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Abstract

For the problems of multiple hypotheses testing, Benjamini and Hochberg (1995, J. Roy.
Statist. Soc. Ser. B 57, 289–300), proposed the control of the expected ratio of the number
of erroneous rejections to the number of total rejections, the false discovery rate (FDR). The
step-up procedure given in that paper controls the FDR when the test statistics are independent.
In this paper, a new step-down procedure is presented, and it also controls the FDR when the test
statistics are independent. The step-down procedure neither dominates nor is dominated by the
step-up procedure. In a large simulation study of the power of the two procedures, the step-down
procedure turns out to be more powerful when the number of tested hypotheses is small and
many of the hypotheses are far from being true. An example is given to illustrate the step-down
procedure. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiple tests of related hypotheses using independent test statistics are frequently
encountered in practice. One example is the screening of factors for their possible
e�ect on an outcome: in the pharmaceutical industry we may wish to screen many
compounds for their possible therapeutical e�ect, and in quality research we may want
to assess di�erent design elements that may have a negative e�ect on some quality
characteristic of a product. A second example is subset analysis in experiments. Another
similar problem is multi-center analysis, in which both the overall and center-speci�c
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assessments are desirable. In these examples, the hypotheses to be tested are the same
between-treatment comparison, but under changing conditions from study to study, from
sub-group to sub-group, from center to center; and the test statistics are independent.
Even in meta-analysis, where the main interest is the overall conclusion from many
separate studies, there is still interest in identifying individual studies which remain
statistically signi�cant when considered simultaneously.
In order to control the multiplicity e�ect when testing such a family of hypothe-

ses simultaneously, multiple comparison procedures are classically designed to control
the type-I familywise error (FWE) rate. This error rate is the probability of one or
more false rejections of true hypotheses, irrespective of how many hypotheses are true
and what values the parameters of the false hypotheses take (see e.g. Hochberg and
Tamhane, 1987). The control of the FWE rate is, however, at the expense of sub-
stantially lower power in detecting false hypotheses. Furthermore, the control of the
FWE rate may not always be necessary, as in the examples above, since the �nal
overall conclusion derived from the individual inferences may still be correct even
if some of the individual inferences are wrong. This led to the proposal (Benjamini
and Hochberg, 1995) of controlling the false discovery rate (FDR), which is reviewed
next.
Let H1; : : : ;Hm be the m null hypotheses under consideration, and P1; : : : ; Pm the

corresponding p-values which are assumed to be independent. Let P(1)6 · · ·6P(m)
be the ordered p-values, and H(1); : : : ;H(m) the corresponding hypotheses. The type-I
error committed by a multiple testing procedure is viewed through the random variable
Q= V=R, where R denotes the number of hypotheses rejected, and V the number of
the true hypotheses erroneously rejected, by the testing procedure. De�ne Q to be 0
when R=0, since no error of false rejection is committed in this case. The FDR, Qe,
is then de�ned to be

Qe = E(Q) = E(V=R): (1.1)

The value of FDR is less than the FWE rate, i.e.

E(V=R)6P(V¿1): (1.2)

Let m0 denote the number of true hypotheses throughout this paper. Then the second
inequality in (1.2) becomes an equality when m0 = m. When m0¡m, an FDR con-
trolling procedure can be considerably more powerful than an FWE rate controlling
procedure at the same level.
The following step-up procedure was shown, in Benjamini and Hochberg (1995), to

control the FDR at level q when the Pi are independent.

Let k be the largest i for which P(i)6(i=m)q: Reject H(1); : : : ;H(k):

Note that if P(i)¿ (i=m)q for i=1; : : : ; m then no hypothesis is rejected. This procedure
does not control the FWE rate at q, as can be seen from Hommel (1988). It is a step-up
procedure in the sense that it starts from the largest p-value P(m) and proceeds to
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smaller p-values by comparing each p-value with the corresponding critical constant,
until it �nds the �rst P(i) satisfying P(i)6(i=m)q.
In this paper we propose a new step-down multiple testing procedure that also con-

trols the FDR when the test statistics are independent. By comparing the critical con-
stants of the step-up and step-down procedures, it is pointed out that neither one
dominates the other in terms of power. A power comparison using simulation indicates
that the step-down test is more powerful than the step-up test when m is small and a
large proportion of the hypotheses are false.

2. A step-down FDR controlling procedure

De�ne the m critical values by

�i ≡ 1−
[
1−min

(
1;

m
m− i + 1q

)]1=(m−i+1)
; 16i6m: (2.1)

It is clear that 0¡�16 · · ·6�m61. The step-down procedure then operates in the
following way.

Let k be the smallest i for which P(i)¿�i: Reject H(1); : : : ;H(k−1):

Note that if P(i)6�i for i = 1; : : : ; m then all the m hypotheses are rejected. This
procedure can again be rephrased as a stepwise algorithm. Start with the smallest
p-value P(1), by comparing it with �1. If P(1)¿�1 then stop and reject no hypotheses.
Otherwise, step up towards larger p-values, by rejecting H(i) so long as P(i)6�i, and
stop rejecting any more hypotheses when for the �rst time P(i)¿�i.

Theorem. If P1; : : : ; Pm are independent; then the step-down procedure controls the
FDR at level q.

Proof. Firstly, if m0 = 0 then V= 0; Q= 0 and so Qe = 0. Secondly, if m0 = m then
V = R and so

Qe = E(IV¿0) = P(V¿0) = P(P(1)6�1) = 1−[P(P1¿�1)]m = 1−(1− �1)m = q:
We shall, therefore assume in the rest of the proof that 16m06m− 1. Let m1 =m−
m0¿ 0; P′

1; : : : ; P
′
m1 denote the p-values corresponding to the m1 false hypotheses, and

P∗
1 ; : : : ; P

∗
m0 denote the p-values corresponding to the m0 true hypotheses. De�ne the

expectation of Q conditioning on the values of P′
1; : : : ; P

′
m1 by

Qe(P′
1; : : : ; P

′
m1 ) ≡ E(Q |P′

1; : : : ; P
′
m1 ):

Next, we show that Qe(P′
1; : : : ; P

′
m1 )6q, from which the theorem clearly follows.

For this, let P′
(1)6 · · ·6P′

(m1) denote the ordered values of P
′
1; : : : ; P

′
m1 . De�ne S;

06S6m1, to be the largest integer j satisfying P′
(1)6�1; : : : ; P

′
(j)6�j; S=0 if P

′
(1)¿�1.
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Now we have

Qe(P′
1; : : : ; P

′
m1 ) = E

(
V
R
IV¿0 |P′

1; : : : ; P
′
m1

)

6 E
(

V
S + V

IV¿0 |P′
1; : : : ; P

′
m1

)
(2.4)

6
m0

S + m0
E(IV¿0 |P′

1; : : : ; P
′
m1 )

6
m0

S + m0
P(min(P∗

1 ; : : : ; P
∗
m0 )6�S+1)

=
m0

S + m0
[1− (1− �S+1)m0 ]

6
m0

S + m0
[1− (1− �S+1)m−S ] (2.5)

=
m0

S + m0
min

(
1;

m
m− S q

)

6
m0m

(S + m0)(m− S)q

6 q; (2.6)

where inequality (2.4) follows from the relationship R¿S + V, and inequalities (2:5
and 2:6) follow from the fact that m0 + S6m. The proof is thus completed.

Remark 1. It is clear from the de�nition of �i in (2.1) that �i=1 for m(1−q)+16i6m.
Consequently, the hypotheses H(i); m(1−q)+16i6m will be rejected, no matter how
large the corresponding p-values are. This is not surprising, since all the hypotheses
are tested simultaneously and the control of FDR allows a few erroneous rejections if
many correct rejections have already been made.
There are situations where one does not want to reject those hypotheses with large

p-values. One reason is that a rejected hypothesis might be highlighted for further
investigation. Another reason is to avoid contaminating a set of rejected hypotheses
which are most likely false by those hypotheses which are almost certainly true. If this
is the case, one may simply add the constraint that a hypothesis cannot be rejected if
the corresponding p-value is larger than some prespeci�ed value. This, of course, will
not inate the FDR.

Remark 2. Note that �1 cannot be improved upon, as can be seen from the proof when
m0 =m. At the other end, �m =min(1; mq) is also stringent; this can be seen from the
proof by setting m1 =m− 1 and letting the p-values P′

1; : : : ; P
′
m1 approach zero almost

surely. No similar statement, however, can be made on �2; : : : ; �m−1, except for those
�i = 1; m(1− q) + 16i6m:
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3. An example

The national Surgical Adjuvant Breast and Bowel Project published data from a trial
of L-phenylalanine mustard, 5-uorouracil, and tamoxifen (PFT) versus L-phenylalanine
mustard and 5-uorouracil (PF) in 1891 patients with primary operable breast cancer
and positive nodes (Fisher et al., 1983). These investigators found “evidence for het-
erogeneity in response to PFT therapy that is age and progesterone receptor dependent”.
We use these data (see Table 1 below), as described and analyzed by Gail and Simon
(1985), to demonstrate the step-down FDR controlling procedure, and compare the
results with that of the step-up procedure.
The observed p-values are for two-sided z-tests, and the four test statistics are in-

dependent. Gail and Simon have developed in their paper a test of the null hypothesis
of no cross-over e�ect, also termed as no qualitative interaction, which means that the
direction of di�erence is the same in all subgroups. Using their test, they have found
that this single hypothesis can be rejected at the 0.1 level, but not at the 0.05 level.
However, a medical practitioner might be more interested in a decision about each

subgroup, in order to prescribe an appropriate treatment. Thus, the testing of the single
overall hypothesis is, while important for research purposes, not enough. It is desirable
to come up with statements about the individual subgroups, and a multiple testing
procedure can be employed for this purpose.
To perform the step-down procedure at the 0.1 level, the ordered p-values 0.0058,

0.0362, 0.0972 and 0.4440 are compared with the critical values 0.0260, 0.0466, 0.1056
and 0.4 stepwisely. Start with 0:005860:0260, until 0:4440¿ 0:4 for the �rst time. So
the three hypotheses corresponding to the three smaller p-values are rejected, i.e. the
hypotheses of no di�erence in all subgroups except for the subgroup of “Age less
than 50 and PR greater than 10” are rejected. It is noted that, in this example, the
step-down multiple testing procedure rejects the same three hypotheses as the procedure
that tests each hypothesis separately at the level 0.1 (so no loss of power is incurred
by the simultaneous consideration). At the 0.05 level the step-down test compares the
p-values with 0.0127, 0.0227, 0.0513 and 0.02, and only the hypothesis corresponding
to the smallest p-value is rejected.

Table 1
Analysis of proportions free of breast cancer at 3 years in 4 subgroups

Subgroup Progesterone Age¡ 50 Age¿ 50 Age¡ 50 Age¿ 50
PR¡ 10 PR¡ 10 PR¿ 10 PR¿ 10

Proportion PF 0.599 0.526 0.651 0.639
PFT 0.436 0.639 0.698 0.790

Standard error PF 0.0542 0.0510 0.0431 0.0386
PFT 0.0572 0.0463 0.0438 0.0387

Di�erence 0.163 −0:114 −0:047 −0:151
SE of di�erence 0.0778 0.0689 0.0614 0.0547
Observed z-statistic 2.095 −1:655 −0:7655 −2:7605
p-values (two-sided) 0.0362 0.0972 0.4440 0.0058
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The step-up procedure of 0.1 level compares the ordered p-values with 0.025,
0.05, 0.075 and 0.1. Since 0:4440¿ 0:1 and then 0:0972¿ 0:075, and the second
smallest p-value is the �rst one that is smaller than the corresponding critical value,
0:036260:05. Hence, the two hypotheses corresponding to the two smaller p-values
are rejected. So in this case the step-up procedure is less powerful than the step-down.
At the 0.05 level, the step-up procedure rejects the same single hypothesis that the
step-down procedure does.

4. Power comparison

A simple comparison of power can be made by comparing the critical constants of the
procedures. The step-down procedure that controls the FWE rate at q, for independent
test statistics, uses the critical constants

�′i ≡ 1− (1− q)1=(m−i+1); 16i6m: (3.1)

This procedure is sometimes referred to as a Holm-type procedure (Holm, 1979). It
is clear that �′i ¡ �i for i = 2; 3; : : : ; m and �′1 = �1. So the FDR controlling step-down
procedure is uniformly more powerful than the corresponding FWE controlling one, as
one would expect.
The power comparison between the step-down and step-up FDR controlling proce-

dures is more complicated. Even if all the critical constants of the step-down procedure
are larger than the corresponding critical constants of the step-up procedure, the “more
powerful direction of stepping” of the step-up procedure does not guarantee that the
step-down procedure is more powerful. A comparison between the �i in (2.1) and the
ci = (i=m)q of the step-up procedure leads to the following observations. Obviously,
�1¿c1 for all m, though by a very small amount. For m¿4; �i ¡ ci for all i upto
some i0(m), and then �i becomes larger. Comparing the �rst term in the series ex-
pansion of (1 − ci)m+1−i with (1 − �i)m+1−i, the two are equal when i0(m) satis�es
i0(m)(m+1−i0(m))2 ≈ m2. For small m that is the case when i0(m) ≈ (m+1)−

√
m+ 1;

for large m this happens when i0(m) =m(1− q). It may, therefore, be concluded that,
beyond small m, as long as the number of false null hypothesis is not larger than the
i0(m) given above, the step-up procedure will be more powerful than the step-down
procedure. On the other hand, if most null hypotheses are far from being true then the
step-down procedure should be more powerful.
To make a more detailed comparison of power, we have carried out a large simu-

lation study. The four procedures compared are the step-up procedure (SUFDR), the
step-down procedure (SDFDR), the step-down FWE rate-controlling procedure using
the critical constants in (3.1) (SDFWE) and the adaptive stepwise FDR controlling
procedure (AFDR) of Benjamini and Hochberg (1999). Note that the AFDR has been
shown to control the FDR only by a simulation study similar to the one given below
(i.e. normally distributed random variables), and that the four procedures control the
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Fig. 1. Simulation results on the average power of the step-down FDR controlling (SDFDR) – solid lines,
the step-up FDR controlling (SUFDR) – dotted lines, the step-down FWE controlling (SDFWE) – short
dashed lines, and the adaptive FDR controlling (AFDR) – long dashed lines.

FWE rate at the same level when all the hypotheses are true. The criterion for com-
parison is the average power, the proportion of the false hypotheses that are rejected.
The hypotheses were Hi: �i =0, tested (two-sided) at q=0:05 by using independent

statistics Ti with normal distributions Ti ∼ N(�i; 1); 16i6m. The number of hypothe-
ses was m= 4; 8; 16; 32 and 64, with m0 = 3m=4; m=2; m=4 and 0. Three con�gurations
of the nonzero �i were considered: (E) equally spaced over (0; L]; (D) placed with
decreasing density away from zero over (0; L]; (I) placed with increasing density away
from zero over (0; L]. The value of L was set at levels, 2; 3; 5 and 10, varying there-
fore the signal-to-noise ratio. The simulation study used 20 000 repetitions, with the
estimated standard errors about 0.0008 to 0.0016. As the same noise was used in a
single repetition across all con�gurations with the same number of hypotheses, and the
alternatives in di�erent con�gurations were monotonically related, a positive correla-
tion was induced. This correlation reduced the variance of a comparison between two
procedures or two con�gurations to less than twice the variance of a single one.
Fig. 1 presents the simulation results on the average power for L=3. It can be seen

that the SDFDR performs best for m = 2 under all con�gurations, and is generally
more powerful for m = 3 and 4. The AFDR performs better overall than both the
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SDFDR and SUFDR for m¿ 4, but the control of FDR of the AFDR has not been
proved analytically thus far. SDFDR is uniformly more powerful than SDFWE, which
agrees with the theoretical result. Between SUFDR and SDFDR, SUFDR is generally
more powerful for larger values of m and smaller proportion of which are false (the
upper-left of Fig. 1). However, the power of SDFDR can be substantially larger than
that of SUFDR, when the value of m is small and most of the hypotheses are false.
For example, when four hypotheses are tested, one of which is true, the power of the
SDFDR is the same as that of the AFDR, and higher than that of the SUFDR. In the
extreme con�guration, when all hypotheses are far from being true (the lower-right
of Fig. 1) the SDFDR is more powerful than SUFDR even when 32 hypotheses are
tested. For 16 hypotheses the di�erence in power is as much as 0.1. More generally
though, for 4–16 tested hypotheses, the SDFDR is superior only when the proportion
of the true null hypotheses is below half.
The conclusion is that, between the two mathematically proved FDR controlling

procedures, the SDFDR is recommendable if m64; or if m616 and most of the
hypotheses are false. Otherwise, the SUFDR is recommended.
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