedure controls the expected proportion

10



of falsely discovered clusters among all clusters declared active. Note that
a falsely discovered cluster is a cluster that contains no active voxels, and
correspondingly a truely discovered cluster is a cluster that contains at least
one active voxel. The point of view taken here is similar to the one taken
in (Pacifico et al., 2004) in the sense that a cluster is considered a discovery
rather than an individual voxel, although the methods proposed there and
here are very different in principle as well as in detail.

Of course one should bear in mind that with CBA we give up the con-
trol of FDR on voxels. Thus, the FDR on voxels may be in certain situ-
ations higher than the FDR on clusters, especially if there are many non-
homogenous clusters that contain both activated and non-activated voxels.
We believe that researchers are interested in these flexible units of analy-
sis for which conclusions are taken, rather than in the artificially generated
voxel units. Thus we emphasize the control of FDR of clusters rather than
the FDR of voxels.

The FDR methodology is geared to handle a predetermined family of
hypotheses of fixed size. Here the number of hypotheses and their identity
may vary from one realization of the preparatory scan to the other. But
since the clustering step is performed on the preparatory scan it is indepen-
dent of the analysis step, so using a conditioning argument the FDR is still
controlled.

2.3 Adaptive FDR

The testing of clusters rather than voxels reduces the extent of the multiple
hypotheses testing problem as the number of clusters tested m, is smaller
than the number of voxels tested m. In fact the reduction when using the
clustering method in Section 2.1 is to at least . The number of tests con-
ducted can be further reduced by restricting the analysis to clusters within
regions of interest (ROI) rather than searching over the entire brain for ac-
tivity. Such ROI can either be predefined (eg anatomically), or extracted
from the experiment that is already being used to define clusters. The re-
striction to an ROI is the same as in the common ROI analysis approach,
but while the common approach tests for activation of the entire ROI as a
single unit, our testing units remain clusters, those ones which are within
the ROIL. Thus, CBA in combination with ROI analysis can be viewed as
helping us search for activation within subregions of the ROI.

In a successful choice of ROI, the potential proportion of activated clus-
ters out of all tested clusters within the ROI is much larger than when
analyzing the entire brain. This offers an opportunity to use an adaptive
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method that estimates this proportion, and use it instead of the more con-
servative value m, (for a similar observation see Genovese et al. (2002)).
This will increase the proportion of the clusters detected as active out of
the active ones (the power). Recall that when we motivated the BH proce-
dure in Section 2.2 we bounded the number of non-active units by the total
number of units tested. In the adaptive procedure, we try to estimate the
number of non-active units and plug in the estimate.

In particular, we make use of the adaptive two stage procedure intro-
duced by Benjamini, Krieger and Yekutieli (Technical Report RP-SOR-01-
03, URL http:// Www.math.tau.ac.il /st/) on cluster units. The ordered clus-
ter p-values are Py < ... < P(m )- First, we run the BH procedure as
before, and get k1 = max{i : F;) < q—c} clusters declared as active. Next,
we estimate the number of null clusters, mg., by nig. = (1 + q) * (m. — k1).
Finally, we use the BH procedure with ¢* = ¢ ’Z”CC, i.e. ko = max{i: Py <

% is smaller, the gain in power in using the
adaptlve procedure rather than the BH procedure is expected to be larger.

Benjamini, Krieger and Yekutieli prove that it controls the FDR under
independence of the test statistics, and argue that this is also the case under
the PRDS assumption (see Section 2.2). In section 3.4 we show that the
adaptive FDR procedure preserves an FDR level of 0.05 for simulated signals
that take into account the fMRI dependency structure. Other adaptive
procedures exist in the literature (see Benjamini et al. (2005) for a review).
The only other method with proven FDR control under independence of the
test statistics, making use of a different estimator of myg, is in Storey et al.
(2004).

3 Methods

3.1 fMRI data acquisition

Scanning was performed on a 3 Tesla head-only Siemens Allegra MRI Ma-
chine. A head coil was used for structural scans (transmit/receive; Nova,
MA). Functional data were acquired with a flexible four element array of
surface coils (receive only; Nova, MA) fit into the head coil (transmit); the
array elements were placed over the occipital lobe and temporal lobes to
maximize signal from these regions. A set of 16 high-resolution slices ori-
ented parallel to the lateral fissure were acquired using a T1-weighted spin
echo sequence (TR=600 ms, TE=9.1 ms, flip angle=907). Interslice distance
was 4 mm (no gap, interleaved acquisition); resolution was 128 x 128, FOV
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192 mm, resulting in 4 x 1.5 x 1.5 mm voxels. Functional (T2*-weighted)
EPI images (TR=2s in the localizer and block-design experimental runs,
TR=1s in event-related experimental runs; TE=30ms; flip angle=907) were
acquired using the same slice prescription as the T1-weighted spin echo im-
ages, except that the in-plane resolution was 64 x 64, resulting in 4 x 3 x
3 mm voxels. The slices completely covered the ventral occipital and tem-
poral lobes. Functional data were superimposed on the T1-weighted spin
echo images so that regions of activation could be anatomically localized.
The number of whole volume acquisitions varied between experiments (see

below).

3.2 Experimental Design and Visual Stimuli

Lateral Occipital Complex (LOC) localizer. Observers viewed grayscale im-
ages of objects and phase-scrambled controls (maintaining the amplitude
spectrum of each images Fourier components but randomizing their phase
rendered the objects unrecognizable). The intact and phase-scrambled im-
ages were presented in a pseudorandomized order in an event-related design
for X sec followed by X sec blank each. There were 32 exemplars from each
category, repeated X times. In addition, a third trial type consisting of an
X second blank interval was intermixed X times, providing temporal jitter
to increase the efficacy of the design. Order of the three trial types was
counterbalanced and optimized using m-sequences (Buracas and Boynton,
2002). The stimulus presentation was preceded by X seconds and followed
by X seconds of fixation. A fixation point was present on the screen at all
times and the observer was asked to maintain fixation for the duration of
the experiment. Each image was 11.25 x 11.25 degrees of visual angle and
successive images were jittered +/- 0.6 degrees. Observers performed a 1-
back task (X probes per run). Two runs were performed during the scanning
session.

Lllusory contour (IC) and Salient Region (SR) stimuli. The IC stimulus
was a Kanizsa square: four pacman inducers arranged so that they create the
impression of a large central square in front of four circular disks (Kanizsa,
1979). The corresponding control, no-IC stimulus, consisted of the same
inducers flipped outwards so that the illusory square disappeared. The SR
stimulus consisted of inducers resembling those of the IC except that their
corners were rounded and they were misaligned so that crisp bounding ICs
were no longer perceived, although the impression of an enclosed region re-
mained. The corresponding control, no-SR stimulus, consisted of the same
inducers flipped outwards. (For more details and figures of the stimuli see
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Stanley and Rubin (2003).) In the block-design experimental runs, observers
viewed alternating 16 sec blocks of experimental and control conditions (sep-
arate runs for ICs and SRs). Within each block, the image reversed contrast
every 1 sec. Eight blocks of experimental and control stimuli were presented
in a single run. In the event-related design observers viewed all four stimulus
types in a pseudorandom order. Each trial consisted of the presentation of
a stimulus for 1 second, followed by a two second blank interval. In addi-
tion to one trial type for each condition, a fifth trial type consisted of a 3
second blank interval, providing temporal jitter to increase the efficacy of
the design. There were 25 trials from each of the 4 experimental conditions
and 24 blank trials, preceded by 10 seconds and followed by 6 seconds of
fixation. Trial order was counterbalanced and optimized using m-sequences
(Buracas and Boynton, 2002). A fixation point was present on the screen at
all times and the observer was asked to maintain fixation for the duration
of the experiment. On

Stimulus presentation. Visual Stimuli were generated using Matlab and
Psychtoolbox (Brainard, 1997), (Pelli, 1997) and fed into an Eiki LC-XG100/4267
LCD projector (1024 x 768 pixels, 60 Hz) with an extra focusing lens in-
stalled. The projected image appeared on a plastic rear-projection screen,
and observers viewed it in a mirror mounted on the head coil.

3.3 Data analysis

Functional data were corrected for head motion using a customized MCFLIRT
(Jenkinson et al., 2002) script. Each scan was then corrected for differences
in slice acquisition time using the FSL function slicetimer. Finally, time
course data were preprocessed to remove linear trends using the robust loess
method (Cleveland and Devlin, 1988) from each voxel independently.

Data from the localizer runs were processed using the clustering algo-
rithm in 2.1, producing the clusters to be used in statistical testing on the
experimental runs. In addition, we defined as our LOC ROI all clusters dis-
covered by the BH procedure on clusters (section 2.2), at level 0.001. (Note
that since the clustering and the testing were performed on the same part of
the experiment, the expected FDR on clusters may be greater than 0.001,
but this should be of no concern at this stage.) Using the clusters and ROI
from the localizer runs, data from the experimental runs were analyzed as
follows. On the entire brain, we performed both CBA and voxel-by-voxel
analysis using the BH procedure. On the ROI, we performed in addition
the two analyses using the adaptive procedure.

The procedure for calculating the p-values basically follows Worsley et al.
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(2002). The calculation is based on the average cluster time series in CBA,
and on the voxel time series for voxel-by-voxel analysis.

A general linear model with AR(1) errors was used (see e.g. Worsley
et al. (2002)). The hemodynamic response was modelled as a difference of
two gamma functions

t —5. t —10.
h(t) = (a)%*i“o.%“ _ o.35(m)126*—“ o

and convolved with the external stimulation which was modelled as Zle X B;
with ¢ = 1,..., k different stimuli. We followed Worsley et al. (2002) for es-
timation of the coefficients 3; and the calculation of the p-value without
spatially smoothing the AR(1) parameter.

Matlab code which implements the CBA algorithm and procedures de-
scribed above, as well as the data for the fMRI example presented in this pa-
per, is available in http://www.math.tau.ac.il/~ybenja/CBAforFMRIstat.

3.4 Validation using Simulations

The simulations we performed had two purposes. First, we wanted to vali-
date that the adaptive FDR procedure does not exceed the predefined FDR
rate under typical fMRI dependency. Second, we wanted to compare the per-
formance of cluster based and voxel based analysis on data where ground
truth was known.

Setting A 64 x 64 slice was chosen for the comparison. The slice contained
several hundred clusters, with an average size of 16 voxels per cluster. We
designated n clusters containing overall m voxels to have activations in the
first part of the experiment, and approximately half these clusters were
designated to have activations in the second part of the experiment. The
values of (n,m) examined were (2,1), (5,3), (10,5), and (20, 10) .

The measured signal (i.e. signal4noise) of voxel v within cluster ¢ at
time t was

Yevt = Mhet + Qe + Ecpt-

The signal pe, in an active cluster ¢ at time ¢ was set to 4 = 3 in
the first part of the experiment. In the second part, we examined p =
0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75. The signal level in null clusters was set
to zero.

The components of signal variation between clusters a.; were drawn inde-
pendently from a normal distribution with mean zero and standard deviation
3.
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The spatially correlated noise components €.,; were simulated (indepen-
dently for every time point ¢) by convolving white Gaussian noise with a
spatial Gaussian kernel (FWHM 15mm, with a convention that a voxel is
1 x 1 x 1mm3) using 2 dimensional (64 x 64 pixels) processes. In our simu-
lations €. has mean zero and standard deviation 6.

The time series for each part of the experiment was of length 100. Un-
der each configuration of signal and noise, 100 simulation repetitions were
performed.

The simulations were performed in Matlab (version 6.5).

Simulation Data Analysis On the first part of each simulated experi-
ment, we clustered the data using the clustering algorithm in 2.1. We also
defined as our ROI all clusters discovered by the BH procedure on clusters
at level 0.05. Note that since the clustering and the testing were performed
on the same part of the experiment, the expected FDR on clusters may be
greater than 0.05.

Using the clusters and ROI from the first part of the simulated experi-
ment, we analyzed the simulated data in the second part as follows. On the
entire slice, we performed both CBA and voxel-by-voxel analysis using the
BH procedure. On the ROI, we performed in addition CBA and voxel-by-
voxel analysis using the adaptive procedure. The FDR level was estimated
by averaging over the simulations the proportion of false discoveries among
the discoveries at the appropriate units: voxels or clusters (recall that a
discovery of a cluster is false if it contains no active voxels). We compared
the performance of the analysis methods in terms of power. Power can be
defined in many ways. We measured power as the proportion of discoveries
out of all potential true discoveries. In fMRI terms, this translates to the
proportion of detected voxels that are truly active out of all truly active
voxels. For CBA, power was also measured by the proportion of detected
clusters out of all active clusters. (Recall that the FDR is taken to be the
same for the CBA and the voxel-by-voxel analysis.) In general, other possi-
ble measures of power include: the probability of making at least one true
discovery; the probability of finding all potential true discoveries; or finally
as one minus the expected proportion of missed discoveries out of all non-
discoveries. While we believe the measure we chose is the most adequate for
fMRI, the advantage of CBA over voxel-by-voxel analysis is likely to present
itself also with the other measures.
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4 Results

4.1 CBA Results on an fMRI Vision Experiment

To evaluate the advantage that CBA may offer over voxel-by-voxel analysis,
as well as the advantage of the adaptive FDR procedure, we tested it on
data acquired in an experiment that we knew to have yielded a relatively
small difference between experimental and control conditions. In a previ-
ous publication (Stanley and Rubin, 2003) we analyzed the responses to
illusory contour (IC) and salient region (SR) stimuli compared with their
corresponding control stimuli presented in a block design. An ROI analysis
performed on the average time courses of the observers functionally defined
lateral occipital complex (LOC) showed significant effects for both types
of stimuli, but a voxel-by-voxel analysis yielded activation in few individ-
ual voxels, and none for some subjects. We therefore tested CBA on this
paradigm. In addition, we reran the experiment on one of the observers
and added an event-related run which interleaved all four stimulus types
(ICs, SRs and their corresponding controls; see also Methods). The results
presented below are a representative sample.

The LOC ROI computed with CBA on data from the event-related lo-
calizer runs consisted of 207 voxels, grouped into 20 clusters. The clusters
ranged in size from 2 to 47, with a median of 9 voxels per cluster and a
standard deviation of 9.3. Figures 3 and 4 show the discoveries in the ex-
periments of interest within the ROI from two representative slices, 10 and
11. Every cluster within the ROI is indicated with a different color; note
that clusters extend across slices, which is why noncontiguous voxels within
a slice can belong to the same cluster. Figure 3 shows the results obtained
for the event related experiment using CBA with a BH procedure at the
5% FDR level. Activated clusters within the ROI are indicated by white
outlines. Overall, 44 voxels were found to be active, grouped into 4 clusters
of sizes 12, 12, 9 and 11. In contrast, voxel-by-voxel analysis performed on
the same data with a BH procedure at the 5% FDR level failed to detect
any activation.

Figure 4 shows the activated clusters in slices 10-11 in the block design
1C vs. Control experiment computed with three different procedures. Again,
activated clusters within the ROI are indicated by white outlines. The top
panel shows the result of CBA with an adaptive FDR procedure at the 5%
level. Overall, 131 voxels were found to be active, grouped into 9 clusters
(sizes 47, 13, 9, 11, 8, 10, 12, 12 and 9). For comparison, the middle panel
shows the activated clusters when the BH procedure was used instead of the
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adaptive procedure. This procedure discovered considerably less activation.
For example, note that the pink and green ROI clusters in slices 10-11 are
marked as discoveries only using the adaptive procedure (outlined in top
panel but not middle panel). Overall, only 56 voxels were found, grouped
into 5 clusters (a subset of the clusters using the adaptive FDR; sizes 13, 9,
10, 12 and 12). Finally, the bottom panel shows the result of a voxel-by-
voxel analysis with an adaptive FDR procedure at the 5% level. Overall,
41 voxels were found to be active, coming from 14 different clusters. When
the BH procedure was used instead of the adaptive procedure, 38 voxels,
coming from 13 different clusters, were found to be active.
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Figure 3: Activated clusters computed using CBA in two representative
slices, 10 and 11. Colored voxels belong to clusters that comprise the LOC
ROI, with different colors for different clusters (noncontiguous voxels in a
slice can belong to the same cluster since those extend across slices.) White
outlines indicate activated clusters within the ROI in the event-related ex-
periment, obtained using CBA with the BH procedure at the 5% FDR level.
Voxel-by-voxel analysis on the same data, with BH procedure at the 5%
FDR level, yielded no activated voxels.

To further evaluate the gain in CBA over voxel-by-voxel analysis, we
reanalyzed the data from the localizer runs as follows: a voxel-by-voxel
FDR analysis at the 5% level of the two localizer runs detected 239 voxels;
repeating the analysis on just one of the localizer runs detected only 15
voxels; a CBA at the 5% level on the same run detected 168 voxels grouped
into 13 clusters (the event related IC experimental run was used to create
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the clusters). Treating the discoveries from the voxel-by-voxel analysis based
on the two localizer runs as the ground truth, the power of CBA was 0.29
compared with only 0.06 for voxel-by-voxel analysis. Figure 5 shows the
resulting activated regions in slice 09. The top panel shows the “ground
truth” (dark blue). The middle panel shows the very few activations in
voxel-by-voxel analysis on one localizer run only (dark blue). In contrast,
the bottom panel shows the relatively large number of activations in CBA
for the same run (each cluster is indicated with a different color).

4.2 Validation using Simulations

We present the analysis results for the following representative signal con-
figuration: in the simulated localizer experiment, 5 clusters were active (82
voxels); in the simulated main experiment, 3 out of the 5 clusters were active
(44 voxels). The results were similar for the other configurations.

Figure 6 shows that the FDR is below 0.05 for all analysis methods.
Moreover, the right graph in figure 6 shows that the FDR of CBA using the
adaptive procedure is higher than that of CBA using the BH procedure, and
similarly the FDR of voxel-by-voxel analysis using the adaptive procedure
is higher than that of voxel-by-voxel analysis using the BH procedure.

Figure 7 show the power improvement of all analysis methods over the
voxel-by-voxel analysis using the BH procedure, as a function of signal size
. When p is extremely low, then both CBA and voxel-by-voxel analysis
were barely able to detect activations. However, as p increased, the CBA
analysis detected more activations than the voxel-by-voxel analysis. When
i was very large, both methods of analysis performed equally well. Clearly,
the advantage of CBA over voxel-by-voxel analysis is largest when y is not
too low or too high - the zone of interest in practice.

5 Discussion

We presented an algorithm to calculate activation maps based on analysis
units which are independently defined clusters of voxels. The clusters are
defined as contiguous volumes of voxels which were correlated with each
other more than with their other (contiguous) neighbors in an independent
run (eg, a localizer run). the method is based on the proposition that the
units of testing for activation in the brain should be larger than a voxel but
smaller than an entire region of interest. We argued that fMRI analysis is
likely to be more meaningful at the cluster level than at the voxel level. The
regions constructed by the clustering method are more likely to be related to
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functional modules in the brain, leading to increased SNR per unit tested.
This improves our ability to detect activations, and may enable a fruitful
search for the interactions between brain regions.

We showed that CBA discovered larger and more contiguous activation
areas than voxel-by-voxel analysis. On the other hand we do not argue that
our clustering algorithm is optimal according to some well defined criterion.
How to define the relevant criterion and develop the optimal segmentation is
a question for further research. For example, incorporating prior knowledge
from the anatomical image into the clustering algorithm may result in a
much more powerful procedure (e.g. by applying a grey matter extraction
procedure based on the anatomical image prior to CBA).

The approach we currently take defines the units of testing conserva-
tively, so the units are fairly small and are more likely subunits of the true
activated modules than unions of such. This reduces the possibility of in-
troducing more noise than signal into the clusters. Also, the small size of
clusters will keep low the number of voxels that are not truly active in dis-
covered regions (aggregates of clusters). Moreover, although the number
of clusters (and their identity) may vary from one realization of the experi-
ments to the other, the discovered regions created from these small “building
blocks” can still be quite similar. At the same time, bear in mind that the
inclusion of a few voxels that were not truly active in a detected cluster may
be a small price to pay for the gain CBA offers in terms of increased dis-
coveries. Note that commonly used pre-processing steps such as smoothing
can also introduce into discovered regions voxels that are not truly active.
Furthermore, when the statistical testing is performed on individual vox-
els, in such cases (after smoothing) the expected proportion of erroneously
rejected voxels can be higher than the nominal FDR level. In contrast, in
CBA, although discovered clusters may contain voxels that are not truly
active, one is still able to control the FDR at the cluster level.

We explained the meaning of FDR on clusters, and introduced the adap-
tive FDR on clusters. In assessing the FDR we give the same weight to every
cluster. Benjamini and Hochberg (1997) also introduced the weighted FDR,
which may be especially appropriate here. For example, we may want to
control a weighted FDR with weights proportional to the size of the clusters,
which means on the one hand that it is important to reject a large cluster
since it considerably increases the weight of the total discoveries, but on
the other hand it also increases the weight of the errors if in fact it is an
error. We are currently exploring size weighted FDR procedures and their
suitability for fMRI data.
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Figure 4: Activated clusters with the LOC ROI in the block-design IC vs.
Control experiment computed with three different procedures (clusters in-
dicated in white outlines; sample shzc?’es 10-11). Top panel, CBA with an
adaptive FDR procedure at the 5% level. Middle panel, CBA with BH pro-
cedure at the 5% FDR level. Bottom panel, voxel-by-voxel analysis with
adaptive FDR at the 5% level.



Figure 5: Illustration that the enhanced discoveries made by CBA when
limited data are available correspond well with the activation discovered with
voxel-by-voxel analysis when more data are available. Top panel, results of
voxel-by-voxel analysis on data from both localizer runs (here and below,
FDR at 5%). Middle panel, the same analysis on data from only one of those
runs yields few discoveries. Bottom panel, results of CBA on the single-run
data (clusters derived from the event related IC experimental run).
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Figure 6: FDR as a function of ;1 when the analysis is done on the entire
slice (Left) for (1)cluster based analysis (solid line) and (2) voxel-by-voxel
analysis (dotted line) and on the ROI (Right) for (1) CBA using the adap-
tive procedure (solid line); (2) CBA using the BH procedure (dotted line);
(3)voxel-by-voxel analysis using the adaptive procedure (dashed line); (4)
single voxel analysis using the BH procedure (dot and dashed line). Note
that the FDR is always below 0.05, and that for both CBA and single voxel
analysis the FDR using the adaptive procedure is closer to the desired 0.05
than when using the BH procedure, making the adaptive procedure more
powerful.
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Figure 7: Power improvement over voxel-by-voxel analysis using the BH
procedure as a function of signal size p when the analysis is done on the
entire slice (Left) of CBA and on the ROI (Right) of (1) CBA using the
adaptive procedure(solid line) (2) CBA using the BH procedure (dotted
line) and (3) voxel-by-voxel analysis using the adaptive procedure (dashed
line). Note that the power advantage is largest when p is not too small and
not too large. The most powerful analysis method is clearly (1).
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