L

False Discovery Rate-Adjusted Multiple Confidence Intervalsfor Selected Para...
Y oav Benjamini; Daniel Y ekutieli; Don Edwards; Juliet Popper Shaffer; et al
Journal of the American Statistical Association; Mar 2005; 100, 469; ABI/INFORM Global

pg. 71

False Discovery Rate—Adjusted Multiple Confidence
Intervals for Selected Parameters

Yoav BENJAMINI and Daniel YEKUTIELI

Often in applied research, confidence intervals (Cls) are constructed or reported only for parameters selected after viewing the data. We show
that such selected intervals fail to provide the assumed coverage probability. By generalizing the false discovery rate (I'DR) approach from
multiple testing to selected multiple Cls, we suggest the false coverage-statement ratec (FCR) as a measure of interval coverage following
sclection. A general procedure is then introduced, offering FCR contro] at level ¢ under any selection rule. The procedure constructs
a marginal CI for each selected parameter, but instead of the confidence level | — ¢ being used marginally, ¢ is divided by the number of
parameters considered and multiplied by the number selected. If we further use the FDR controlling testing procedure of Benjamini and
Hochberg for selecting the parameters, the newly suggested procedure offers Cls that are dual to the testing procedure and are shown to be
optimal in the independent case. Under the positive regression dependency condition of Benjamini and Yekutieli, the FCR is controlled for
one-sided tests and Cls, as well as for a modification for two-sided testing. Results for general dependency are also given. Finally, using the
equivalence of the Cls to testing, we prove that the procedure of Benjamini and Hochberg offers directional FDR control as conjectured.

KEY WORDS: Directional decision; False discovery rate; Multiple comparison procedure; Positive regression dependency; Simultancous

confidence interval; Type IIT error.

1. INTRODUCTION

It is common practice to ignore the issue of selection and
multiplicity when it comes to multiple confidence intervals
(CIs), reporting a selected subset of intervals at their marginal
(nominal, unadjusted) level. Cls are not corrected for multiplic-
ity even when the only reported intervals, or those highlighted
in the abstract, are those for the “statistically significant” pa-
rameters. As a concrete example of this practice, consider the
study of Giovannucci et al. (1995), which we later discuss in
some detail. That study examined relationships between about
100 types of food intake and the risk of prostate cancer; its ab-
stract reported only the three 95% Cls for the odds ratio that do
not cover 1.

In another highly publicized report, the long-range effects
of hormone therapy in postmenopausal women were stud-
ied in a large randomized clinical trial (Rossouw, Anderson,
Prentice, and LaCroix 2002). Many parameters were consid-
ered in that study, and Bonferroni-adjusted CIs were reported,
with marginal CIs reported alongside. As so often occurs,
the multiplicity-adjusted Cls and the marginal CIs had rather
contradictory implications. The research team, including some
prominent statisticians, discussed the discrepancy and chose to
focus on the marginal Cls. These were also the only intervals
reported in the abstract. Because of their clinical importance,
affecting tens of millions of women, the results of the study
were further highlighted and discussed in an editorial (Fletcher
and Colditz 2002). The editorial addressed the issue of which
CIs to use as follows: “The authors present both nominal and
rarely used adjusted Cls to take into account multiple testing,
thus widening the Cls. Whether such adjustment should be used
has been questioned....” Even though this study is special in
that the practice was discussed and defended in the report it-
self, it attests to the common practice described in our opening
sentence. We return to these two studies later in this article.

Ignoring the multiplicity of intervals is generally more com-
mon than ignoring the problem of multiplicity in testing. One
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reason why unadjusted ClIs seem more acceptable than unad-
justed tests is that they give the right coverage on average; the
proportion of 95% Cls covering their respective parameters out
of the intervals constructed (namely, the number covering di-
vided by the number of parameters m) is expected to be .95,
and thus only .05 will not be covered. So why worry?

It is often argued against this sentiment that failing to adjust
for multiplicity is harmful in that it does not offer simultaneous
coverage at a 95% level for all of the parameters considered in
the problem. The main thrust of the present article is that ig-
noring multiplicity is harmful even if simultancous inference is
not of direct concern to the researcher. The selection of the pa-
rameters for which CI estimates are constructed or highlighted
tends to cause reduced average coverage, unless their level is
adjusted.

It is well known that selection, which can be presented as
conditioning on an event defined by the data, may affect the
coverage probability of a CI for a single parameter. For exam-
ple, suppose that we report a CI only if it does not cover 0. If the
true value of the parameter is 0, then the coverage probability
of the single conditional CI is obviously 0.

The same problem exists when dealing with multiple Cls that
are constructed for multiple parameters after selection. If we se-
lect, as before, to report or highlight only those intervals that do
not cover 0, then the average coverage property may deteriorate
to 0, exactly as in the case of a single parameter, and will be
a far cry from the desired .95.

Example I: Unadjusted Selected Intervals. T; ~N(0;, 1) are
independently distributed estimators of 6;, j = 1,...,200. For
each simulation, #; = 6 remained fixed. This is done for five
values of 6: 0, .5, I, 2, and 4. The 200 parameter estimates arc
first subjected to a selection criterion based on initial testing un-
adjusted for multiplicity: select 6; only it |T;| > Z_ 05/2. Next,
for every parameter selected, a marginal (unadjusted) CI is
constructed, namely T; & Z;_ g5/2. The conditional coverage
probability—the number of times that a parameter is covered
by the CI divided by the number of times that the parameter is
selected—is 0, .60, .84, .95, and .97 for # =0, .5, 1,2, and 4
(standard error <.01).
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Whereas without selection, a marginal CI would ensure
a coverage probability of .95, following the marginal testing
sclection criterion, the conditional coverage probability ranges
from 0 to .97. Thus, not only might selection dramatically re-
duce the coverage, but also the amount of reduction is a function
of the unknown parameter 6.

As already noted, constructing simultaneous Cls is used to
address the issue of such selective inference. According to
the Bonferroni procedure for constructing simultaneous Cls on
m parameters, each marginal CI constructed at the | — o/m
level. Without selection, these Cls offer simultaneous cover-
age, in the sense that the probability that all CIs cover their
respective parameters is at least | — «. Unfortunately, even
such a strong property does not ensure the conditional confi-
dence property following selection, as the following example
demonstrates.

Example 2: Bonferroni-Selected—Bonferroni-Adjusted Inter-
vals. The setting is similar to that in Example 1, except that
the 200 parameters were first subjected to a selection criterion
with Bonferroni testing: selecting 6; only if | 7| > Zy_ 05/(2.200)-
Next, for every selected parameter, a Bonferroni-adjusted CI is
constructed, namely, 7 & Z; _ o5/(2.200). The conditional cover-
age probability is 0, .82, .97, 1.0, and 1.0 for 0 =0, .5, 1, 2,
and 4 (standard error <.01).

Although better than before, the values for small 8, partic-
ularly the zero coverage at ¢ = (), are as troublesome here as
in Example |. Apparently, the goal of conditional coverage fol-
lowing any selection rule for any set of (unknown) values for
the parameters is impossible to achieve. We propose settling for
a somewhat weaker property when it comes to selective Cls.

For that purpose, we suggest a point of view that emphasizes
the construction of a noncovering CI. In other words, the obsta-
cle to avoid is that of making a false coverage statement. For
a single parameter with no selection, this point of view offers
nothing new; in repeated experimentation, if on average more
than | — o of the Cls (constructed) cover the parameter, then no
more than « of the constructed CI fail to do so. However, when
selection steps in, three outcomes are possible at each repeti-
tion; either a covering Cl is constructed, a noncovering CI is
constructed, or the interval is not constructed at all. Therefore,
even though a | — o CI does not offer selective (conditional)
coverage, the probability of constructing a noncovering CI is at
most o,

Pr{e ¢ CI, CI constructed} < Pr{6 ¢ CI} < «. (D

When inference about multiple parameters is needed in an
experiment with no sclection, the situation is again similar to
that of the single-parameter case. The number of noncovering
Cls is equal to the number of parameters minus the number of
covering Cls. Thus constructing a marginal | — « CI for each
parameter ensures that the expected proportion of the Cls cov-
ering their respective parameters is 1 — « and the expected pro-
portion of noncovering Cls is «. However, when facing both
multiplicity and selection, not only is the expected proportion
of coverage over sclected parameters at | — o not equivalent to
the expected proportion of noncoverage at «, but also the latter
no longer can be ensured by constructing marginal CIs for each
selected parameter, as the following example demonstrates.

Journal of the American Statistical Association, March 2005

Example 3: The False Coverage Rate for Unadjusted Selected
Intervals. The setting is similar to Example 1, where selection
is based on unadjusted individual testing and unadjusted Cls
are constructed. At each simulated realization, the proportion
of intervals failing to cover their respective parameters among
the constructed Cls is calculated (setting the proportion to 0
when none are selected). Averaging the proportions over the
simulation, we get 1.0, .40, .16, .05, and .03 for 8 =0, .5, 1, 2,
and 4 (standard error <.01).

Thus, using a marginal procedure for each parameter, we can
no longer assure that, on average, the proportion of noncovering
intervals is controlled. In fact, the procedure with no adjustment
for multiplicity is as poor at giving average false coverage con-
trol as it is inadequate at controlling the conditional coverage.

At this stage, the similarity between a false coverage state-
ment about a CI for a selected parameter and a false rejection
of a true null hypothesis (a false discovery) should seem nat-
ural. In fact, the expectation studied by the simulation in Exam-
ple 3, is equivalent to the fulse discovery rate (FDR}) criterion
in multiple testing, as presented by Benjamini and Hochberg
(1995; hereafter denoted by BH). Thus, if we take seriously the
concern about the average false coverage of Cls after selection,
then we should define a criterion that is similar to the FDR in
the context of selective Cls.

We present such a criterion in this article. We define the
“confidence intervals FDR,” as the expected proportion of para-
meters not covered by their CIs among the selected parameters,
where the proportion is 0 if no parameter is selected. This fulse
coverage-statement rate (FCR) is a property of any procedure
that is defined by the way in which parameters are selected and
the way in which the muitiple intervals are constructed. We for-
mally define the FCR (in Sec. 2), discuss its properties, and
demonstrate that it is a reasonable and intuitive criterion.

Example 4: FCR for Bonferroni-Selected—Bonferroni-Adjust-
ed Intervals. The setting is similar to that of Example 2, where
selection is based on Bonferroni testing, and Bonferroni Cls are
then constructed. The FCR is estimated as in Example 3. The
values of FCR for the foregoing selective multiple CI procedure
are .05, .03, .02, 0, and 0 for 6 =0, .5, 1, 2, and 4 (standard
error <.01).

Thus, although the Bonferroni-Bonferroni procedure cannot
offer conditional coverage, it does control the FCR at <.05 (see
details in Sec. 2). In fact it does so too well, in the sense that the
FCR is much too close to 0 for large values of 8. In this article
we present better procedures, in that they adhere better to the
desired level of error.

We try to face the problem in its generality. Given any se-
lection rule, and a family of marginal confidence intervals, can
we find a method of specifying the confidence level for the CI
constructed that controls the FCR? This can be done, and in
Section 3 we present such a general FCR controlling procedure
for the case where the estimators of the parameters are inde-
pendent. Our method of constructing FCR-controlling Cls is
directly linked to the FDR-controlling procedure of BH. In the
BH procedure, after sorting the p values Py <+ < P,y and
calculating R = max{j: P;y <j-¢/mj}, the R null hypotheses
for which Py < R-g/m are rejected. Our suggested method
of adjusting for FCR at level ¢ is, roughly stated, to construct

—
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Figure 1. Simulation Based FCR and Conditional Coverage Probabilities of Marginal (----- ), FCR-Adjusted (——), and Bonferroni (—-—- -)

.95 Cls for the Marginal, BH, and Bonferroni Level .05 Selection Schemes.

a marginal Cl with confidence level | — R - ¢/m for the R para-
meters selected. We show that in some sense, this procedure is
also the best possible general procedure.

In Section 4 we revert to the motivating problem, the con-
struction of symmetric Cls for parameters selected by two-sided
multiple-hypothesis testing procedures. Applying the general
procedure allows us, as always, to control the FCR at level g.
We show that if testing is done using the Bonferroni procedure,
then the lower bound of the FCR may drop well below the de-
sired level ¢, implying that the intervals are too long (see Fig. |
for examples). In contrast, applying the following procedure,
which combines the general procedure with the FDR control-
ling testing in the BH procedure, also yields a lower bound for
the FCR, ¢/2 < FCR. This procedure is sharp in the sense that
for some configurations, the FCR approaches ¢.

Definition 1: FCR-Adjusted BH-Selected Cls.

1. Sortthe p values used for testing the /2 hypotheses regard-
ing the parameters, Py < -+ < P(p).

2. Calculate R = max{i: P <i-q/m}.

3. Select the R parameters for which Py <R - g/m, corre-
sponding to the rejected hypotheses.

4. Constructa | — R - g/m CI for each parameter selected.

Thus the foregoing procedure complements the FDR control-
ling testing procedure of BH; all Cls constructed do not cover
their null parameter values that have been rejected. Although
the foregoing results hold under some assumptions about the
pivotal statistics and under independence of the estimators of
the parameters, some results are shown to hold under positive

dependency as well. Others hold under the most general condi-
tion at the cost of inflating the FCR by a calculable constant that
depends on the number of parameters only. We discuss these re-
sults in Section 5.

The connection between FDR testing and the foregoing Cls
allows us to answer in the affirmative the question of whether
the BH procedure controls the FDR of the directional errors as
well. That means that if we also count as an error a correctly re-
jected two-sided hypothesis whose direction of deviation from
the null hypothesis value is opposite to the direction declared,
then the expected proportion of the so-defined errors is still con-
trolled. The concern that this need not be the case has accompa-
nied the FDR controlling procedure since the work of Shaffer
(1995) and Williams, Jones, and Tukey (1999), and has been
further addressed by Shaffer (2002).

Throughout this article, we make a distinction between ad-
justing for multiplicity to ensure simultaneous coverage and ad-
justing for multiplicity to avoid the selection effect. When only
a single tool is available for both purposes, the discussion of the
distinction makes little difference. The availability of different
tools for different goals puts the choice in the hands of the re-
searcher. In Section 7 we discuss guidelines for making this
choice intelligently in more detail, although further discussions
on this subject probably will ensue.

2. THE FALSE COVERAGE-STATEMENT RATE
Consider a procedure for constructing selective multiple Cls
(selective Cls), based on a vector of m parameter estimators T.
The selection procedure is given by S(T) C {1, ..., m} and is
followed by the construction of some Cl for each 6;, i € S(T).
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Let R¢ey be the number of Cls constructed, which is the size
of S(T), and let V¢ be the number of constructed CIs not cov-
ering their respective parameters.

Definition 2. The FCR of a selective Cl procedure is FCR =
Ev(Qcr), where Qcy is defined as
Ver/Rep iRy >0
Qcr = _
0 otherwise.

For a single parameter (m = 1), the FCR equals the proba-
bility of constructing a noncovering CI. Therefore, according
to (1), a I — ¢ CI has FCR < g. We now show that some of
the commonly used methods of constructing multiple Cis also
control the FCR.

1. Constructing a marginal (unadjusted) | — g confidence
interval for all parameters. In this case R¢y = m. The dis-
tribution of V¢y is determined by the joint distribution of
the estimators, but £(V¢y) < m - g. Therefore,

E(Qcr) =EWVen/m=gq.

2. 1 — g confidence region. Suppose that we have a proce-
dure yielding a | — ¢ confidence region CR(T) for a mul-
tidimensional parameter 6, meaning that P{# € CR(T)} >
I — ¢. Onc approach is to view 6 = {01, ..., 6,,} as a sin-
gle multidimensional parameter, that is, Ry = 1, it the
confidence region is reported; Ver = | if Rey =1 and
0 ¢ CR(T). Thus

E(Qcr) =Pr{Ve =1} <Pr{f ¢ CR(T)} <q.

3. Projecting a 1 — g confidence region. Another use
of CR(T), morc relevant to our discussion, is to project
it onto the coordinates, thereby deriving a marginal
confidence interval CI;(T) for each 6;. A Bonferroni con-
fidence region is a special case in which CR(T) is a cross-
product of CI;, where each CI; is a | — ¢/m marginal CL
As CR € {0 :0; € CI;}, for any sclection procedure S, the
probability of constructing at least one noncovering CI; is
also < ¢, that is,

Pr(Ver > 0) =Pr{30;:i€ 8,0, ¢ Cl;}
< Pr{@ ¢ CR(T)} <gq.

The property Pr(Vey > 0) < ¢ is an extension of the fam-
ilywise error (FWE) rate in multiple testing. Finally, as
Pr(Ver > 0) > E(Qcy), FCR < g.

4, Constructing a ¢ — g interval for independently selected
parameters. Here we mean that the selection criterion is
independent of the data from which the Cls are estimated.
An obvious example is when the identity of the parame-
ters for which the CI is constructed is determined before
the data are available. Such a procedure takes us back to
casc . A less obvious example is the use of a training
set, T, to select the Ry parameters and an independent
testing set, To, to construct the Cls. Under such circum-
stances,

|
Er, 1, (Qcr) = Ev, {I(RC/ >1) —-E, Vc1}
Ry

:/5v,~,{1(1e<f,> . =< q}fq.
Rer

Example 5 is another case in which inference is needed for a
set of Cls after a selection process. In this example, a false con-
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fidence statement can be made not only because the selected CI
does not cover the parameter, but also because the decision to
make the statement is false as no parameter to be covered exists.

Example 5: Search for Quantitative Trait Loci—Genetic Loci
Affecting Quantitative Traits. In quantitative trait loci (QTL)
analysis, the effort is to locate genes on the chromosome that
partially affect the level of a quantitative property of interest.
The log-odds (1.OD) score is used to test for linkage between a
series of genetic markers located densely over the chromosomes
and several quantitative traits, in order to pinpointa QTL. A dis-
covery of a QTL is reported if the 1.OD score exceeds some
threshold. The reported result is a genomic region enclosing the
discovery that is suspected of covering the QTL. Considerable
effort was invested in methods for finding a genomic region
with a .95 probability of containing the QTL (see, e.g., Mangin,
Goffinet, and Rebai 1994). Nevertheless, suppose that a quan-
titative trait with no genetic background, and thus no QTL, is
considered. Then any genomic region reported cannot contain
the QTL, and in particular, no method can provide a .95 proba-
bility of covering the parameter. Under such circumstances, the
mere decision to make a confidence statement is false.

Adopting the new framework for providing inference for se-
lected multiple Cls, a possible solution is to control the FCR—
the proportion of noncovering genomic regions out of the total
number of regions reported. Interestingly, addressing multiplic-
ity is considered essential in determining the LOD threshold
for QTL discovery, either by controlling the FWE in multiple
testing (Lander and Kruglyak 1995) or by controlling the FDR
(Weller, Song, Heyen, Lewin, and Ron 1998), but is ignored
when the genomic regions are reported.

3. FALSE COVERAGE-STATEMENT RATE
ADJUSTMENT FOR SELECTIVE
CONFIDENCE INTERVALS

We now introduce a general method for adjusting the mar-
ginal levels of the Cls of the selected parameters, so that the
corresponding selective CI procedure controls the FCR. We as-
sume that we have at our disposal a procedure for construct-
ing marginal CIs at any desired level. Thatis, fori=1,...,m
and each « € (0, 1], Cli() is a marginal | — « CI for 6;,
Pro,{0; € Cli(«)} > 1 — . We further assume that the forego-
ing CI procedure is monotone in the confidence level: « > o
implies that Cl;(«) € CI;(c’). Recall that the selection proce-
dure is given by S(T), and the number selected is |S(T)|.

Definition 3: Level-g FCR-Adjusted Selective Cls.

1. Apply the selection criterion S to T, yielding the selected
set of parameters S(T).

2. For each selected parameter 6;, i € S(T), partition T into
T: and TV (T without 7;) and find

Ruin (Tm)
=min{[S(T, 7i=1)|:ie S(TV. Ti=1)}. (2)
3. For each selected parameter 6;, i € S(T), construct the fol-

lowing CI:
C1i<R111i|1(T([)) ' f[>.

m

[ e e e e
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Remark 1. For many plausible selection criteria, including
selection by unadjusted testing, by Bonferroni testing, and by
BH testing, Ruin(T) can be substituted by R¢y in Defini-
tion 3. The reason for this is that foreachi =1, ..., m given T
for values T; = ¢ such that 6; is selected, |S(T¥, 1)| assumes
a single value. Notable exceptions are adaptive FDR proce-
dures (Benjamini and Hochberg 2000; Benjamini, Krieger, and
Yekutieli 2003; Storey, Taylor, and Seigmund 2004), where
some values of T yield Ryin (T®), which is less than R¢;.

Incorporating R¢y into Definition 3, the FCR adjustment
takes on a very simple form. To ensure an FCR level ¢, mul-
tiply ¢ by the number of parameters selected, divide by the size
of the pool of candidates from which the selection is made and
construct the marginal intervals at the adjusted level for the se-
lected parameters. The length of the constructed Cls increases
as the number of parameters considered increases, but decreases
as the number of selected parameters increases. Their length
may vary from that of the unadjusted to that of the Bonferroni-
adjusted, depending on the extent of the selection process.

Theorem 1. 1If the components of T are independent, then for
any selection procedure S(T), the FCR-adjusted selective Cls
in Definition 3 enjoy FCR < g.

Proof. For r > 1, let A, , denote the following event: r Cls
are constructed, and v of these Cls do not cover the correspond-
ing parameter. Let NCI; denote the event that a noncovering CI
interval 1s constructed for 6;.

Lemma 1.

m

=3 Prp{A,, NCT),
Vv
i=1

Pry(A v, =

Proof. Let A}, denote the event that the subset of para-
meters for which a noncovering Cl is constructed is o C {1,

.,m}, where |w| =v. If i € w, then Pre{Ay,, NCI;} =
Prp(AY,); however, if i ¢ w, then Pre{AY ., NCI;} = 0. Then

m m

> PrefA,,, NCLY =Y " Pre{A?,, NCI;)
i=1 ® =]
m

=Y > Iiew) Prr{A?,)

w =]

~Zv Prr{A

Because | J!..; A, is a disjoint union of events that equals the
event |S| = r, incorporating Lemma 1 into the definition of the
FCR yields

=v- Prr{A, ,}.

m r

Er{Qcr) = Z Z

r=1 v=I

PrT{Av,r}

m m

_ZZ— Pry{|S| = r, NCI;}. (3)

r=1 i=|

Fori=1,...,
ries of events:

mand k= 1,..., m, we define the following se-

C(l) {T( ) Rmm (T( )) /\}

According to (2), for each value of TO and T; = ; such that
0; is selected, Ryin < \S(T(’), t))|. Therefore, (3) is less than or

equal to (4),
Prq{ P ie8, 6 ¢Cl (k ’)} @)

m m

SHW,

m
i=1 k=1

Pry {C,;) 0 ¢ Cl; <km" )} (5)

; k-
PI‘T([) { C](([)} . Pl"[' {9 ¢ CI < " l) } 5 (6)
0 n

<ZZ Prpo{C }-%g:q. (7)

i=t k=1

m m

SWIW:
i=1 k=1
m m

-3

i=1 k=1

Inequality (5) follows from dropping the condition i € S.
Equality (6) is due to the independence of T and T;. The
inequality in (7) is due to the marginal coverage property of
the Cls, C/;(-).

Theorem 1 demonstrates that the increase in the marginal
coverage probability as dictated in Definition 3 is sufficient to
ensure FCR control at level ¢. We now show that this increase
is necessary, at least in some specific setting.

Example 6. T; are independently distributed U[6;, 6; + 1]
random variables. The marginal 1 — « CI constructed for each
0; is of the form CI; () = [T — (1 —«), T; |. The selection crite-
rion is to choose the k parameters corresponding to the & largest
parameter estimators. It is clear that this is one of the selection
rules for which Ryin(T®) =k = Ry, so the FCR-adjusted se-
lective Cls are of the form CI (%). We further assume that all
6; = 0, and for each of the k parameters selected, we construct
a CI with confidence level | — ¢'. In this example,

Ver=#{jrank(T)) >=m —k+1,0; < T; — (I — ).

Therefore, Vey can be expressed as Ve = min(k, V*), where
V* ~ Binom{m, ¢’). This yields an upper bound for the FCR,
* ol

EL_EYQ EEV _mq

Rey k k k

The goal is small FCR values, typically FCR = .05, so we
need values of ¢’ such that & 3> m - ¢/, thereby implying that
Pr(V* > k) = 0. Because under the foregoing conditions, the
FCR is apploxurmtely s q
must set ¢’ =k - q/m.

FCR=

, to control the FCR at level ¢, we

Example 7: The Selective Cls in Practice. Giovannucci
et al. (1995) studied the relationship between the intake of
carotenoids and retinol and the risk of prostate cancer, a study
that received wide nonscientific press coverage. That study’s
findings suggest that the intake of lycopene or other compounds
in tomatoes may reduce prostate cancer risk, but that other mea-
sured carotenoids are unrelated to risk. It further recommends
increasing consumption of the first. Only three 95% Cls for
the estimated relative risks (RRs) are reported in the abstract
(that carries the foregoing recommendation)—none covers one,
of course; the CI furthest away from 1 is (.44, .95), with the
point estimate of RR = .65. A closer look at that article reveals
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that some 131 parameters regarding various foods and bever-
ages were inspected, at least by one count. Unfortunately, in
contrast to the way it should be, the family of hypotheses tested
is not well defined, and the exact count is somewhat difficult
to get from the reading of the paper. Thus we do not repeat the
modified calculation exactly. Nevertheless, even if we settle for
a minimal count of m = 30 hypotheses from which the three
were selected, R/m = 3/30, and the length of the intervals on
the log scale should be inflated by >40%. For the aforemen-
tioned Cl1, the corresponding selective Cl is (.37, 1.17). With
the other two Cls also covering the value 1 for the RR, it is
clear that the message conveyed in the abstract should be very
different from that published. We thank Professor Kafadar for
bringing the multiplicity problem in this study to our attention.

4. SELECTION VIA MULTIPLE HYPOTHESIS TESTING

In the study described in Example 7, although not stated ex-
plicitly, it seems that the selection criterion was to report only
the parameters that were significantly different from | (mar-
ginally). The fact is that even though any selection criterion can
be used in selective Cls, the practice of basing parameter selec-
tion on testing is very common.

In this section, we assume that the distribution of 7; — 0; has
a symmetric distribution independent of 6;, Fr., where 6 is as-
sociated with a null value 90 and the set of parameters selected
corresponds to the sct of xc‘]ccted null hypotheses HI(.) 10 = 6,0
tested versus 6; (),.(). Testing is conducted using the two-sided
pvalues Py =2 (1 — Fr(|T; — Gi()l)), and the rejection region
is specified by a critical p value Ps(P),

S(T,0%) = {64 : Py < Ps(P)}.

FCR-adjusted sclective Cls provide the desired FCR control
tor selection based on testing as well, but may offer too much
protection at the undesirable cost of too-wide confidence in-
tervals. Thus in this scction we study the effect of the testing
procedure used for selection on the FCR-adjusted selective CIs.
The fact that the selection rule has direct implication for the
FCR-adjusted sclective Cls, with a lower FCR associated with
a stricter selection criterion, is intuitively clear from the extreme
case, where if |S(T)| = 0, then, trivially, FCR = 0. Example 8
demonstrates the foregoing phenomenon in a more realistic set-
ting, where the Bonferroni procedure is used for testing.

Example 8. Numerous two-sided hypotheses are tested using
the Bonferroni procedure at level g. Of the m tested hypotheses,
/m are false null hypotheses with |0; — 6,.0| — 00. The remain-
ing m — /m hypotheses are true null hypotheses. In this case

all false null hypotheses are correctly rejected, and the number

of true null hypotheses rejected is V/ ~ Binom(m — /m, g/m).
Thus Rey = /m + V'. Given Ry, for each rejected parame-
ter, the following CI is constructed: 7; 4 le “Rera/@m g
Ver equals the V7 null parameters selected plus the num-
ber of nonnull parameters not covered by their respective Cls

V" ~ Binom(/m, Rey - g/m). As Rey > /m,

" ! V// v/
FCR=F SER.{E\/H,Q.<——)} —
o Rey cr IRer Jm
o JmeRep-g/m (m—Jm) - c}/m 2.
= L, + -1
RC[ m \/-

and as m — o0, FCR — 0.
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Next, we show that if the multiple-testing procedure used for
selection is more liberal than the FDR-controlling test of BH
at level ¢, then for any 8, FCR > ¢/2. This result, proven in
Theorem 2, means that the intervals are not excessively long
for any possible values of the parameters. Moreover, we then
show in Corollary | that for some values of 8, the FCR even ap-
proaches ¢. Thus the FCR-adjusted BH-selected Cls described
in Definition | yields FCRs that range from ¢/2 to ¢, and in
some cases FCR ~ ¢.

For the aforementioned results, we need a few more condi-
tions: (a) The components of T are independently distributed;
(b) the testing procedure satisfies Ruin (XY = Ry in Defini-
tion 3 (see Remark 1); and (c) denoting by 7,* the « quantile
of F, the marginal CI are of the form

Clie)y = {6;:|T; — 0;) < T' 277},

Theorem 2. Consider an FCR-adjusted selective CI proce-
dure under the foregoing conditions (a)—(c). If its selection is
based on a multiple testing procedure which is more liberal than
the procedure in BH at level ¢, its FCR is always greater than
or equal to ¢/2.

Before we prove Theorem 2, note the following characteri-
zation of a multiple-testing procedure S(T) that is more liberal
than the procedure of BH.

Lemma 2. S(T) 2 Spu(T; g) implies that if |7; — Qiol >

,];]~|S"q/(2m)7 thenieS.

Proof. The condition in the lemma can be expressed as
P < Lbn‘l—(’ Recall that the number of hypotheses in Spy(T; ¢)
is defined as

kg
[Spe| = maxik: Pyy < it (8)

lSl'f/}
m |

D Spw, according to (8),

Thus for S = Spy, we get

S:{iip,'f

FOI a strictly more liberal § O

IR Psp. Thus we get

m

S=1{6:Pi < Pysy) 2 {9 P < lSl"’}.

m

Proof of Theorem 2. The beginning of the proof of Theo-
rem 2 is identical to that of Theorem 1 up to expression (3).
Recall that event C,E') ts defined according to Rpi,. Because
Rmin now can be substituted by the number of parameters se-
lected, the inequality in expression (4) in the proof of Theo-
rem | can be replaced by an equality in expression (9) in the
current proof, Thus

Ev(Qcr)
mn 7 /
wZZ PIT{C/(/),lGS 0, ¢ Cl; (‘mq)} 9)
i=1 k=1
> iﬁzl I PI Cl) lT —6)0{ - Tl /<(//(2m)
i=1 k= lk e

T — 0] > ,Z;I~k<q/(2-m)} (10)
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nt nm

S e

i=1 k=1

X Pr{ITi - 9,»0| > ’]7]‘/"6//(2471),

T; — 6;] > ,];l—k»z//(lm)} (1
moom
l ; _
. 0] . I —k-q/(2-m)
) S U R U RN
i=1 k=1
m-q
= . 12
2-m (12)

Inequality (10) is due to the result of Lemma 2. The inequality
in (12) is true because for 6; > 9?,

{|Ti - 6,.0| > ’];lfk‘l//(llﬂ), T, — 6] > Zl_k.q/(z,m)}
ST =6+ T FYEMY,
and for 6; <67,
(17— 001 > 7' FE™ |1, — g > 7 H )
o {1y <0, — T, "Ry
Notice that if |6; — 91'0| > 0or |6 — 9,'0| s 0o, then
Pr{|Ti N 91’0‘ z Zlik'q/(z’”)a \T; — 6;| = ’Ti]_/“‘f/(z‘”’)} = g/m.

Therefore, if for all 6; either condition holds, then (11) in the
proof of Theorem 2 approaches g. Combining this and the result
of Theorem 1, we get the following:

Corollary 1. Under the conditions of Theorem 2, if for all
i=1,...,m, 16— 6" — 0or |6 — 67| — oo, then the FCR of
the FCR-adjusted Cls approaches g.

Theorem 2 and Corollary | emphasize the advantages of
selection via the BH procedure or less conservative multiple-
testing procedures, in that they do not control the FCR at an
excessively low level. But there is a clear advantage to selec-
tion with the BH procedure, because it preserves the usual du-
ality between Cls and testing. Using it as the testing procedure,
any choice of parameter values covered by the Cls will not be
rejected by the multiple-testing procedure, while the other pa-
rameters for which Cls are not constructed remain at their null
values. That is, for any 6* satisfying 6" € CI; for some i € S and
0F = 9,.0 otherwise, the BH procedure will not reject 6 e CI;.
In the other direction, for any 0* satisfying 6 ¢ CI; forallie S
and 07 = 00 otherwise. the BH procedure will reject all 6;s for
i € 8. In contrast, using a less conservative testing procedure
than the BH procedure, a parameter can be selected after decid-
ing that 6; # (91.0, yet «9[0 is included in the CI constructed, CI;.
Thus, under the conditions of Theorem 2, the recommended
procedure is the FCR-adjusted BH-selected Cls given in Defi-
nition 1, enjoying ¢/2 < FCR < ¢, and for some configurations
of the parameters approaching ¢.

Figure | presents the results of a simulation study that
demonstrates the extent of this phenomenon. The setting is as
described in Example 1. Unadjusted, BH, and Bonferroni se-
lection is applied at g = .05, and three types of marginal Cls
are constructed, also at level ¢ = .05. The three panels at the

bottom show that for values 6 close to 0, the conditional cov-
erage property cannot be controlled by any of the CI schemes.
The three top panels show that unadjusted marginal intervals
fail to control the FCR, whereas the FCR of Bonferroni inter-
vals approaches 0 in many cases. In comparison, the FCR of
FCR-adjusted intervals is very close to .05.

Tukey (1995) was the first to scarch for multiple Cls dual
to the BH procedure. He considered constructing Cls of the
foregoing form, because they reflected the rejection decisions
reached by the FDR-controlling procedurc of BH. However,
his construction included Cls for «ll parameters, and so he
could not come up with any explicit statement about some
joint coverage property of his proposed procedure. To arrive
at some coverage property, Tukey (1995) tried to resort to hy-
brid Cls, replacing the Cls for the nonrejected parameters with
Bonferroni. He later gave up (Tukey 1996), and that suggestion
disappeared from his subsequent publications. Realizing that
the fundamental problem is that of setting Cls for selected pa-
rameters and defining the FCR as the relevant measure of error
involved, we were able to derive the relevant coverage prop-
erties. Admittedly, we gained further insight into the problem
once we had to face extremely large problems in genetic re-
search, encompassing thousands of parameters, in which inter-
est and inference are focused on the selected parameters only.
Such encounters were rare 10 years ago.

5. FALSE COVERAGE-STATEMENT
RATE-ADJUSTED SELECTIVE CONFIDENCE
INTERVALS UNDER DEPENDENCY

5.1 Positive Regression Dependency

The general result in Theorem 1 holds for independent pa-
rameter estimators. We now discuss parameter estimators pos-
sessing the positive regression dependent on a subsct (PRDS)

property.

Definition 4 (Benjamini and Yekutieli 2001). The compo-
nents of X are PRDS on /y if for any increasing set /2 (where
x €D and y > x implies that y € D) and for each i € [y, Pr(X €
D|X; = x) is nondecreasing in .x.

If X is PRDS on any subset, then we denote it simply
as PRDS. We further require that the selection criterion and
the Cls be concordant, in the following sense.

Definition 5. A procedure for selective Cls is concordant if
for all values of @, for all 0 <a < I, and fori=1,...,m,
k=1,...,m, both {T:k < Ryuin(T)) and {T;:0; ¢ Cl(c))

are either increasing or decreasing sets.

An example of a concordant selective CI is selection via a
multiple-hypothesis procedure of tests with one-sided alterna-
tives, 4! : 09 < 6;, and one-sided confidence intervals, Clj(«) =
0:0,= T+ T,

Theorem 3. If the components of T are PRDS and the selec-

tion criterion and the CIs arc concordant, then the FCR-adjusted
selective Cls in Definition 3 enjoy FCR < g.

Proof. Without loss of generality, let us assume that the
two sets in Definition 5 arc increasing. Then D,(\,') = UL, C,(\,'),
which can be expressed as {T("):I(’mm("l‘(")) < k+ 1}, is a
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decreasing set. Furthermore, for o < o', we can express
{Ti:0;¢ Cl(@)} ={T;:t <T;} and {Ti:0; ¢ Cli(a))} = {T;:
' < T;} with t <¢. Thus the PRDS condition then implies that

Pr(D|6; ¢ Cl(e)) < Pe(D|0; ¢ CLitah)).  (13)

Hence fork =1, ...,

P1<<1)§’> 0; ¢ Cl,(%))
+P <C,(11\0;¢C1,A(W>)
(1)
)
e (22

As defined, the event D,(,';) is the entire sample space. Therefore,
repeatedly applying incquality (14) for k=1, ..., m, we get

i
ZPn(C(” ( >> < Pr (Df,’,) 0 ¢ CI,(m : q))
m

= 1. (15)

To complete the proof, we proceed from inequality (5) in the
proof of Theorem [,

Ex(Qcn)

m, we get

(14)

ar wn

SEbelcnea ()
o)
)

() =

The first inequality in (16) is due to the coverage property
of Cls, and the second inequality is due to (15).

m m

OOWRIL

i=1 k=]
-Pr{@,ﬂECI,’(

(16)

5.2 General Dependency

Theorem 4. For any monotone marginal Cls, any selection
procedure S(T), and any dependency structure of the test sta-
tistics, the FCR of the FCR-adjusted selective Cls is bounded

The 1mmcdlatc corollary is that FCR-adjusted selective Cls at
level g/ 3L, % ensure that FCR < ¢ for all distributions of T.

Proof of Theorem 4. The proof is based on the proof of the-
orem 1.3 of Benjamini and Yekutieli (2001). Whereas the proof
of Benjamini and Yekutieli (20)1) unnecessauly uses the as-
sumption that Pr{P; € [’m q, E‘/]}
that the Cls are monotone.

, we only assume here
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For each i = 1,...,m, we define the random variable /;.
,—llstheevent9,¢Cl(q) forj=2,...,m, I; = is the

m

ntersection of 6; € Cl; (’;q) and 6; ¢ Cl; ( q) li=m+411is
m

the event ; € Cl;(¢). Because the Cls CI{«) are monotone for
lL<j=<m,

(7)

0; ¢ Cl; (5;77) 730 = ).

q _

Let Tynit denote the following random variable: for j = 1,

., m, Lynir = J with probability % and Iynir = m+ 1 with prob-
ability 1 — ¢. Finally, let /¢ define the following decreasing
function: j¢(j) = jl forj=1,...,mand j**(m + 1) = 0. The
validity of C/;(-) implies that all /;’s are stochastically greater
than /,ir, and thus, because j° is a decreasing function,

1 1

Y o= Prili=j)

=17

m+1

= 3% ) - Pril =)
j=1

m+1 m

1OC ‘ i q 1
=< ;]NC(]) -Pr{lwir=j} = E ; ; (18)
Incorporating (17) into (5) yields
m m
FCR<ZZ ZP; (e, 1=}
i=l k=1 j=I
< ZZ ZP]"[ C<1), [; —]}
=1 j= IJ k=j
HT m m m
RN IVE W WD

1111

The inequality in (19) is due to (18).

6. CONNECTIONS BETWEEN THE FALSE
COVERAGE-STATEMENT RATE AND
THE FALSE DISCOVERY RATE

In this section we express the FDR and the directional FDR
(Benjamini, Hochberg, and Kling 1993) as the FCR of selec-
tive Cls. This way, we are able to prove the validity of the BH
procedure as a corollary of Theorem 3. More important, we use
this same argument to prove that the BH procedure offers direc-
tional FDR control.

6.1 The BH Procedure Controls the False
Discovery Rate

Fori=1,...,m, let P; be a p value for testing H? 10; € (ﬁ‘)?
versus the alternative hypothesis 0; € R — (?*)([). Thus for each
O<a<l, Pr()ye(ﬁ)Q(P; <) <a.
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P = (Py, P2, ..., Py) is used to define selective Cls. The se-
lection criterion, S(P), is given by the level-¢ BH procedure.
For each i € S(P), the 1 — « CI constructed is
R—@) ifP<a
R if P, > «.
In this setting the test statistic is the p value and not the parame-
ter estimator, but the Cl in (20) remains a valid, albeit somewhat
wasteful, marginal CI. Furthermore, it is easy to verify that this
selective CI procedure is concordant in P.

The next step is to apply a level-g FCR adjustment to the
selective Cls. Then, according to Theorem 3, if the components
of P are positive regression dependent on any subset, FCR < g.

Asalli € S(P) have P; < R(’;’I"’, applying the FCR adjustment
implies that all C/;’s constructed are R — (H)?. Theretore, Vg is
the number of i € S(P) for which 6; ¢ (H)?, that is, the number
of true null hypotheses rejected by the BH procedure. Hence
the FCR equals the FDR of the BH procedure, and the latter is
therefore < g.

The preceding result can be improved. The event 6; ¢ CI;(x)
can only occur for 6 € (%)?. Therefore, we can alter the sum-
mation in the proof of Theorem 3 from summation over
i=1,...,m to summation over the myg true null hypotheses.
This also means that positive regression dependent on any sub-
set is no longer needed, because positive regression dependent
on the subset of true null hypotheses is sufficient. The foregoing
is an alternative proof to the result of Benjamini and Yekutieli
(2001).

Cli(@) = { 20)

Corollary 2. If P is PRDS on the subset of p values corre-
sponding to the true null hypotheses, then the FDR of the pro-
cedure in BH is less than or equal to myg - g/m.

6.2 Directional False Discovery Rate Control
Under Independence

We now address in much the same way the problem of de-
termining whether the parameter §; = 6; — 0}) is positive or
negative. A discovery is declaring §; to be either positive or
negative, but there is of course the possibility of making no dis-
covery. Making a false statement about the sign of §; is termed
a directional error, or a type Il error. Williams et al. (1999),
Benjamini and Hochberg (2000), and Shafter (2002) all conjec-
tured that the BH procedure can also offer control over type 111
errors. Shaffer (2002) also gave some theoretical support at ex-
treme configurations of the parameters.

To address the problem of directional errors within the FDR
framework, Benjamini et al. (1993) introduced two variants of
directional FDR. In pure directional FDR, the expected pro-
portion of discoveries in which a positive parameter is de-
clared negative or a negative parameter is declared positive.
In mixed directional FDR, the expected proportion of discov-
eries in which a nonnegative parameter is declared negative
or a nonpositive parameter is declared positive. Obviously, the
pure directional FDR is always smaller than the mixed direc-
tional FDR, so the following results on the control of the mixed
directional FDR hold for the pure directional FDR as well.

We assume that the distribution of the parameter estima-
tor D; =T; — 9[.0 increases stochastically with §;, and that
the cdf of D; given §; = 0, F;(D;) is known. The one-sided
p value is P; = | — Fi(D;), and the two-sided p value is
Pi =2 -min(P;, 1 — P;).

Definition 6: The Level-g BH Directional FDR Procedure.

L. Test the set of m two-sided hypotheses with the two-sided
p values using the BH procedure at level ¢.

Let R denote the number of discoveries made.

If Py < ]f)—f’ and D; > 0, then declare §; > 0.

If Py < R4 and D; < 0, then declare §; < 0.

— m

el

Ca

We now define the selective Cls. The selection criterion is the
BH procedure using the m two-sided p values. The marginal Cls
are of the form,

(0, c0) it Pi<a/2
Cli(e) =4 (—oo0,00) fa/2<Pi<|—a/2 2n
(—00,0) ifl—a/2<P.

Applying the level-g FCR adjustment to the foregoing spe-
cific Cls, all of the CI; constructed are either (0, co) for D; > 0
or (—oo, 0) for D; < 0. Hence the FCR equals the mixed di-
rectional FDR of the level-g BH directional FDR procedure.
Therefore, Theorem 1 implies that if the components of D are
independent, then the mixed directional FDR is bounded by g.

Now take a closer look at Cli(w). If §; = 0, then Pr(§; ¢
Cli()) = «, whereas for §; # 0, Pr(6; ¢ Cli(a)) < a/2.
Modifying the summation of i in the proof of Theorem 1 from
summation over all m parameters to separate summation over
the m. indices {i:§; > 0}, the m_ indices {i:§; < 0}, and the
my indices {i: §; = 0}, we get the following.

Corollary 3. If the components of D; are independent, then
the mixed directional FDR of Definition 6 is

my +m_ mo

<gp T L T (1 i '””)
m m n
6.3 Directional False Discovery Rate Control Under
Positive Regression Dependency

We now assume that D is PRDS dependent. This does not
imply that the vector of two-sided p values is PRDS, but it
does imply that any order-preserving transformation of D—in
this case the vector of m one-sided p values—retains the PRDS
property.

Thus, rather than simultaneously testing m two-sided hy-
potheses, we suggest separately testing each vector of m one-
sided hypotheses: (a) Using the m one-sided p values, P;, to
test the m null hypotheses H,Q+ :8; < 0, the number of true null
hypotheses is m + mg; and (b) using the m one-sided p values,
1 — P;, to test the m null hypotheses Hl(-)_ :8; > 0, the number of
true null hypotheses is now m_ + mg. Corollary 2 implies the
following.

Corollary 4. 1f D is PRDS on {D;:§; < 0}, then the mixed
directional FDR of the level-¢ BH procedure of {H,(-H};’_’:] is
less than or equal to W

Corollary 5. 1 D is PRDS on {D;:§; > 0}, then the mixed
directional FDR of the level-¢ BH procedure of {H[(.)_}”’ is

i=1
less than or equal to E#Mﬁ

According to Benjamini and Yekutieli (2001), it is easy to
verify that a given vector of one-sided test statistics is PRDS.
For example, positive correlated multivariate normal test statis-
tics are PRDS. However, it is much harder to show that two-
sided test statistics are PRDS. For example, absolute values of
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positive correlated multivariate normals are not PRDS. The fol-
lowing procedure ensures FDR control for two-sided inference
even if the two-sided test statistics are not PRDS.

Definition 7: The Level-4 Modified BH Procedure for Two-
Sided Inference.

I. Using P;, test {H;H};”:] using the BH procedure at
level ¢/2; let I'™ denote the set of rejected one-sided null
hypotheses.

2. Using | — Py, test {H,Q*};.”:l using the BH procedure at
level ¢/2; let I™ denote the set of rejected one-sided null
hypotheses.

3. Reject the set of null hypotheses, /1 = /T U™,

Let VT, V=, V, R, R—, and R denote the number of false
discoveries and total number of discoveries at stages [, 2,
and 3 of the modified BH procedure. According to Corollaries
4 and 5, and because

y+ 1%

+ E _>EV
7 2B,

Rt R~

we get the following.

Corollary 6. 1f the vector of parameter estimators is PRDS,

then the mixed directional FDR of the modified BH procedure
2-my+my +n_
2m

for two-sided inference is less than or equal to ¢ -

It is easy to verify that Definition 6 is equivalent to simul-
tancously testing all 2 - m one-sided null hypotheses using the
BH procedure at level ¢. This implies that Definition 7 is less
powerful than Definition 6. On the other hand it has the ad-
vantage that the FDR is controlled separately both for both the
positive and the negative differences. This may be a desirable
property in some applications, such as multiple endpoints in
clinical trials or overexpression and underexpression of genes
in microarray analysis.

[t is often argued that in reality, an exact null hypothesis is
ncver true (see Williams et al. 1999); that is, mg = 0, in which
casc Definitions 6 and 7 at level 2 - ¢ have directional FDR < q.

7. DISCUSSION

The term “simultaneous and selective inference” was repeat-
edly used by Yosef Hochberg as a synonym for “multiple com-
parisons” when he delivered the National Science Foundation
regional workshop held at Temple University in the summer
of 2001. Hochberg attributed the concern about selective in-
ference when faced with multiplicity to an unpublished work
by Yosef Putter. Accepting the foregoing point of view, we of-
fer formulation and procedures that address this concern while
giving up on simultaneous inference. We argue that in many sit-
uations, the selection effect is the more pressing reason why the
marginal level of multiple Cls should be adjusted.

Yet this is certainly not always the case. Simultaneous cover-
age is essential if one wants to be able to, for example, consider
functions of all of the parameters. Simultaneous coverage is
also needed when an action is to be taken based on the value
of all of the parameters. Thus comparing primary endpoints be-
tween two treatments in a clinical trial is likely to involve the
inspection of all of them, whether they are significantly differ-
ent or not. This is a clear situation where simultaneous cover-
age is needed. Looking at a list of secondary endpoints, it is
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more likely that only significant differences will be relevant.
Here the selection of the improved endpoints may be followed
by FCR-adjusted ClIs, to assess the size of the improvement.

The offering of tools for selective inference allows re-
searchers to judge whether they need simultaneous or selective
Cls and choose accordingly. As an example of the confusion
that may otherwise arise, let us return in more detail to the study
of the failure of preventive hormone therapy in postmenopausal
women, as mentioned in Section 1. There were three prese-
lected major outcomes in this study: breast cancer (primary
adverse outcome), coronary heart disease (primary outcome),
and an index of global outcomes. There were seven other ma-
jor outcomes, other related outcomes, and composite outcomes
(e.g., total cancer). The authors defended using the unadjusted
intervals for the three major endpoints by emphasizing that they
were designated to serve as such in the monitoring plan. Thus
the revealed concern of the researchers is on the effect of se-
lection, not about simultaneous coverage, because preselection
does not ensure simultaneous coverage. The foregoing justifi-
cation for the choice is reiterated in the editorial. If that is the
case for the primary outcomes, then it is only natural to assume
that the researchers would be satisfied with average coverage
for the other outcomes as well. Nevertheless, the researchers
did state that the reason why they should report the Bonferroni
intervals is because the marginal ones fail to offer simultaneous
coverage.

If the researchers could have stated that they are only con-
cerned about the selection effect, then their choice as to what
set of intervals to emphasize would have been almost right. For
the three preselected parameters, the marginal intervals are ap-
propriate. They also reported ¢/l intervals for the other (major)
outcomes, so the unadjusted intervals give the right coverage.
However, they did emphasize significant findings in their dis-
cussion, suggesting that using FCR-adjusted intervals is even
more appropriate. Using the selective procedure of this article,
they should have reported the | — .05 -5/7 level Cls. Although
these Cls are always wider than the marginal intervals, they
are closer to the marginal ones than to the Bonferroni-adjusted
ones. In retrospect, the researchers were justified in hesitating to
use the simultaneous CIs. It may even be argued that although
protection against the effect of selection is sufficient for the
other outcomes, simultaneous coverage may be needed for the
three primary outcomes, one of which is an adverse outcome,
because the decision from the trial will ultimately be taken on
observing them jointly.

Oftering control of FCR rather than simultaneous coverage
may run the risk of being misused where stricter control is more
appropriate. We do not believe that the response to such a risk
should be to always insist on simultaneous coverage as a pro-
tection. The danger of such overprotection is that even careful
scientists will refrain from following it and use no protection
at all, as is currently the case. The decisions as to what statisti-
cal criterion best fits the actual problem are admittedly difficult,
and we hope that many statisticians will participate in shaping
them and will not leave them solely to the users. Similar partic-
ipation in designing strategies regarding multiple inference in
clinical trials has been going on for years, with very productive
results.

Here we suggest a modest first step. A practical distinction
between situations where simultaneous coverage is needed and
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those where selective Cls suffice lies in how the list of uns-
elected parameters is treated. If the identity of the unselected
parameters is ignored, not reported, or even set aside in a web-
site, then it is unlikely that simultaneous coverage is needed.
These situations indicate that selective coverage should offer
sufficient control. In microarray analysis, for example, when
searching for those few tens of genes that are differentially ex-
pressed among tens of thousands of genes, no one cares about
the identity of the undiscovered genes. Nor is the situation dif-
ferent in the QTL analysis discussed earlier. In these cases, re-
porting the FCR-adjusted selective Cls should go a long way
toward addressing the issue of multiplicity. It is quite safe to say
that when the size of the problem increases into the hundreds,
it is unlikely that the values of all of the parameters are needed
for the decision making. Although one can find exceptions to
the foregoing rule of thumb, it is a reasonable guideline.

Returning to hypothesis testing, some debate has taken place
between those advocating the FDR concept and those advocat-
ing the pFDR. In the latter, the expectation of the proportion
of false discoveries is conditioned on having made some dis-
covery. The pFDR concept, when translated into Cls, is equiva-
lent to the conditional coverage property discussed in Section {.
As shown in Examples 1 and 2, it is impossible to ensure such
conditional coverage with either an unadjusted procedure or
Bonferroni-selected-Bonferroni-adjusted intervals. In contrast,
the FCR that captures the FDR concept for selected Cls can
(and should) be controlled. This is a strong argument in favor
of using the original FDR. Nevertheless, when m is large, and
the proportion of parameters for which Cls are constructed is
away from 0, the two concepts are the same, so the Bayesian
interpretation offered by Storey (2002) to the pFDR remains
relevant to the FDR. When these conditions do not necessarily
hold, the FDR concept is the relevant one.

Finally, the problem of inference on the selected set is not
unique to frequentist intervals. We believe that if Bayesian-
credible Cls are set for all parameters, but only a handtul of
interesting parameters are selected for reporting, say the ones
with posterior modes furthest away from 0O, then the current
practice of Bayesians to ignore multiplicity is questionable.
This discussion removes us far away from our original purpose,
and we merely raise it as a question.

[Received October 2002. Revised May 2004.]
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Comment

In this offering, Benjamini and Yekutieli introduce a new er-
ror concept for the construction of multiple confidence intervals
(Cls), which they call false coverage-statement rate (FCR) con-
trol. FCR is the interval-estimation counterpart to the false dis-
covery rate (FDR) concept for muitiple hypothesis tests. When
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a great many tests are to be done, the FDR (or some alter-
nate form, such as the pFDR mentioned in sec. 7) represents
a promising alternative between comparisonwise error (CWE)
protection, often considered to be too liberal, and familywise
error (FWE) protection, often considered to be too conserv-
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ative. Such compromises are needed, especially in situations
where there are literally thousands of tests to be performed, as
in genomics and image processing applications (see, e.g., Efron
2004, combining FDR and empirical Bayes ideas).

The duality between FCR and FDR is in itself an adequate
motivation to study FCR (in some form). Unfortunately, the au-
thors attempt to motivate FCR as a cure for selective reporting,
the practice of performing many hypothesis tests and then re-
porting only those that are statistically significant. The authors
allege that this is common practice and provide what they con-
sider to be two examples. Without reducing the discussion to
nitpicking, and based only on the abstracts of those two ar-
ticles, T do not believe there is gross abuse in either case. In
fact, the second article (Rossouw et al. 2002), does not seem
to be an example of selective reporting at all, as those authors
report several Cls for hazard ratios that include I. An accom-
plished colleague of mine (Robert Best, Professor and Direc-
tor of the Division of Genetics in South Carolina’s Department
of Obstetrics and Gynecology) has stated of sclective reporting
that “I don’t believe any researcher worth their salt would do
that, and I am reasonably confident that it is not common prac-
tice.” My own consulting background is primarily with ecolog-
ical and environmental scientists, who are very aware (at times
too much s0) of multiple-testing issues.

Not only have the authors not made a convincing argument
that sclective reporting abuses are commonplace, but it is also
questionable whether FCR control as defined here would im-
prove the situation. The error rate under control using a g-FCR
procedure as defined by the authors is not the error rate that one
would really want to control in a formalized selective inference.
According to the authors’ definition 2, FCR = E1(Q¢y) for

VC//RC/ if RC[ >0

0 otherwise,

Qcr:= {

Juliet Popper SHAFFER
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where R¢y is the number of reported Cls and V¢ is the num-
ber of reported Cls that do not include their respective para-
meters. Under this definition, a procedure that never reports
any Cls achieves a perfect FCR score. More seriously, a pro-
cedure that rarely reports Cls could have a rather high error rate
among the reported Cls and still achieve FCR < ¢ for speci-
fied ¢. If selective inference is to be done at all, perhaps two
error rates should be studied (after all, these procedures are in-
herently two-stage procedures): (1) the rate of Cls falsely con-
structed, Er(Rey/m|6 = 0), and (2) among those Cls correctly
constructed (i.e., having 6 s 0), the proportion that do not in-
clude 6.

My own preference, however, is not to invent new procedures
to encourage researchers’ bad habits. Researchers should esti-
mate meaningful quantities, and report objective measures of
accuracy for these quantities. Of the articles that the authors
discuss, it is at least a little encouraging that both provided in-
terval estimates for some of the tested quantities; this shows
that the readership of these journals is at least thinking about
effect sizes instead of just statistical significance. The next step
would be to provide interval estimates for a/l of the examined
parameters, even those that are not statistically significant; the
Roussouw et al. (2002) abstract does this. After all, a CI of
(.99, 1.01) for (say) an odds ratio tells a very different story
than the CI (.50, 1.50). Whether these Cls should be simulta-
neous or if some other correction for “multiple looks” should
be made will depend on the setting, but we will not decide that
here. Even the most famous statisticians vary widely in their
attitudes about this.

ADDITIONAL REFERENCE
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Comment

1. INTRODUCTION

Staltistical tests concentrate on specific values of a parameter,
whereas confidence intervals (Cls) treat all values equally. This
leads to different issues in testing and interval estimation even
though they are closely related. The article by Benjamini and
Yekutieli (BY) offers a new approach to that relationship.

If individual | — @ confidence intervals are calculated for
all parameters, then the coverage probability of each interval
is | — «, by definition. As BY point out, however, often con-
fidence intervals are calculated only for selected parameters. If
the selection is unrelated to the data, the coverage probabilities
for the selected intervals are unaffected. Usually, however, the
parameters are selected based on the results of a preliminary

Juliet Popper Shaffer is Senior Lecturer Emerita, Department of Statistics,
University of California, Berkeley, CA 94720 (E-mail: shaffer@stat.berkeley.
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test. In that case, the coverage probabilities conditional on se-
lection may be very different from the nominal | — . (BY use
the symbol ¢ rather than «; the more familiar « is used here.)
BY give examples of the common practice of testing mul-
tiple hypotheses, but calculating Cls only for parameters that
differ significantly from 0 at some specified (single or multi-
ple) level o according to some test procedure. In that case it is
well known that when the true parameter value is close to 0,
the resulting CI has coverage probability less than the nominal
probability | — « (Olshen 1973; Scheffé 1977), or noncover-
age probability greater than «. For intervals of fixed size, as
in BY’s examples, the noncovering Cls are likely to contain
values more different from 0 than the true value. For intervals
of randomly varying sizes, as in the case of 7-test—derived Cls,
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the noncovering Cls are also likely to be shorter than the ex-
pected size. These problems can obviously lead to distortions
in decision making that depends on the assumed parameter val-
ues. When parameter values are sufficiently far from O to lead
to almost-certain rejection of the null hypothesis, the Cls will
have approximately the correct nominal coverage. In between,
the coverage probability can be greater than the nominal, as il-
lustrated in BY’s example 1.

As BY point out, there is no way of correcting for these con-
ditional CI distortions, because the amount and direction de-
pend on the unknown true parameter values. The conditional
noncoverage probabilities, of course, equal 1 minus the condi-
tional coverage probabilities. BY propose consideration of the
noncoverage probabilities rather than the coverage probabili-
ties and of the marginal rather than the conditional noncover-
age probabilities of the selected parameter intervals, by which
they mean the joint probability of at least one parameter being
selected and the noncoverage probabilities of the CIs. BY call
the expected proportion of noncovering intervals, or the average
joint noncoverage probability, the false coverage rate (FCR),
because these intervals cover the false but not the true parame-
ter values.

There are many issues related to the type of error control ap-
propriate in testing and in confidence estimation, and whether
the approaches should be consistent in the two areas. The test-
ing issues have been discussed extensively, with less discussion
in the confidence area, as BY note. The comments here are di-
rected not to these issues, but rather to two other issues: (a) the
interpretation of these intervals and (b) their utility given a dif-
ferent type of selection.

2. INTERPRETATION OF BY-PROPOSED
CONFIDENCE INTERVALS

To examine the properties of the BY CI procedure, it is il-
luminating to consider relation between the BY’s examples
| and 3 of marginal ClIs for 200 selected parameters, and the
conditional CI of a single selected parameter.

Consider BY’s example 1. They consider 200 estimates of a
parameter € based on independent test statistics each distrib-
uted N(&, 1). Five simulations use five different values of 8: 0,
5,1, 2, and 4, with 6 constant within each simulation. Mar-
ginal confidence interval coverage proportions (example 1) and
noncoverage proportions (example 3) are given for parameters
selected by individual normal-theory tests, each at @ = .05. The
latter are the FCR values for this procedure for constructing in-
dividual 1 — ¢ Cls, ignoring multiplicity. These values are O,
.60, .84, .95, and .97 for coverage and 1.0, .40, .16, .05, and .03
for noncoverage. (Note that the latter values are one minus the
former values, to two decimal places, in this application.)

Suppose now that a single test statistic distributed N(6, 1) is
available, and that a 1 — « CI is constructed only if the asso-
ciated test leads to rejection at level .05. Assume that the true
parameter value is either 0, .5, 1, 2, or 4, as in BY’s example.
Then the conditional probabilities of CI coverage and noncov-
erage are identical, to two decimal places, to the values given
by BY when the number of tests m = 200.

The reason for the correspondence is that if 200 independent
individual level-a tests are conducted, the probability that at
least one parameter is selected (i.e., one test value is significant)

83

when @ = 0is 1 —.952% = 999965, and it is higher for nonzero
values of 6. Thus in the reported simulations in example I, se-
lection is a virtual certainty. In that case the conditional non-
coverage probability and the marginal noncoverage probability
are equal. Because all of the parameter values are the same,
this is the probability that a single test is significant, explaining
the correspondence with the conditional case for m = 1. Yet for
m =1, the FCR must be <.05, according to BY’s results.

The explanation for the difference between the conditional
CI noncoverage and the marginal noncoverage (FCR) for
m = 1 points up some problematic aspects of the FCR concept.
According to BY’s definition of the FCR, the noncoverage of
selected parameters is O if no parameters are selected. Thus,
for example, for § = 0, the marginal noncoverage probability
(FCR) is (.95)(0) + (.05)(1) = .05. For m = [, the marginal
probabilities of interval noncoverage for 8 =0, .5, I, 2, and 4
are .05, .03, .03, .03, and .03. For @ = 5 and 6, they both are .05,
and they are also .05 for all larger values of 6, because 6 would
be selected with probability close to 1 for these values, and
the conditional and unconditional probabilities of noncoverage
would be equal to two decima) places.

The change from considering conditional noncoverage to
marginal noncoverage, treating no selections as zero noncover-
age, is an ingenious idea—the heart of the article—and clearly
related to the similar treatment of the probability of rejecting
no hypotheses under the FDR criterion. It is also a somewhat
problematic aspect of the procedure. BY point out that it is ap-
propriate to treat the noncoverage probability as O when a pa-
rameter is not selected, because no CI is constructed. However,
suppose that we look at the coverage probability for unselected
parameters. It would seem just as reasonable to treat the cov-
erage probability as 0 when no CI is constructed, but if it is so
treated, then the marginal coverage probability is not 1 minus
the marginal noncoverage probability. For m = 1, these mar-
ginal coverage probabilities for 8 =0, .5, 1,2, 4,5, and 6 are 0,
.05, .14, .49, .95, .95, and .95.

In fact, the coverage probability for unsclected parame-
ters must be implicitly treated as unity for the two marginal
probabilities to be consistent. So the BY criterion represents
avoidence of error, but not success. It is hard to think in this
way; note the comment of Storey, Taylor, and Siegmund (2004,
p. 1) that “this is useful in exploratory analyses, where we are
more concerned with having mostly true findings among sev-
eral, rather than guarding against one or more false-positive
results.”

If the probability of no selection is very small, then this dif-
ficulty in interpretation is not a problem. In that case, marginal
and conditional probabilities are approximately cqual. This is
the case in problems involving large numbers of tests, where it
can be safely assumed that many hypotheses are false, as in mi-
croarray and wavelet analyses. Analyses in those areas almost
always result in some rejections, no matter which multiple-
testing procedures are used. These are the areas in which this
article makes a real contribution. A number of adaptive pro-
cedures have been proposed based on the FDR and the pFDR
(Storey 2002), which is approximately equivalent to the FDR
criterion under these circumstances. (For recent work on adap-
tive procedures, see Black 2004; Cox and Wong 2004; Storey
et al. 2004.)
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3. OTHER TYPES OF SELECTION

Sometimes, usually in studies testing a small number of hy-
potheses, there is an interest in Cls for the accepted hypotheses,
or separately for the accepted and rejected hypotheses. There
has been a concern, especially in the social sciences, with the
inadequate power of most research, stemming from the work of
Cohen (1962), who was the first to estimate the typical power of
psychological research studies. In these cases, often the magni-
tude of a departure from the null value is not of special interest,
as long as the null is rejected, and Cls are calculated for ac-
cepted hypotheses to give an indication of the range of plausi-
ble parameter values, in view of the presumed low power due to
practical constraints. Given acceptance, parameter values close
to the null are more likely to be inctuded in the interval than
when the null hypothesis is rejected, and the Cls have condi-
tional coverage probabilities greater than the nominal probabil-
ity I — « or noncoverage probabilities less than «, whereas for
parameter values far from the null, the conditional confidence
coverage probabilities approach 0 and noncoverage probabil-
ities approach 1. For m = I, with the test statistic distributed
N(@, 1) and for 6 =0, .5, 1, 2, 4, 5, and 6, when Cls are cal-
culated only if the hypothesis is accepted, the conditional non-
coverage probabilitics arc 0, .02, .03, .05, 1, I, and 1, whereas
the marginal noncoverage probabilities are 0, .02, .02, .02, .02,
0, and 0. These values suggest that the FCR approach may be
less usetul for parameters selected when hypotheses are not re-
jected, because the Cls may be too wide for useful inferences.

4. CONCLUSIONS

Although it is a good idca for researchers to be aware of
problems with conditional coverage of Cls, there is not much

Ajit C. TAMHANE
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that can be done to address them. Because the true values of
the relevant parameters are unknown, there is no way of ad-
justing for the conditional coverage probabilities of the as-
sociated Cls, given parameters selected on the basis of the
data. What BY show is that the joint probability of some pa-
rameters being selected and parameter noncoverage rates can
be controlled at a level smaller than a specified «, for inde-
pendent tests and some types of positively dependent tests,
regardless of the selection method used. A simple method
of guaranteeing this maximum noncoverage probability, the
FCR, is to test the selected hypotheses at level Ra/m, where
R is the number selected and m is the total number, al-
though improvements arc possible vsing adaptive methods.
This approach is useful when there are large numbers of
hypotheses and many hypotheses are expected to be false,
with Cls desired for rejected hypotheses. The article makes
a valuable contribution to analysis in such situations. The
methodology appears to be less useful with small numbers
of hypotheses and in studies with low power to reject any
hypotheses.
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Comment

I congratulate the authors for providing a solution to the vex-
ing problem of constructing multiple confidence intervals (Cls)
with controlled error rate for parameters selected by a multiple-
testing procedure. There are a number of new important ideas in
the article, a thorough discussion of which would require much
additional work. I am sure that there will be many follow-up
articles that will explore these ideas in detail; here I restrict my
comments to only a few basic points.

The authors begin by demonstrating that unadjusted and
Bonferroni-adjusted procedures do not ensure prescribed con-
ditional coverage probability if Cls are computed only for those
means for which the null hypothesis that the mean equals 0 is
rejected (the so-called “discoveries”). For each such discovery,
the set of “acceptable” values of the mean is used as its CI,

Ajit C. Tambane is Professor and Chairman, Department of Industiial Engi-
neering and Management Sciences (IE/MS) and Professor of Statistics, North-
western University, Evanston, 1. 60208 (E-mail: ¢jit@icms.northwestern.edu).
The author thanks Dingxi Qiu, a graduate student in the IE/MS Department, for
providing computational help and useful comments.

which is theretore dual to the corresponding significance test; in
particular, it excludes 0. This obviously makes the conditional
coverage probability equal to O when the null hypothesis holds.
For small nonzero means, the conditional coverage probability
still falls below the nominal confidence level. One reason for
this phenomenon is that the estimates of the selected means are
highly biased (except when the true mean is 0, in which case
the estimate is unbiased). As a result, the intervals are incor-
rectly centered at these biased estimates. Would it be possible
to use shrinkage estimates instead, although the resulting inter-
vals will not be duals of the corresponding significance tests?
To give an idea of the bias involved in selected means, con-
sider independent 7; ~ N(@;, 1), j= 1,2, ..., m. A “nominal”
(I — o) marginal or simultancous CI, T; £+ ¢, for 6; is com-
puted conditional on an a-level test of 6; = 0 rejecting when
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Table 1. Bias in T; Conditional on IT;| > ¢ fora = .05

4 Unadjusted test Bonferroni-adjusted test
5 1.4927 3.2798

1.0 1.4503 2.9680

2.0 7722 2.0778

4.0 .0509 .5961

NOTE: The unadjusted test uses ¢ = Zg75 = 1.96, whereas the Bonferroni-adjusted test uses
¢ = Zgggars = 3.6623.

|Tj| > c¢. Here ¢ = Z| _y2 Tor an unadjusted test coupled with a
marginal Cl and ¢ = Z,_q/2, for the Bonferroni-adjusted test
coupled with a simultaneous CI. Assume that §; = ¢ for all
j=1,2,...,m. It is easily shown that the conditional expec-
tation of 7}, conditioned on |Tj| > ¢, is given by

0— [ top(t—0)dt
DB —c)—DP(—0 —0¢)

$@ —c)— (-0 —c)
PO —c¢)+ D(—0—¢)

E(TIIT;| > ¢) =

=0+

where ¢ and @ are the pdf and cdf of the standard normal dis-
tribution. The second term gives the bias, which has the same
sign as 0. Table 1 gives the bias values for selected 8 for both
unadjusted and Bonferroni-adjusted procedures when o = .05
and m = 200. We see that the bias is quite large for small val-
ues of 6 and decreases with 6.

Some readers may be confused, as indeed I was, by the fact
that the estimated FCRs for the unadjusted procedure in ex-
ample 3 equal exactly | minus the corresponding conditional
coverage probabilities from example 1 (in particular, the FCR
equals 1 when 6 = 0), whereas this relation does not hold (in
particular, the FCR does not equal I, but equals .05 when 8 =0)
for the Bonferroni-adjusted procedure in example 4. The reason
for this is that the ratio Vi /Ry is defined as O when Ry = 0;
hence the FCR can be expressed as

Var
FerR=E( 24 ’RC[ =~ 0)P(Rer > 0).
Rey
If Rey > 0 when 6 = 0, then Ve /Ry = | for both the unad-

justed and Bonferroni-adjusted procedures. Therefore, FCR =
P(Rcy > 0). For the unadjusted procedure,

P(Re;>0)=1—(95%0~1,

and hence FCR ~ 1. In contrast, for the Bonferroni-adjusted

Peter H. WESTFALL

85

procedure,
PRy > 0) =1 — (.99975)20 =~ 03,

and hence FCR = .05.

The foregoing explanation demonstrates that the FCR is con-
trolled for the Bonferroni-adjusted procedure at the .05 level
even for 0 = 0, because ClIs are computed in only 5% of the
cases, although all of them miss the true means. To me, this
does not provide the necessary security about the accuracy of
the CIs, and suggests that the positive FCR,

Ver
PFCR=E ——[RC,>0 ,
Rey

may be a more appropriate criterion. I recognize, as the authors
note, that the pFCR is equivalent to the conditional coverage
probability and cannot be controlled for all parameter values.
However, there are other criteria that could be used instead. In
summary, I think that the debate on the choice between

FDR pPFDR
FCR pPFCR

versus

is far from over.

As an aside, 1 note that it is not nccessary to cstimate the
quantities in examples 1-4 by simulation, because the follow-
ing exact expressions for them can be readily derived. First, the
conditional coverage probability is given by
®[minfc, 6 — ¢)] — P(—c¢)

PO —c)+P(—0—0)

PO €lTj—c, T+ clliTjl > ¢) =
Next, the FCR is given by
Ver
FCR=E —}RC, = 0)P(Rey > 0)
Rey
=PO¢T)—c, T+ clllTil > )
x {1 = [P{=c<Tj<c}I"}

3 {1 ~ @Imin(c, 0 — )] = d(=0) }
N PO — )+ D(—0 —0)

X AL = [®(=0 +c) — P(—0 — )"}

This last expression holds only when 6; = 0 for all j =
1,2,...,m.

In closing, 1 congratulate the authors once again for a tho-
ught-provoking article, and I thank the editor for giving me an
opportunity for contributing to its discussion.

Comment

1. INTRODUCTION

Benjamini and Yekutieli (BY) solve important problems
in false discovery rate—controlling multiple-comparison proce-
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(E-mail: peterwestfall@ttu. edu).

dures (FDRMCPs), thus increasing their utility and applica-
bility. Familywise error rate—controlling multiple-comparison
procedures (FWEMCPs) have historically been interval-based
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as often as testing-based. FDRMCPs, on the other hand, have
been exclusively testing-based; BY fill an important gap by pro-
viding confidence intervals (Cls).

Mathematical development of FDRMCPs is often more dif-
ficult than that of FWEMCPs; thus it is surprising that prob-
lems still unsolved in FWEMCPs—control of directional errors
with stepwise FWEMCPs and CI correspondence with stepwise
testing-based FWEMCPs—should have such a simple solution
in the false discovery rate (FDR) case. | think that BY’s re-
sults concerning directional FDR control are both interesting
and useful. 1 also think the false coverage-statement rate (FCR)
Cls are interesting, but reserve judgment as to their utility. My
first comments concern optimality properties of BY’s direc-
tional determinations. 1 then offer critiques of FCR intervals
in terms of practical interpretations, empirical and theoretical
comparisons with interval-based FWEMCPs, Bayesian corre-
spondence, and regression to the mean after selection.

2. DECISION THEORY: CLASSIFYING DIRECTIONS

FDRMCPs adapt to underlying structure of the data; this
is clearly their strength. I now show that the directional FDR
adapts to the data to produce a nearly optimal decision rule for
classifying signs of the parameters.

2.1 Approximate Critical Values for Test Statistics

Suppose, as in BY’s examples, that 7;|6; ~ N(g;, 1). If two-
sided tests are performed for each hypothesis, then the FDR
critical value for Hy is Zj—jg/om. Further, if the 6; are a ran-
dom sample from a distribution Fy, then each 7j is (marginally)
a sample from the convolution distribution Fyig; for exam-
ple, if Iy = N(0,07), then Fryp = N(0,07 + 1). Assum-
ing that 7;|0; arc independent, 77, . ..
from Fryg.

As noted by Genovese and Wasserman (2002), the critical
threshold ¢* for p values using FDR is asymptotically the cross-
ing point of two cumulative p value distributions; translating
this theory from p values to Z values gives the critical values
of BY’s FCR procedure. As m — 00, the cumulative distribu-
tion of the critical values Z)_;,/2,, converges deterministically
to Frer(z) =0, 2{1 — ®(2)} > g and to | — 2{1 — ®(2)}/qg
otherwise. By the Glivenko—Cantelli theorem, the cdf of |7}
converges a.s. to Firj(z) =1 — 2{1 — ®(zy/1 — p?)}, where
pl = o()z/(l + a(,)z). The FCR critical value is obtained by solv-
ing Frcr(z) = Fip(2) for Zpcg. Using 1 — ®(z) = ¢(2)/z and
In(q) ~ {2 (Zy—42)/ Z1—¢2}, we have

, Ty is a random sample

Zier = (U2 p +10(27, )
+1n(r/2) +In(1 — pH). (1)

(When p? = .5, this approximation yields Zrcg ~ 3.15 for
¢ = .05; the actual value is Zrcg = 3.29.) Thus Zrcr adapts
to p? in a very natural way; with smaller p?, Tj is not as reliable
an estimate of §;, and more caution is needed when determin-
ing 0;’s sign, thereby justifying the larger critical value Zpcg.
What is especially attractive about Zpcg 1$ that p2 need not be
prespecificd; it is determined implicitly from the data.
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2.2 Decision Theory Correspondence

Recently, Shaffer (1999) and Lewis and Thayer (2004;
hereafter denoted by LT) developed decision-theoretic multiple-
comparision procedures and showed that FDRMCPs corre-
spond in various ways. BY find that directional errors are
controlled using FDR methods; directional determination is
fundamentally a problem in decision theory. This section shows
that BY’s directional determination corresponds well with the
optimal procedure of LT.

Consider again 7;|6; ~ N(6;, 1), with 6; ~ N(0, 0(3), with the
goal of classifying each 6; as either above 0 (AZ), below 0 (BZ),
or not significantly different from 0 (NZ). LT suggested loss
functions Laz(8) = 1, for & < 0 and 0 otherwise; Lgz(0) =1
for 8 > 0 and 0 otherwise; and Lyz(6) = A for 6 £ 0 and 0
otherwise. In the framework of Waller and Duncan (1969),
1/A is the “k ratio” measuring the severity of type I error rel-
ative to type II error. The resulting optimal decision rule clas-
sifies 6; as AZ if T; > (1/0)Z -4, as BZif Ty < —(1/p)Zi_4,
and as NZ otherwise. Comparing (1) with the optimal squared
critical point Z2 5 = (1/p?)Z7_, shows that BY s procedure is
nearly optimal. The implied k-ratio can be determined as a func-
tion of p? by equating (1/p)Z)_4 to Zrcr and solving for 1/A.
For p? = 1/6, 1/3, 1/2,2/3, and 5/6, the k-ratios implicit in
BY’s procedure are 126, 113, 100, 86, and 70. It is reassuring
that the implied k-ratios of BY’s procedure are necar the com-
monly used default value 100.

3. PRACTICAL INTERPRETATION OF THE FALSE
COVERAGE-STATEMENT RATE CRITERION

Objecting to Cls is like objecting to motherhood and apple
pie. However, when the goal is to identify a small percentage
(of a large m) of important effects for further experimentation,
ClIs can be unnecessary baggage. Cls arec more interesting with
small m where investigators carefully scrutinize the values of a
few parameters, such as effects on multiple endpoints in a clin-
ical trial. But in small m cases, the FCR criterion is difficult to
interpret.

Suppose that a client has a study in which five such Cls are
selected and constructed using definition 1 of BY, with ¢ = .05.
The client asks whether the inferences of the selected intervals
are correct. To answer, the statistician asks the client to imagine
the following:

[. Her study is one of a sequence Sy, Sz, 83, S4, Ss5,... of
studies; hers is S;.

2. Each study results in a number of intervals that are se-
lected for scrutiny, for example, 10, 0, 0,4, 23, ... in stud-
ies S1, 82, 83, 84, Ss, ... (five are selected in S;).

3. In cach study, there will be a certain number of inter-
vals that do not contain their respective parameter values,
say 1,0,0,0,4,...; these numbers are unknown.

4. The FCR, g = .05, that applics to the client’s study S;,
is an upper bound on the long-run average of the val-
ues 1/10,0,0,0,4/23,....

At this stage, the client is undoubtedly baffled as to what all
this has to do with her study! Interval-based FWEMCPs more
clearly pertain to the client’s study: all intervals in her study are
correct unless her study is statistically rare.
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4. COMPARING FALSE COVERAGE-STATEMENT
RATE WITH INTERVAL-BASED FAMILYWISE ERROR
RATE-CONTROLLING MULTIPLE COMPARISON
PROCEDURES: A STUDY WITH
ELECTROENCEPHALOGRAM FUNCTIONAL DATA

In this section I compare FCR with familywise error (FWE)
intervals, offering two more critiques in the context of a real
example: (1) intervals that account for correlations are readily
available for FWE control, not so for FCR control, and (2) FCR
inferences can possibly mislead compared to FWE inferences,
even with very large m.

An experiment by Dr. Rockefeller Young of the Texas Tech
University Health Sciences Center involved locating the por-
tion of the brain responsible for distinguishing color. The five
treatments were green light at 60%, 80%, and 100% inten-
sities and red light at 90% and 100% intensities. The goal
was to compare red100% versus greenl00%; comparisons be-
tween intensities were needed to establish the sensitivity of
the experiment. Electroencephalogram (EEG) data were col-
lected using 43 time series responses (~2 milliseconds apart)
with electrodes at 62 scalp locations. The experiment was re-
peated 70 times per treatment group, yielding 350 independent
response vectors, Y, i = 1,...,5, j=1,...,70, each con-
taining 43 x 62 = 2,666 spatiotemporal EEG responses (data
provided on request). A model is Y; = u; + &;;, where the
g;; are iid with mean 0 and unstructured (2,666 x 2,666)-di-
mensional covariance matrix X. Simultaneous Cls for all
components of u; — py, | <i < i <5, entail m = 10 x
2,606 = 26,660 comparisons. FWE-controlling methods ac-
counting for spatiotemporal correlations as well as nonnor-
mal distributional characteristics are readily available using
the “maxT” method (e.g., Dudoit, Shaffer, and Boldrick 2003).
The single-step maxT method adjusts p values for testing H,
using p; = P(max|<;<26,660 7j = ;/|Hp), calculated where the
T} are absolute vaJues of ANOVA-based test statistics, and us-
ing bootstrap sampling of residual vectors &; = Y; — fi; to
estimate the p;. Critical values for simuitaneous Cls follow
simply as /99T = min(y: p < q); using these, we have the
approximate 100(1 — ¢)% simultaneous intervals ftijx — i =
tBOOTs e.(fiix — i) forall i, 7 and 1 < k < 2,666. Westfall
and Young (1993, pp. 125-126) provided details for these Cls
and directional error control. Troendle, Korn, and McShane
(2004) noted that whereas some bootstrap methods fail in high-
dimensional cases, the Westfall-Young method works reason-
ably well.

Using PROC MULTTEST of SAS/STAT, 5997 = 4.53; the
Bonferroni critical valuc is the 1 — .05/(2 x 26,660) quantile of
the 13505 distribution, 52N = 4.85. Thus the bootstrap maxT
method incorporates correlations and is less conservative. For
these data, there are 5,397 FDR significances at ¢ = .05, so the
FCR critical value is the 1 — (5,397/26,660).05/2 quantile of
the #3505 distribution, IPCR = 2.585. Presumably, t%%R would
be reduced if correlation were accommodated.

Figure 1 shows the results of the bootstrap FWE and FCR
simultaneous confidence bands for red100% versus green100%
treatment differences at scalp location 35. The FWE interpre-
tation is clear; all intervals are correct for this study unless the
study itself is unusual. Although the FCR intervals show signifi-
cance for early time points, there is concern that they are errors;
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Figure 1. Estimated red100% versus green100% Differences Over
Time (——) for Scalp Location 35, Along With Simultaneous 95% FCR
Intervals (x’s) and Simultaneous 95% FWE Intervals (+'s), Among
m= 26,660 Inferences.

Figure 2(a) shows that there are strong effects of intensity (here
1ed90% vs. red100%), but the red100% versus green100% dif-
ferences are essentially null [Fig. 2(b)]. Thus it appears that
the appropriate conclusion from this example is obtained using
FWE; FCR is too liberal. Indeed, scientific theory suggests that
there should be no difference in red100% versus greenl00%
(Young, personal communication, 2004).

This example might be considered somewhat unfair, in that
the data should be collapsed over spatiotemporal dimensions,
perhaps using principal components. Nevertheless, the current
climate of data mining, with the increasing use of FDRMCPs
for such applications, makes the example relevant.

5. BAYESIAN CORRESPONDENCES

Methods that have reasonable interpretations from several
perspectives are most likely to be considered useful. Bayesian
correspondences of testing-based FWEMCPs exist and have
been discussed by Jeffreys (1961, pp. 253-255) and Westfall,
Johnson, and Utts (1997), but they require strong prior assump-
tions. Testing-based FDRMCPs have a nice correspondence
with empirical Bayes methods, requiring weaker prior assump-
tions (Efron, Tibshirani, Storey, and Tusher 2001).

Interval-based FWEMCPs have a straightforward Bayesian
connection through improper priors. For instance, in the nor-
mal homoscedastic linear model Y = Xf + &, the pivotal vec-
tor (ﬁ — B)/6 has the same multivariate r-distribution whether
considered from frequentist or {rom improper Baycsian stand-
points; thus the exact FWE-controlling Cls defined by
I (ﬁ o) = {c/ﬁ + IEXACT s.e. (c’ﬁ) have a simple Bayesian

correspondence, P(Lﬁ € I(ﬁ o), for all jIY) =1 — ¢. Fur-
ther details and software (both Bayesian and frequentist) have
been given by Westfall, Tobias, Rom, Wolfinger, and Hochberg
(1999). Unlike FCR CIs, the frequentist confidence statement
is exact without requiring independence or conditions on the ;.
Thus, relative disadvantages of FCR Cls are inexactness and
lack of Bayesian correspondence.

With proper priors, there can be no correspondence, be-
cause the parameter estimates themselves must be shrunk to-
ward the prior mean. Suppose again that 7;6; ~ N(6;, 1), with
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Figure 2. Histograms of t-Statistics for Comparisons at 2,666 Spatiotemporal Locations, With N(0, 1) Overlay. (a) t-statistics comparing red90%

versus red100%. (b) t-statistics comparing red100% versus green100%.

0; ~ N(O, (r(,)z), a proper prior. The need for shrinkage is demon-
strated by 6;|T; ~ N(p2T~, 0?). Figure 3 shows the standardized
pivots sign(7)) x (6; — Tj)/1 and sign(T}) x (6; — p>T)/p for
FDR-selected intervals in 400 simulated studies, each having
m = 2,000 and p? = .5. The former pivot tells us roughly where
we can locate 6; within an FCR interval after FDR selection; the
latter, where we can locate 6; within an empirical Bayes interval
[using 52 = &02/(] + (Ar(f'), where 5{)2 is a method of moments es-
timate] after FDR selection. When 7; > 0, the value of 6; tends
to lie to the left of 75 in the selected FCR intervals; conversely,
when T; < 0, ¢; tends to lie to its right. This is an illustration
of regression to the mean after selection. In contrast, 8; is prop-
erly centered within the selected empirical Bayes intervals, as
shown in Figure 3(b).

Although regression to the mean following selection also
affects FWE-controlling Cls, the problem is more directly rel-
cvant with FCR-controlling Cls, because selection is their pri-
mary motivation.
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6. CONCLUSION

The directional determinations shown by BY are quite useful,
with approximate decision-theoretic optimality. But are their
FCR-controlling intervals viable? For the reasons stated herein,
I am not yet convinced.
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Comment

1. INTRODUCTION

Benjamini and Hochberg’s (1995) promotion of the false dis-
covery rate (FDR) error criterion and the Benjamini—-Hochberg
(BH) testing procedure for controlling FDR, as well as subse-
quent modifications of the BH procedure by these and other
authors, arrived along with the advent of massive datasets re-
sulting from data mining, including those resulting from exper-
iments involving gene expression microarrays, brain imaging,
and so on. As Benjamini and Yekutieli point out, although in
most of the literature adequate attention is routinely given to
multiplicity in testing, the control of multiplicity is commonly
ignored when reporting simultaneous confidence intervals (CIs)
except for special cases, such as the comparisons of all pairs
among a small number of population means.

Most multiple-testing procedures developed over the past
20 years are conducted in a stepwise fashion. As such, it is dif-
ficult to invert or dualize them to analogous simultaneous Cls.
A further complication that arises when inverting the BH pro-
cedure is its control of the FDR rather than the more familiar
familywise error rate.

The inversion of the BH procedure to simultaneous CI error
control was unsuccessfully attempted by Tukey (1995, 1996),
a leading pioneer developer of multiple-comparison proce-
dures. On this basis, the successful inversion of the BH pro-
cedure by Benjamini and Yekutieli is a substantial technical
achievement, as well as an important contribution to scientific
inquiry. In addition, this new procedure for simultaneous Cls
is as easy to implement and understand as the analogous BH
FDR-controlling testing procedure.

The authors’ key insight into developing the inversion is
the segregation of the parameters under consideration into two
groups: those selected for study and those set aside. The ex-
amples that they report in section 1 clearly demonstrate the re-
quirement that in many contexts, analysts should consider and
justify a distinction between selected and unselected parame-
ters. Indeed, it is surprising that this dichotomization apparently
has not been proposed prior to this article. The authors con-
vincingly argue that in situations where simultaneous coverage
is impractical and there are parameters that can be classified
as unselected, the false coverage-statement rate (FCR)-adjusted
control discussed here is strongly preferred over unadjusted in-
tervals.

Burt Holland is Professor of Statistics, Temple University, Philadelphia,
PA 19122 (E-mail: bholland@ temple.edu).

2. SOME HISTORY AND ITS IMPLICATION

Recently, the Institute for Scientific Information (2004) re-
ported that “JASA was the most highly cited journal in the
mathematical sciences in 1991-2001, with 16,457 citations,
more than 50% more than the next most highly cited journals.”
The article by Benjamini and Hochberg (1995) did not appear
in JASA, to which I understand it was initially submitted. If it
had been published in JASA, the application of FDR and the BH
procedure might not have been delayed. In the early 1990s, rel-
atively few statisticians anticipated today’s prevalence of mas-
sive datasets for which familywise error control is impractical.
Initial resistance to the use and control of FDR rather than the
familywise error rate was evidently caused by a concern that ca-
sual investigators would invoke the BH procedure rather than a
familywise error rate controlling procedure to rationalize addi-
tional hypothesis rejections (discoveries) attainable with the BH
procedure.

Figure | plots the total annval number of citations of
Benjamini and Hochberg (1995) in the Science Citation In-
dex and Social Science Citation Index for publications appcar-
ing during the years 1996-2003. Citations in the first several
months of 2004 have exceeded the annual rate attained in 2003.
This figure illustrates an initial resistance to the BH procedure
followed by its eventual widespread approval.

The first discussion of FDR in JASA did not occur until the
article by Efron, Tibshirani, Storey, and Tusher (2001). I believe
that this article gave FDR an imprimatur and respectability that
it did not previously have, and has driven the burgconing use
depicted in Figure 1.

By appearing in JASA, the present article should quickly re-
ceive the attention and dissemination it deserves, and avoid the
delayed recognition and implementation of its dual, the article
by Benjamini and Hochberg (1995).

3. ADDITIONAL NEEDED WORK

Three results in this article discuss conditions for the joint
distribution of the pivotal statistics under which the FCR-ad-
justed selective Cls dualized from the BH procedure may be
used. Theorem | says that in the case of independent statistics,
these confidence intervals control the FCR below a designated
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dex and Social Science Citation Index.

value ¢g. Theorem 4 indicates that if the dependence structure
of the joint distribution is unknown, FCR control is still main-
tained but at a level somewhat higher than the FDR control ¢
of the analogous BH multiple-testing procedure, where the
level increases with the number of parameters under considera-
tion. This may lead to unattractively wide confidence intervals.
In practice, the most useful result is likely to be theorem 3,
which says that under mild additional conditions, FCR control
is maintained below ¢ if the joint distribution of the pivotal
statistics meets the positive regression dependent on a subset
(PRDS) condition. The circumstances in which FCR control
will be used will typically be the same as when FDR control for
multiple testing has become widely accepted—problems with
a large to massive number of simultaneous inferences. Storey
et al. (2004) suggested that the typical joint distribution of the
many pivotal statistics in these situations can be characterized
as weak dependence, a condition that these authors formally
defined. To facilitate comfortable use of FCR control, it is de-
sirable to develop linkages between this weak dependence no-
tion with the PRDS condition. A useful reference for this task
is the article by Sarkar (2002), where the PRDS condition is
discussed in detail.

In general, uscrs of FDR testing methodology should be re-
quired to address two issues before applying it to their investi-
gation:

Yoav BENJAMINI and Daniel YEKUTIELI
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e Justify their choice of the family of m related inferences.

e Clarify why FDR is a more appropriate error control con-
cept than familywise error, based on the definitions of
these criteria.

Instances of misuse of the FDR methodology occasion-

ally arise. Consider, for example, the conclusion of Thissen,
Steinberg, and Kuang (2002):
Given its casy implementation, it is feasible to include the BH procedure
in introductory instruction in inferential statistics, augmenting or replacing
the Bonferroni technique. Students trained with this more powerful technique
should be less likely to use the nearly powerless Bonferroni procedure, or to
eschew correction for multiple comparisons entirely, due to a perceived loss of
power.

Thissen et al. (2002) provided no rationale other than power
for using FDR rather than familywise error as an error criterion.
1f power is the only standard for multiple testing, it follows from
their conclusion that investigators should reject each and every
hypothesis they encounter.

This example illustrates the need to ensure that new enhance-
ments of older procedures be used with adequate care. Along
these lines, it is the responsibility of statisticians to promote
and assure the appropriate use of the FCR-adjusted selective
Cls introduced in this article.

Analogous to advice for determining the family of related pa-
rameters over which the familywise error rate or FDR should be
controlled, Benjamini and Yekutieli give this succinct guideline
for deeming parameters to be unselected: “| parameters that are]
ignored, not reported or even set aside in a website.” To promote
their new methodology, the authors should consider providing
a more expansive set of guidelines to which researchers in any
discipline can refer, comparable with the family choice guide-
lines offered by Westfall and Young (1993).
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Rejoinder

We thank the five discussants for their careful reading
of our article, and for contemplating the ideas expressed
there. We are very grateful for their complimentary and il-
luminating comments, as well as for their thought-provoking
critical ones. Rather than responding to each discussant
separately, we have grouped their concerns into three major
themes.

-
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1. THE EXTENT OF THE SELECTION PROBLEM

Professor Edwards states that the selection problem is not
commonplace in science, and that the proposed criterion
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might encourage such behavior. These are the only statements
made with which we totally disagree. We hope, together with
Edwards and Dr. Best, that the issue of bluntly reporting only
significant results is rare in all branches of science. Neverthe-
less, the methodology of a recent medical article that we stum-
bled on is as follows: The variables, whose number was not
reported, were screened for their effect on time to event, and
only 20 individually significant ones at the .07 level were re-
tained for further analysis. These variables were included in
a survival model and underwent further screening, until three
variables remained in the multivariate model, each significant
at the .05 level (marginally). The abstract of the article merely
reports the estimators and marginal 95% confidence intervals
(CIs) for these three variables, as well as for the individual ef-
fect of six variables that were individually significant at the
.05 level. In summary, this is a clear-cut incidence of abused se-
lective inference. Still, the false coverage-statement rate (FCR)
approach has nothing to offer here, unless the number of vari-
ables originally scanned is disclosed—in which case the infer-
ence addresses the selection effect. Therefore, the offering of
FCR does not encourage “‘bad habits.”

Much more important, commonplace selection is subtler, but
may be as harmful. The results of medical research are mostly
communicated by the abstracts of the articles. This fact is well
recognized by the editors, and in many journals each abstract
is required to be a self-contained summary of the goals, meth-
ods, and results of the reported research. By design, the abstract
carries only selected results from the body of the article. As we
noted in our introduction, the results in the article are usually
not adjusted for simultaneous inference, so when results are se-
Jected for inclusion in the abstract, there may be a strong selec-
tion effect.

The two examples we gave in the article were in the category
of such “selection by highlighting.” In both studies, all Cls ap-
pear in the body of the article. But in the article by Giovannucci
et al. (1995), the abstract communicates CIs for the three signif-
icant findings only, thereby grossly misrepresenting the results
of the study. Adjusting to control the FCR could avoid the pit-
fall, because the results emphasized in the abstract are the ones
making the headlines.

In the article by Rossouw et al. (2002) the abstract includes
most of the findings: three out of three in one family of hypothe-
ses, five out of seven in the other (mostly, but not only, signifi-
cant ones, as correctly noted by Edwards). There was very little
selection in highlighting these outcomes, and the FCR-adjusted
Cls were close to the unadjusted Cls, adapting to the results of
the selection process. Our point is that the researchers were un-
duly worried about the sclection effect in their results, and their
approach of ignoring of the solution offered by simultaneous
inference not only is intuitive, but also can be formally justified
from the FCR perspective.

2. THE INTERPRETATION AND APPROPRIATENESS
OF THE FALSE COVERAGE-STATEMENT
RATE CRITERION

Professors Shaffer, Tamhane, and Westfall indicate apparent
difficulties with the interpretation of FCR when small numbers
of parameters are involved or when the probability of no se-
lection at all is high. In that respect, Shaffer describes our ap-
proach as “treating no selections as zero noncoverage,” from
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which she concludes that we implicitly treat the unselected pa-
rameters as being covered with probability 1. Although we treat
“no selections at all” as we treat “all selected parameters are
covered”—both are equally harmless, it is not the case for the
implication—in the FCR approach we simply ignore the cover-
age of a nonselected parameter, so it is irreclevant whether the
coverage is 0 or 1. The following description may help with
the interpretation: The FCR approach treats “a parameter not
selected” as less harmful than a “parameter selected and not
covered” and more harmful than “a parameter sclected and cov-
ered”; the first does not change the Q¢y at all, whercas the sec-
ond increases it and the third decreases it.

Westfall argues that the falsc discovery rate (FDR) is difficult
to interpret, yet finds it easy to explain simultancous coverage.
It is even easier to explain conditional coverage. Actually, the
FCR (just as the FDR) moves adaptively between the forego-
ing two interpretations. Facing a situation where in almost all
realizations some parameter will be selected, the FCR can be
interpreted as offering conditional coverage (as emphasized by
Shaffer and Tamhane). However, when facing a situation where
“there 1s nothing worth selecting,” it behaves very much like
simultaneous coverage. Moving smoothly between these two
extremes can be perceived as follows: If any CI constructed
involves further cost to the experimenter (say, for a follow-up
study), then each experiment ends with a proportion of wasted
money. The experimenter has an interest in keeping the long-
run average of this proportion bounded at some low value, even
by occasionally not following up on any finding from an exper-
iment.

Westfall further argues that FCR inferences can be mislead-
ing even with very large i, using a real data example. He points
at the two parameters in figure 1 whose FCR Cls do not cover 0,
arguing that according to existing biological theory, they are
likely to be two errors. This should come as no surprise; a re-
searcher using the FCR or FDR must realize that some small
proportion of the discoveries made may be false. In applica-
tions where two errors in a thousand discoveries is as harmful
as two out of two, the margin for error is narrow, and the use
of the familywise error rate (FWE) should be the rule. Thus if
Westfall is concerned that two false discoveries (or even 20)
out of a total of 5,397 discoveries will invalidate the conclu-
sions from the entire study, then he should use FWE control as
he advocates.

A related fundamental issue is the choice of the relevant fam-
ily of hypotheses. Westfall states that the goal of the experiment
was to compare red100% and green100%, with the other com-
parisons serving to indicate sensitivity. Therefore, the relevant
family is the family of 2,666 tests displayed in the appropri-
ate side of figure 2, from which the two seeming crrors are se-
lected and where they are in fact extreme. On the other hand, all
discoveries that red80% differs from red 1 00% are expected by
theory. So why combine the 9 x 2,666 such pairwise compar-
isons to the family of 2,666 ones of primary interest? The price
for the simultaneous approach taken over too large a family is
that even if the difference that we see in figure | is real (a small
and decaying difference in the beginning of the measured time
period), it will not be detected. Imposing control over a larger-
than-needed family of hypotheses makes it too easy to show
equivalence using FWE, just as it might make it too casy to
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discover differences using the FDR. The relevant issue is the
proper choice of both the criterion and the family.

We want to use this example further to emphasize the role
of the appropriate graphical display as an aid in interpreta-
tion. The FCR intervals presented in figure | are FCR-adjusted
Benjamini—Hochberg (BH)-selected Cls. FCR is a property of
the set of intervals not covering 0, and does not involve inter-
vals for the non selected. To emphasize this point, only the FCR
confidence bands not covering 0 should be drawn. Alternatively,
one can draw the FCR confidence band for all parameters, but
apply special visual impact to the selected parameters, in the
form of heavy versus thin lines, or black versus gray symbols.
Such a band will give FCR control of at most .05 for all pa-
rameters (because it offers marginal coverage of at least .95),
while emphasizing visually the primary subset of the selected
parameters for which the FCR property is critical.

3. SELECTIVE INFERENCE AS A CONTINUING
RESEARCH CHALLENGE

All of the discussants raise important questions worth further
attention and research cfforts.

3.1 Dependency

Both Westfall and Holland raise the issue of FCR control un-
der dependency. Westfall critically notes that there is no method
for addressing correlated data within the FCR framework, in
contrast to the Westfall and Young resampling method, which
is always available for FWE control (as demonstrated in his
example). In section 5.2 we gave a general FCR controlling
procedure that is valid under any type of dependency. Using
this general procedure on the same data, we calculate the in-
flating factor: 1 +1/2 4 -+ 4+ 1726600 = 10.766. The critical
value at .05 is thus (R — 3.336, corresponding to the tail
probability of 1 — (5.397/(2 x 26,600)) x (.05/10.766). It is
larger than the original /¢% = 2,585, but still much smaller
than #907 = 4.53 or POV = 4.85.

Although the general solution is available and viable, in
many cases it will not be needed. A practical answer to
the dependency challenge may simply be in FCR-adjusted
BH-selected ClIs. Note that we address positive dependency in
one-sided Cls using the regular FCR adjustment, and its prop-
erties are similar to FDR control of the BH procedure. Thus we
conjecture that the FCR of two-sided Cls will be as close to ¢ as
the FDR of the procedure in BH is close to gmg/m in two-sided
testing problems.

As to the latter, the analytical results available for the BH
procedure give an upper bound for normally distributed, posi-
tively correlated, test statistics—FDR < gmig/m. However, sim-
ulations further reveal that for correlated normal test statistics,
and two-sided tests, the FDR is actually very close to gnyg/m.
Furthermore, in earlier work (Yekutieli and Benjamini 1999),
we extended the methodology of Westfall and Young to pro-
duce resampling-based FDR controlling testing procedures.
Interestingly enough, our working experience reveals that the
BH procedurc is as effective as the resampling-based FDR in
analyzing highly correlated data (e.g., Benjamini and Yekutieli
2004). This is mostly because the FDR criterion is less sensi-
tive to dependency than the FWE criterion. Taking the approach
suggested by Holland may be a fruitful step toward establishing
this property asymptotically.
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3.2 Other Selection Rules

Shaffer demonstrates that if the selection procedure is “se-
lect the nonrejected” then the general adjustment procedure is
too conservative for some parameter values. She is right. How-
ever, the fault is not in the concept of FCR, as implied, but
rather in the general procedure. As always, the more general
a procedure, the more likely it is to be dominated at some
specific setting by a more specifically tailored procedure. We
hope that research questions regarding selection rules of prac-
tical importance will receive attention, and eventually be an-
swered by specific, and thus more powertful, selective inference
procedures.

It is important to emphasize that if the interest lies in both
the rejected and the nonrejected hypotheses, as discussed by
Shaffer, then simultaneous inference is needed, and the FCR
apparently is not the quantity of interest. Simultaneous Cls can
be further tailored to satisfy goals beyond coverage, which are
relevant in a research problem. Such nonequivariant simultane-
ous Cls were suggested to address questions regarding minimal
length at some given parameter value, bioequivalence, or in-
creased power in sign determination (e.g., Pratt 1961; Brown,
Cassela, and Hwang 1995; Benjamini and Stark 1998).

3.3 Selection, Conditional Coverage Probability, and the
False Coverage-Statement Rate

We emphasized the difficulties in achieving conditional cov-
erage as exemplified in selection rules of the form S(T) =
{i|\n; ¢ CI;(T)}. Notice, however, that for a given selection cri-
terion, it might be possible to construct a CI offering | — o
conditional coverage probability. For example, if one uses the
“reject by testing at level o selection rule, then 1 — > marginal
CIs oftfer conditional coverage probability > | — «. Professor
L. Brown (personal correspondence) has suggested Cls based
on the inversion of acceptance regions computed according to
the conditional distribution of T;||7;] > 7142 that are even
shorter than that. Assuring conditional coverage probability
for such a specific selection rule, where the selection of pa-
rameter [ depends only on its estimator, implies control over
the FCR.

3.4 The Effect of Selection on Estimators’ Bias

Tamhane points at the bias of the estimators after selection
as another problem and demonstrates its extent when the selec-
tion is based on testing a null value. Westfall demonstrates that
when parameter values are normally distributed and a normal
error is added to each, shrinkage estimators can provide unbi-
ased estimation after selection via the BH procedure. Westfall
further suggests constructing empirical Bayes Cls centered at
the shrunk estimators of the BH-selected parameters. Although
the bias is corrected, we are still in the dark about two impor-
tant questions: (1) whether the Cls offer quantifiable coverage
after the FDR selection, and (2) how the lengths of the em-
pirical Bayes Cls compare with those of the FCR-adjusted Cls.
Hopefully, these questions will be answered. In fact, it may well
be that in the same way that adaptive FDR procedures found
their interpretation in the empirical Bayes framework, so will
the FCR. The foregoing setting may be the appropriate one in
which to explore this important question.
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Of course, it should be noted that the good performance of
the specific estimators (and CIs) used by Westfall depends on
the assumed model under which the estimators were derived.
They will not necessarily retain their desirable properties un-
der the mixture model used in microarray analysis. Thus the
foregoing questions should be answered in different settings as
well, opening up many more research questions. In that respect,
it is interesting to note the performance of the FDR “testimator,”
where the parameters selected by the testing procedure in BH
are kept as is, and the other estimators are shrunk all the way
to 0. This testimator has asymptotically (in the number of para-
meters) minimax performance over sparse bodies of parameters
(Abramovich, Benjamini, Donoho, and Johnstone 2000).

4. FINAL WORDS

We opened our rejoinder with one of Edwards’s com-
ments, and we will end with his closing remark “even the
most famous statisticians vary widely in their attitude” to-
ward the need to address multiplicity. This is a correct de-
scription, as vividly illustrated in a recent interview with
Dennis Lindley (Significance, 2004, 73-74). We humbly think
that multiplicity matters, and this fact is becoming clearer
to researchers and decision makers as they face larger and
more complex problems. Because we also agree with Edwards
that Cls are more informative than just statistical signifi-
cance, and they arc not merely baggage, we tried in this
article to contribute to the theory and practice of multi-
ple CIs. Not only did we offer CIs to accompany FDR
methodology, we also made an effort to illuminate the differ-
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ence between simultaneous coverage and selective coverage,
and offered a framework and procedures for addressing the
latter.

If the results reported in abstracts of medical journals, for
example, would all be adjusted for the selection effect using
the FCR criterion, then it would be a great step forward toward
addressing multiplicity effects. The protection offered by FCR
will not always be enough, and simultaneous coverage may be
needed. It is part of our responsibility to identify where one
is more appropriate than the other, or even where neither is
needed. As may be clear by now, our article is not the end of
the story, but rather is much closer to the beginning. Still, we
hope that enough has been said to make it not only thought-
provoking, but also useful.
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