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SUMMARY

The linear step-up multiple testing procedure controls the False Discovery Rate (FDR) at the de-

sired level q for independent and positively dependent test statistics. When all null hypotheses are

true, and the test statistics are independent and continuous, the bound is sharp. When some of

the null hypotheses are not true, the procedure is conservative by a factor which is the proportion

m0/m of the true null hypotheses among the hypotheses. We provide a new two-stage procedure

in which the linear step-up procedure is used in stage one to estimate m0, providing a new level q′

which is used in the linear step-up procedure in the second stage. We prove that a general form

of the two-stage procedure controls the FDR at the desired level q. This framework enables us to

study analytically the properties of other procedures that exist in the literature. A simulation study

is presented that shows that two-stage adaptive procedures improve in power over the original pro-

cedure, mainly because they provide tighter control of the FDR. We further study the performance

of the current suggestions, some variations of the procedures, and previous suggestions, in the case

where the test statistics are positively dependent, a case for which the original procedure controls
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the FDR. In the setting studied here the newly proposed two-stage procedure is the only one that

controls the FDR. The procedures are illustrated with two examples of biological importance.

Some key words: FDR; Multiple testing; Two-stage procedures.
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1 Introduction

The traditional concern when testing m hypotheses simultaneously is to control the family-wise

error rate (FWE), the probability of making any false discovery. The restrictiveness of the FWE

criterion leads to multiple testing procedures that are not powerful in the sense that the probability

of rejecting null hypotheses that are false must also be small. At the other extreme lies the strategy

of ignoring the multiplicity issue altogether, and testing each hypothesis at level α. This is a

popular approach which increases the probability of rejecting null hypotheses that are false, but

ignores the increased expected number of type I errors.

The false discovery rate (FDR) criterion was developed by Benjamini & Hochberg (1995) to bridge

these two extremes. The FDR is the expectation of the proportion of rejected true null hypotheses

among the rejected hypotheses. When the null hypothesis is true for all hypotheses, the FDR

and FWE criteria are equivalent. However, when there are some hypotheses for which the null

hypotheses are false, a procedure that controls the false discovery rate may reject many more such

hypotheses at the expense of a small proportion of erroneous rejections.

The so-called linear step-up procedure, or Benjamini & Hochberg procedure, controls the FDR at

a desired level qm0/m when the test statistics are independent (Benjamini & Hochberg, 1995) or

positively dependent (Benjamini & Yekutieli, 2001). Even though this procedure rejects false null

hypotheses more frequently than procedures that control the FWE, if we knew m0 the procedure

could be improved by using q′ = qm/m0, to achieve precisely the desired level q. In this paper we

develop and compare some adaptive procedures that, among other things, begin by estimating m0.

In Section 2, we recall the formal definition of the FDR criterion, the linear step-up procedure, and

review the background for the problem at hand.

2 Background

2.1 The false discovery rate

Let H0i, i = 1, . . . , m, be the tested null hypotheses. For i = 1, . . . ,m0 the null hypotheses are

true, and for the remaining m1 = m−m0 the null hypotheses are false. Let V denote the number

of true null hypotheses that are erroneously rejected and let R be the total number of hypotheses

that are rejected. Now define the proportion of false discoveries by Q = V/R if R > 0 and Q = 0

if R = 0. The false discovery rate is FDR = E(Q)(Benjamini & Hochberg, 1995).
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A few recent papers have illuminated the FDR from different points of view: asymptotic, Bayesian,

empirical Bayes, as the limit of empirical processes and in the context of penalised model selection;

see Efron et al. (2001), Storey (2002), a technical report from Carnegie-Mellon University by C.

Genovese and L. Wasserman, and a technical report from Stanford University by F. Abramovich, Y.

Benjamini, D. Donoho, and I. M. Johnstone. Some of the studies emphasised variants of the FDR,

such as its conditional value given that some discovery is made (Storey, 2002), or the distribution

of the proportion of false discoveries itself (Genovese & and Wasserman, 2002). Procedures are

being developed for specific settings (Troendle, 1999), and the applicability of existing procedures

are being studied (Sarkar, 2002).

The linear step-up procedure makes use of the m p-values, P = (P1, . . . , Pm). Let p(1) ≤ · · · ≤ p(m)

be their ordered observed values.

Definition 1. (The one-stage linear step-up procedure).

Step 1. Let k = max{i : p(i) ≤ iq/m}.

Step 2. If such a k exists, reject the k hypotheses associated with p(1), . . . , p(k); otherwise do not

reject any of the hypotheses.

For the purpose of practical interpretation and flexibility in use, as well as for comparison with other

approaches, the results of the linear step-up procedure can also be reported in terms of the FDR

adjusted p-values. Formally, the FDR adjusted p-value of H(i) is pLSU
(i) = min{mp(j)/j | j ≥ i }.

Thus the linear step-up procedure at level q is equivalent to rejecting all hypotheses whose FDR

adjusted p-value is ≤ q; for a detailed historical review see Benjamini & Hochberg (2000).

The linear step-up procedure is quite striking in its ability to control the FDR under independence

at precisely qm0/m, regardless of the distributions of the test statistics corresponding to false null

hypotheses, when the distributions under the simple null hypotheses are continuous.

Benjamini & Yekutieli (2001) studied the procedure under dependence. For some type of positive

dependence they showed that the above remains an upper bound. Even under the most general

dependence structure, where the FDR is controlled merely at level q(1 + 1/2 + 1/3 + · · ·+ 1/m), it

is again conservative by the same factor m0/m.
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2.2 The role of m0 in testing

Knowledge of m0 can therefore be very useful to improve upon the performance of the FDR control-

ling procedure. If m0 were given to us by an ‘oracle’, the linear step-up procedure with q′ = qm/m0

would control the FDR at precisely the desired level q in the independent and continuous case, and

would then be more powerful in rejecting hypotheses for which the alternative holds. In a well

defined asymptotic context, Genovese & Wasserman (2002) showed it to be the best possible pro-

cedure in that it minimises the expected proportion of the hypotheses for which the alternatives

hold among the non-rejected ones, minimising the false non-discovery rate.

The factor m0/m plays a role in other settings as well. It is a ‘correct’ prior for a full Bayesian

analysis (Storey 2002, 2003). Estimating this factor is also an important ingredient in the empirical

Bayes approach to mutiplicity (Efron et al., 2001).

Even when we are controlling the FWE in the frequentist approach, knowledge of m0 is useful.

Using α/m0 is a more powerful procedure than the standard Bonferroni, which uses α/m, yet also

controls the FWE. Holm’s procedure and Hochberg’s procedure have been similarly modified by

Hochberg & Benjamini (1990) to construct more powerful versions. It is thus interesting to note

that estimation of m0 from the data is needed from the points of view of different schools of thought.

Moreover, estimating m0 becomes easier as more parameters are tested.

3 Adaptive procedures

Adaptive procedures first estimate the number of null hypotheses m0, and then use this estimate

to revise a multiple test procedure. The following adaptive approach is based on the linear step-up

procedure can be described as follows:

Definition 2. (Generalised two-stage linear step-up procedure).

Step 1. Compute m̂0.

Step 2. If m̂0 = 0 reject all hypotheses; otherwise, test the hypotheses using the linear step-up

procedure at level qm/m̂0.

Schweder & Spjotvoll (1982) were the first to try and estimate m0, albeit informally, from the

quantile plot of the p-values versus their ranks. This plot will tend to show linear behaviour for the
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larger p-values which are more likely to correspond to true null hypotheses. Thus one can inspect

the plot and choose the largest k p-values for which the behaviour seems linear, and estimate the

slope of the line passing through them. Its reciprocal was used as an estimate of m0, rejecting

the hypotheses corresponding to the m − m0 smallest p-values. Hochberg & Benjamini (1990)

formalised the approach and incorporated the estimate into the various procedures that control the

FWE.

Benjamini & Hochberg (2000) incorporated their proposed estimator for m0 into the generalised

two-stage linear step-up procedure as follows.

Definition 3. (The adaptive Benjamini–Hochberg procedure at level q).

Step 1. Use the linear step-up procedure at level q, and if no hypothesis is rejected stop; otherwise,

proceed.

Step 2. Estimate m0(k) by (m + 1− k)/(1− p(k)).

Step 3. Starting with k = 2 stop when for the first time m0(k) > m0(k − 1).

Step 4. Estimate m̂0 = min(m0(k),m) rounding up to the next highest integer.

Step 5. Use the linear step-up procedure with q∗ = qm/m̂0.

The choice in Step 2 was justified as follows. Let r(α) = #{p(i) ≤ α}. Then m− r(α) is potentially

the number of true null hypotheses except that m0α true null hypotheses are expected to be among

the r(α) rejected. Hence, solving m0 ≈ m−{r(α)−m0α} for m0 yields m0 ≈ {m− r(α)}/(1−α).

Use α = p(k) to obtain approximately m0(k).

The adaptive procedure was shown by simulation to provide tighter control of the FDR than the

linear step-up procedure. Not surprisingly, the simulation also showed it to be much more powerful

(Benjamini & Hochberg, 2000; Hsueh et al., 2003; Black, 2004). It is of interest to note that this

adaptive procedure was the original FDR controlling procedure suggested by Y. Benjamini and

Y. Hochberg in an unpublished Tel Aviv University technical report. Later the authors used the

conservative bound of 1 for the m0/m factor, which enabled the proof of the FDR controlling

property of the linear step-up procedure.

An estimator of the above form evaluated at a single prespecified α quantile of p-values P(i), where

i = αm, is easier to study. Such an estimator for m0 is mentioned in passing in Efron et al. (2001)
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and goes back to earlier versions of Storey (2002), although their interest in the estimator was for

different purposes. Using such an estimate such as the median of the {p(i)}, loosely denoted by

p(m/2) within the linear step-up procedure, we obtain the following procedure.

Definition 4. (Median adaptive linear step-up procedure).

Step 1. Estimate m0 by m̂0 = (m−m/2)/(1− p(m/2)).

Step 2. Use the linear step-up procedure with q∗ = qm/m̂0.

For estimating m0, Storey (2002) and Storey and Tibshirani (2003a) recommended using a fixed

α, λ in their notation, such as α = 1/2 in the above. This yields the following procedure.

Definition 5. (The adaptive linear step-up procedure).

Step 1. Let r(λ) = #{p(i) ≤ λ}.

Step 2. Estimate m0 by m̂0 = {m− r(λ)}/(1− λ).

Step 3. Use the linear step-up procedure with q∗ = qm/m̂0.

The above procedure, and the special case with λ = 1/2, are also incorporated in recent versions of

SAM software (Storey & Tibshirani, 2003b) even though the p-values are estimated by resampling.

Subsequently, in Storey et al. (2004), the above procedure was modified by replacing {m − r(λ)}
by {m + 1 − r(λ)} and further requiring that p(i) ≤ λ for a hypothesis to be rejected. These

modifications stemmed from theoretical results in their paper, in that they ensure FDR control in

problems where a finite number of hypotheses are tested.

Mosig et al. (2001) suggested a procedure involving an iterated stopping rule which uses the number

of p-values falling within some arbitrary cell boundaries over the range (0, 1). The motivation is

correct and similar in spirit to the above, but the procedure as published is far from controlling the

FDR at the desired level; see § 6.

Other computer-intensive adaptive procedures based on resampling and bootstrapping have also

been suggested; see Yekutieli & Benjamini (1999), the resampling based choice of λ in Storey (2002)

and Storey et al. (2004) and the cubic spline fit in Storey & Tibshirani (2003a).
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4 The new two-stage procedures

The idea underlying the two-stage procedure is that the value of m0 can be estimated from the

results of the one-stage procedure.

Definition 6. (The two-stage linear step-up procedure (TST)).

Step 1. Use the linear step-up procedure at level q′ = q/(1 + q). Let r1 be the number of rejected

hypotheses. If r1 = 0 do not reject any hypothesis and stop; if r1 = m reject all m hypotheses and

stop; otherwise continue.

Step 2. Let m̂0 = (m− r1).

Step 3. Use the linear step-up procedure with q∗ = q′m/m̂0.

The procedure can be motivated as follows. By definition m0 ≤ m− (R − V ). The linear step-up

procedure used in the first stage ensures that E(V/R) ≤ qm0/m, so that V is approximately less

than or equal to qm0R/m. Hence, m0 ≤ m− (R− qm0R/m), from which we obtain

m0 ≤ m−R

1− R
mq

≤ m−R

1− q
≤ (m−R)(1 + q). (1)

The right-most bound is the one implicitly used in the above procedure. In the next section it

is proven that this two-stage procedure has an FDR that does not exceed q for independent test

statistics.

This two-stage procedure uses the number rejected at the first stage to estimate m0, it controls the

FDR and it necessarily increases power. Hence, we may extend this approach using m− r2 at the

third stage, and so on. In the multiple-stage linear step-up procedure, the steps of the two-stage

linear step-up procedure are repeated as long as more hypotheses are rejected. This procedure

can also be expressed in an elegant way using the sequence of constants ql/(m + 1− j) at each

stage. However, using (1 + q) in the denominator does not suffice, since the effective level used is

q∗ = qj/(m + 1− j), which may be bigger than q. This suggests inflating the cut-offs to
(

q

1 + q j
m+1−j

)
l

m + 1− j
(2)

to obtain the following procedure.

Definition 7. (The multiple-stage linear step-up procedure).
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Step 1. Let k = max{i : for all j ≤ i there exists l ≥ j so that p(l) ≤ ql/{m + 1− j(1− q)}}.

Step 2. If such a k exists, reject the k hypotheses associated with p(1), . . . , p(k); otherwise reject no

hypothesis.

The last procedure has an interesting internal-consistency property. The number of hypotheses

tested minus the number rejected, less the proportion q erroneously rejected is also the number

used in the denominator of the linear step-up procedure as the estimator of m0. A simpler, more

conservative procedure enjoying the same property is to require l = j in the above definition,

providing what we call the adaptive step-down procedure.

5 Analytical results

In this section we derive an expression for the upper bound of the FDR of the generalised two-stage

linear step-up procedure for independently distributed test statistics. The distributions of the test

statistics may be discrete, in which case the distributions of the p-values under the null hypotheses

should be stochastically larger than uniform as usual. The estimator m̂0 of m0 is assumed to be

an increasing function of each of the components of P .

It was shown in Benjamini & Yekutieli (2001) that the FDR of any multiple comparison procedure

can be expressed as

FDR =
m0∑

i=1

m∑

k=1

1
k
pr { k hypotheses are rejected one of which is H0i }

= m0

m∑

k=1

1
k
pr { k hypotheses are rejected one of which is H01 }.

The second equality follows as the problem is exchangeable in the p-values corresponding to the

m0 true null hypotheses. Let P01 be the p-value associated with H01. Note that there must be at

least one hypothesis that is null, i.e. m0 ≥ 1 because otherwise FDR = 0. Let P (1) be the vector

of p-values corresponding to the m − 1 hypotheses excluding H01. Conditioning on P (1) we can

express the FDR as

FDR = m0EP (1)Q(P (1)), (3)

where Q(P (1)) is defined by

Q(P (1)) =
m∑

k=1

1
k
pr P01|P (1){ k hypotheses are rejected one of which is H01}.
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For each value of P (1), let r(P01) denote the number of hypotheses that are rejected, as a function

of P01, and let ι(P01) be the indicator that H01 is rejected as a function of P01. Then

Q(P (1)) = E(
ι(P01)
r(P01)

|P (1)) =
∫

ι(p)
r(p)

dµ01(p),

where, by the assumed independence, we can take µ01 to be the marginal distribution of P01. In

the continuous case, µ01 is just the uniform distribution on [0, 1] and, in the discrete case, it is

necessarily stochastically larger than the uniform.

We make two claims, first that

r(p) is a nonincreasing function, and secondly that

ι(p) takes the form 1[0,p∗], where p∗ ≡ p∗(P (1)) satisfies p∗ ≤ qr(p∗)/m̂0(p∗).

If these claims are true, then

Q(P (1)) =
∫

ι(p)
r(p)

dµ01(p) ≤ p∗

r(p∗)
≤ q

m̂0(p∗)
. (4)

This follows immediately because pr {P01 ≤ p∗} ≤ p∗. The bound on FDR follows, in the form

FDR ≤ qEP (1)(
m0

m̂0(p∗)
). (5)

To prove the claims, note that, for any P (1) and a P01 such that ι(P01) = 1, i.e., H01 rejected,

there are exactly r(P01) p-values below qr(P01)/m̂0(P01), and for any k > r(P01) there are strictly

fewer than k p-values below qk/m̂0(P01), because otherwise r(P01) would be larger by construction.

Since m̂0(P01) is increasing in P01, as P01 increases all the critical values qk/m̂0(P01) decrease;

hence, the number of p-values below each qk/m̂0(P01) cannot increase. It follows that r(P01)

cannot increase, which proves the first claim. For the second claim, note that ι(P01) = 1 as long as

P01 ≤ qr(P01)/m̂0(P01).

To prove control of the FDR for a generalised two-stage linear step-up procedure we need to evaluate

the right-hand side of (5), which is an expectation over m− 1 p-values, m1 of which are generated

according to the distribution of alternative hypothesis p-values and m0 − 1 are independent and

identically distributed Un[0, 1]. Since m̂0 is stochastically larger as p-values have stochastically

larger distributions, the right-hand side of (5) is maximised when the m1 p-values corresponding to

H1i are all zero with probability one. It is interesting to note that, although setting these p-values

to 0 maximises the bound in (5), this does not necessarily lead to the maximum value of FDR in

(3).
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We will derive a bound for the FDR of some of the two-stage procedures discussed earlier. The

following is necessary in this regard.

Lemma 1. If Y ∼ Bi(k− 1, p) then E{1/(Y + 1)} < 1/(kp).

Proof. Elementary calculations give

E{1/(Y + 1)} =
1
kp
{1− (1− p)k} ≤ 1

kp
.

¶

Theorem 1. When the test statistics are independent the two-step procedure procedure controls the

FDR at level q.

Proof. Recall that, in a two-step procedure procedure, the first stage is an linear step-up procedure

at level q′ ≡ q/(1 + q), r1 is the number of hypotheses rejected at stage 1, and m̂0 equals m − r1.

Then m̂0 can only be one of two values m̂0(1) or m̂0(1). For P01 ≤ r1q
′/m, H01 is rejected at both

stages of the two-stage procedure, and m̂0 = m̂0(0). For P01 > r1q
′/m, H01 is not rejected at the

first stage, and hence m̂0 = m̂0(1); however, as long as P01 ≤ r(P01)q′/m̂0(1), H01 is rejected at

the second stage, and thus m̂0(p∗) = m̂0(1) and, according to (4),

Q(P (1)) ≤ q′

m̂0(1)
. (6)

There is just one anomaly. If m̂0(1) = m then for P01 > r1q
′/m the second stage of the testing

procedure is identical to the first stage; thus H01 is no longer rejected and m̂0(p∗) = m̂0(0).

However, note that as p∗ = r1q
′/m and r1 ≤ r(p∗), from the first inequality in (4) we have

Q(P (1)) ≤ p∗

r(p∗)
≤ r1q

′/m

r1
=

q′

m
=

q′

m̂0(1)
.

Hence inequality (6) is still satisfied.

As m̂0(1) is stochastically larger then Y + 1 where Y ∼ Bi{m0 − 1, 1− q/(q + 1)}, if q is replaced

after replacing q with q′ = q/(q + 1) in Lemma 1, inequality (6) yields,

FDR ≤ m0EP (1)Q(P (1)) ≤ q

1 + q
EP (1)

m0

Y + 1
≤ q

1 + q

m0

m0
1

1+q

= q.

¶

A proof of the above was given in D. Yekutieli’s 2002 PhD thesis from Tel Aviv University. The

quantile based estimator of m0 is m̂0 = (m + 1− k)/[1− P(k)] for an arbitrary k, 1 ≤ k ≤ m.
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This is the estimator used in the adaptive Benjamini-Hochberg procedure, albeit at a pre-specified

quantile. Using this estimator in the general two-stage procedure leads to the following theorem.

Theorem 2. When the test statistics are independent the quantile based two-stage procedure con-

trols the FDR at level q.

Proof. If k ≤ m1 then according to (5) the FDR of this two-stage procedure is

FDR ≤ EP (1)

qm0

(m + 1− k)/(1− P(k))
≤ qm0

(m0 + 1)
EP (1)(1− P(k)) ≤ q.

Assume now that m1 < k. We will first compute the expected value of 1/m̂0(0) since P01 = 0, in

addition to P01 there are k−1 p-values less than P(k). The number of true null p-values less than or

equal to P(k), not counting P01, is at least k−m1−1. Hence the distribution of P(k) is stochastically

greater than the k−m1 − 1 ordered p-values out of m0 − 1 p-values that are independent Un[0, 1).

Therefore, with P01 = 0,

EP (1)P(k) ≤
(k −m1 − 1) + 1

(m0 − 1) + 1
=

k −m1

m0
.

Thus

EP (1)

1
m̂0(0)

≤ (1− k −m1

m0
)/(m + 1− k) < 1/m0.

Finally, as m̂(p∗) ≥ m̂0(0), returning to (5) we have

FDR ≤ EP (1)

qm0

m̂0(0)
< q.

¶

As an illustration we consider an upper bound for the adaptive linear step-up procedure. The

definition of m̂0 in Storey (2002) is m̂0 = {m − r(λ)}/(1 − λ) = #{Pi > λ}/(1 − λ). In this case,

as P01 varies, there are two distinct values of m̂0:

m̂0 = #{P (1) > λ}/(1− λ), if P01 ≤ λ,

m̂0 = (#{P (1) > λ}+ 1)/(1− λ), if P01 > λ.

When used within a general two-stage procedure, if p∗ ≤ λ, then m̂0(p∗) is stochastically greater

than W/(1 − λ, where W is Bi(m0 − 1, 1 − λ). This causes a technical problem, as E{1/m̂0(p∗)}
is infinite because there is a nonzero probability, albeit very small for large m, that W is zero.
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In Storey et al. (2004) two modifications were suggested to the original definition of m̂0 when

used in testing. First, no hypothesis is rejected with p-value > λ. Secondly, m̂0 is modified to

(#{Pi > λ}+ 1)/(1− λ). With the second modification, (5) and Lemma 1 imply that

FDR ≤ qm0

m0(1− λ)/(1− λ)
= q. (7)

Remark 1. Lemma 1 showed that E(1/(Y + 1)) = {1− (1−p)k}/kp, where in our case k = m0 and

p = 1 − λ. Substituting this result instead of its bound into (5) yields FDR ≤ (1 − λm0)q, which

agrees with the bound in Storey et. al. (2004).

Remark 2. For illustration, we computed the FDR bounds for the original version based on the

above analysis in two cases. For q = 0.05 and λ = 0.05, in which case the condition m ≥ λ/{q(1−λ)}
holds for all m, we obtain the following bounds: when m = 20, FDR ≤ 0.054; when m = 100, FDR

≤ 0.051; and when m = 500, FDR ≤ 0.05. For q = 0.05 and λ = 0.5, the results are as follows:

when m = 20, FDR ≤ 0.075; when m = 100, FDR ≤ 0.058; and when m = 500, FDR ≤ 0.052.

Thus, in this case, as long as m is in the hundreds the modifications are essential.

6 Simulation Study

6.1 The procedures to be compared

A simulation study was performed to compare the FDR control and the power of various adaptive

procedures for controlling FWE and FDR. The seven procedures that were investigated in some

detail can be roughly divided into two types, namely: newly suggested adaptive procedures, num-

bered 1-3 below; and previously suggested adaptive controlling FDR procedures, numbered 4-7

below. Three other procedures, numbered 8-10, serve as benchmarks for comparing performance.

Procedure 1. The two-stage linear step-up procedure denoted by two-step procedure in the tables;

see Definition 6. By Theorem 1, this procedure controls the FDR at level q.

Procedure 2. The modified two-stage procedure (M-TST). This procedure makes use of q in stage

1, and q′ = q/(1 + q) in stage 2. Even though the proof requires using q/(1 + q) at both stages, we

explore this procedure as well since it is more natural to use q at the first stage.

Procedure 3. The multiple-stage linear step-up procedure (MST); see Definition 7.

13



Procedure 4. The adaptive procedure of Benjamini & Hochberg (2000) (ABH); see Definition 3.

Procedure 5. The adaptive linear step-up procedure (S-HLF); see Definition 5 with λ = 1/2.

Procedure 6. The adaptive linear step-up procedure as modified in Storey et al. (2004) (M-S-HLF).

Procedure 7. The median adaptive linear step-up procedure (MED-LSU).

Procedure 8. The adaptive Hochberg (A-HCH) procedure (Hochberg & Benjamini, 1990). This

adaptive step-up procedure is designed to control the FWE.

Procedure 9. The linear step-up procedure (LSU); see Definition 1. This non-adaptive procedure

controls the FDR at level m0/m.

Procedure 10. The linear step-up procedure at level qm/m0 (ORC).

The ‘oracle’ procedure, number 10 above, which uses m0/m to control the FDR at the exact level

q, is obviously not implementable in practice as m0 is unknown. It serves as a benchmark against

which other procedures can be compared. It also serves as a variance-reduction method in the

simulation study under independence: a large reduction in variance is achieved by comparing the

estimated difference in false discovery rates achieved by the procedure in question and that of

procedure 10 to zero.

In the first part of the study, the number of tests m was set at m = 4, 8, 16, 32, 64, 128, 256 and 512.

The fraction of the false null hypotheses was 0%, 25%, 50%, 75%, and 100%. The P -values were

generated in the following way. First, let Z0, Z1, . . . , Zm be independent and identically distributed

N(0, 1). Next, let Yi =
√

ρZ0 +
√

1− ρZi − µi, i = 1, . . . , m, and let Pi = 1 − Φ(Yi). We used

ρ = 0, 0.1, 0.25, 0.5 and 0.75, with ρ = 0 corresponding to independence. The values of µi are zero

for i = 1 · · ·m0, the m0 hypotheses that are null. In one case, we let µi = 5 for i = m0 + 1, . . . , m.

This leads to Pi ≈ 0 for hypotheses that are not null; this is referred to as the ‘all at 5’ case. In

the second case, the value of µi was µi = i for i = 1, 2, 3, 4. This cycle was repeated to produce

the desired m1 values under H1. This is referred to as the ‘1 2 3 4’ configuration. The resulting

p-values under H1 are clearly less extreme than those in the first case.

We also tested a few more procedures. The adaptive step-down procedure, a variation on Procedure

3 showed performance very similar in terms of FDR control and was, as expected, slightly less

powerful. The advantage of the step-down version is that only the extreme p-values are needed.

The procedure of Mosig et al. (2001) did not control the FDR at the desired level; the FDR often
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exceeding 0.5. However, a slight modification of this procedure is similar to the M-ABH procedure

and performed similarly. The modified two-stage Procedure 2 is very similar to Procedure 1. It

has the advantage that it is run at the first stage at level q. However, it can happen that at the

first stage a hypothesis is rejected and at the second stage it is not. This is rare, and occurs only

for large m and m0 close to m.

The simulation results are based on 10,000 replications. The standard error of the estimated FDR

is of the order of 0.002 for all of the procedures. As mentioned above, the standard error of the

performance of a procedure relative to that of the Oracle is even smaller. In Table 1 we used the

fact that the expectation of the FDR is exactly 0.05, to estimate the FDR for the other procedures

from the difference.

6.2 Independent test statistics

The results of the FDR control under independence for the 10 procedures were higher for the ‘all

at 5’ case than for the ‘1 2 3 4’ case described above. Results are given in Table 1 for some of the

configurations. Note that all procedures except S-HLF and MED-LSU control the FDR at levels

very close yet below 0.05 at all configurations. The results for the stated two are above 0.05 for

smaller m. The modification in Storey et al. (2004) solves the problem for S-HLF. In both cases

the values are very close to the theoretical upper bounds derived in §5. The fact that the FDR

level appraoches 0.05 as m increases supports the theoretical result in the technical report by C.

Genovese & L. Wasserman that, asymptotically in m, it controls the FDR.

For the MED-LSU the overshoot is smaller and it decreases faster. By m = 64 it is within simulation

noise level. The source of this problem is the fact that MED-LSU uses (m− k) in the numerator,

while the theorem that FDR is controlled is for the estimator with (m + 1 − k). The ratio of the

two decreases as m increases. It is important to emphasise that, in the three procedures S-HLF,

M-S-HLF and MED-LSU, unlike in the other two-stage procedures, there is no restriction that

m̂0 ≤ m. It is important not to add such a requirement in the implementation step, because it will

harm the FDR controlling properties. In the other procedures m̂0 cannot exceed m.

Power comparisons are made at the more realistic configuration of ‘1 2 3 4’; see Table 2. The

results are only reported for the procedures that control the FDR. The power of each procedure

is divided by the power for the oracle to yield an efficiency-like figure. For example, consider the

configuration with m0 = 32 and m = 64 , where all procedures control the FDR. The regular

linear step-up has power of 0.873, and all FDR controlling adaptive procedures raise the power to
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within the range of 0.924 to 0.977. It is clearly worth the extra effort to take the second stage in

the two-stage procedure when m0/m is as large as a 1/2. Table 2 shows that M-S-HLF is most

powerful in all situations. When m0/m is small ABH is almost as good. When all hypotheses are

false and m increases MST takes second place. In summary, the real gain seems to be in using a

two-stage procedure. Which of these two-stage procedures one uses is of lesser significance.

6.3 Positively dependent test statistics

If m0 is known, the linear step-up procedure controls the FDR even under positive dependence, as

expressed in Benjamini & Yekutieli (2001). Furthermore, if m0 is estimated independently of the

the p-values used in LSU is, for example, if it is estimated from a different sample, then by simply

conditioning , we have that FDR ≤ qE(m0/m̂0). Thus if E(m0/m̂0) ≤ 1 the two-stage procedure

controls the FDR.

To see how the bias and variance of m̂0 affects E(m0/m̂0) a straightforward Taylor series expression

yields E(m0/m̂0) = 1 − bias/m0 + bias2/m0
2 + variance/m0

2. From this we can see that, if the

bias is positive, then that helps to meet the condition E(m0/m̂0) ≤ 1. If the bias is negligible, then

the variance of the estimator plays a key role. For independent tests, the variance of the estimator

is of order m0 so that the variance term goes to zero. For dependent tests, the variance can also

be of order m0
2, in which case the size of the variance can have a large effect.

When the estimate of m0 is independent of the p-values, even when the p-values themselves are

dependent, the argument above led to an inequality, which implied that it is sufficient to show

that E(m0/m̂0) ≤ 1 in order to obtain control of FDR. Once the same set of dependent p-values

is used in both stages then two issues arise: the inequality on the bound might not hold, and

furthermore E(Q|m̂0) ≤ (m/a)(m0q/m) = m0q/a need not hold. It is difficult to study analytically

the combined effect that may cause the FDR of the two-stage procedure to be higher than expected,

and we therefore resort to a simulation study.

The simulation study allows us to explore the effect of constant positive dependence between the

test statistics on the level of FDR achieved by the adaptive procedures. Figure 1 presents these

results for ρ = 0.1 and 0.5 in comparison to ρ = 0. Obviously the Oracle and LSU do control the

FDR, as follows from the theory in Benjamini & Yekutieli (2001), even though now at a level that

is too low. The two-stage procedures control the FDR well, below but close to the nominal level.

All other procedures fail. The MST procedure controls the FDR when the correlation is low, but

fails at higher correlations. The MED-LSU procedure does better when m becomes larger. The
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value for the M-S-HLF procedure is sometimes more than twice the declared FDR.

Since many applications of FDR and theoretical results involve a large number of tests, simulations

were also conducted for m = 5, 000, 10, 000 and 15, 000. The p-values were generated in the same

way except that the values of µ were chosen to be 5i/(m−m0) for i = 1, . . . , m−m0. In addition,

the values 0, 0.01, 0.05 and 0.10 were used for the fraction of false null hypotheses. The results

that appear in Fig. 2 indicate that it does not seem that the FDR level gets closer to 0.05 as m

increases for the M-S-HLF procedure.

How can this difference be explained? Fig. 3 presents the distribution of the estimators of m0 that

are used in the two-step procedure, ABH and M-S-HLF procedures, both under independence and

under ρ = 0.5. The figure shows that variability for M-S-HLF relative to that for either two-step

procedure or ABH is only about two in the independence case. In the dependent case, however,

this ratio increases to about ten; note that the biases are comparable. This results in M-S-HLF

overshooting the nominal 0.05 FDR level even for large m, stabilising at a level of 0.08, as is evident

from Fig. 2. Note from Fig. 3 that more than a quarter of m0 estimates obtained by M-S-HLF

are above the maximal possible value of m = 64. Thus the deviation from the desired FDR will be

even greater if in practice min(m̂0,m) is used instead of m̂0.

7 Examples

Example 1: Multiple endpoints analysis.

Multiple endpoints analysis in clinical trials is one of the most commonly encountered multiplicity

problems in medical research. This example on multiple endpoints illustrates the various procedures

and shows the increased number of rejections when m0 is estimated and accounted for as in our

procedure. Since the data represent multiple measurements on the same individual, an individual’s

innate level can be viewed as latent. The assumption of constant positive dependence is arguably

plausible, at least approximately. For the specific multiple problem described in detail in Benjamini

& Hochberg (1995), the significance of the treatment effect on each of the 15 endpoints is given

by the ordered p(i)’s: 0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344, 0.0459, 0.3240,

0.4262, 0.5719, 0.6528, 0.7590, 1.000. Four hypotheses were rejected using the single linear step-up

procedure at level 0.05. Four were also rejected at the first stage of the two-stage procedure run

at level 0.05/1.05. At the second stage the linear step-up procedure is used at level (0.05/1.05) ×
15/(15 − 4) = 0.06494, resulting in the rejection of the eight hypotheses whose p-values are less

than or equal to 0.0344.
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The multiple stage procedure continues with the linear step-up procedure at level 0.0893, which

is obtained from 0.0515/{15 + 1 − 8(1 − 0.05)}. In this case, the ninth hypothesis with p-value

of 0.0459 ≤ 0.0893 · 9/15 is also rejected. Interestingly all hypotheses with p-values less than 0.05

were rejected, as if no correction was made.

Another interesting observation is that all adaptive procedures considered here rejected either 8 or

9 hypotheses; the procedures ABH, MST and MED-LSU, resulted in 9 rejections. However, since

positive dependence may be present among the measured endpoints, taking the more conservative

finding of the two-stage procedure is recommended.

Example 2: Quantitative Trait Loci analysis using FDR.

Genetic researchers considered control of FDR in this important biological area (Weller et al., 1998),

and Mosig et al. (2001) pioneered the use of adaptive procedures in the context of QTL analysis of

milk production in cattle, although without considering analysis of this particular example (Mosig

et al., 2001). However, they did not consider the theoretical properties of their procedure. The

purpose of their analysis is to identify regions on the chromosomes containing genes which affect

the level of some quantitative property of the milk that a cow produces, such as volume, fat content

or protein content. This kind of analysis is based on testing the statistical linkage between genetic

markers on the chromosomes and the quantity of interest. Since molecular genetic markers can

now be identified on a very dense map, the issue of multiple testing and its increased type I error

probability is of fundamental concern. Lander & Kruglyak (1995) discuss this issue and set out

guidelines that emphasise the genome-wise control of the FWE, and Benjamini & Yekutieli (2001)

established the appropriateness of the linear step-up procedure for this purpose. Their result

relies on the positive regression dependence structure within chromosomes, inherent in the genetic

problem.

Using the linear step-up procedure on single-sire data, Mosig et al. (2001) identified 34 QTLs, out

of a total number of 138, to be significant at the 0.05 level FDR. Using their original adaptive

two-stage procedure they identified 8 additional significant QTLs. However, as was shown here,

this procedure need not control the FDR.

With the new two-stage procedure, the same 34 QTLs were rejected at the first stage at the

0.05/1.05 level. At the second stage the LSU procedure is used at level q∗ = (0.05/1.05)(138/104) =

0.063. This increase identified a total of 37 QTLs, that is more than 34, but fewer than the 42

found by Mosig et al. (2001).
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8 Discussion

Benjamini & Hochberg (2000) state, regarding adaptive procedures, that ‘in cases where most of

the hypotheses are far from being true there is hardly any penalty due to the simultaneous testing of

many hypotheses’. As carefully analysed and explained by Black (2004), introducing the adaptive

component into the linear step-up procedure is also the reason for the power advantage of the direct

approach to FDR of Storey et al. (2004). It is demonstrated here that the differences in power

among the various adaptive procedures are much smaller than the differences among all adaptive

procedures and the linear step-up procedure. Adaptive procedures that control FWE have even

less power. Of course these advantages are not realised when m0/m is close to 1.

The results of the simulation study raise interesting issues. Some procedures are more sensitive to

the nature of the correlation structure, equal positive correlations that we impose in our simulation

study and other approaches, most notably our new procedure, seems to perform well even in the

correlated case. In practice, tests tend to be correlated. Understanding how different procedures

that perform equally as well for independent tests behave in correlated environments that reflect

important applications is critical, but remains to be investigated.
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m0/m = 1 m0/m = .75 m0/m = .50 m0/m = .25
m = 16 64 256 16 64 256 16 64 256 16 64 256
TST .048 .048 .047 .048 .048 .048 .049 .049 .049 .048 .048 .048
M-TST .050 .049 .047 .048 .048 .048 .049 .049 .049 .048 .048 .048
MST .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050
ABH .050 .050 .050 .048 .049 .050 .047 .049 .049 .048 .049 .050
M-ABH .050 .050 .050 .048 .050 .050 .048 .049 .049 .048 .050 .050
S-HLF .057 .051 .050 .061 .052 .051 .070 .053 .051 .061 .052 .051
M-S-HLF .049 .050 .050 .050 .050 .050 .050 .05 .050 .050 .050 .050
MED-LSU .053 .050 .050 .053 .051 .050 .049 .049 .050 .053 .051 .050
A-HCH .050 .050 .050 .025 .008 .003 .012 .001 .000 .025 .008 .003
LSU .050 .050 .050 .038 .037 .038 .025 .025 .025 .038 .037 .038
ORC .050 .050 .050 .050 .050 .050 .050 .05 .050 .050 .050 .050

Table 1: Estimated FDR values for selected m0 and m with ρ = 0. The value for the Oracle is set
at its expected value 0.05, and the others are estimated from the differences. The standard errors
are less than 0.002 in all cases.

m0/m = .75 m0/m = .50 m0/m = .25 m0/m = 0
m = 16 64 256 16 64 256 16 64 256 16 64 256
TST .956 .958 .959 .917 .924 .926 .862 .865 .865 .781 .785 .784
M-TST .957 .958 .959 .918 .925 .927 .863 .866 .866 .783 .787 .786
MST .964 .967 .969 .927 .935 .938 .878 .888 .89 .828 .874 .906
ABH .968 .976 .975 .946 .953 .947 .906 .917 .9 .873 .9 .879
M-S-HLF .973 .989 .993 .958 .977 .982 .923 .949 .956 .876 .924 .942
LSU .945 .942 .941 .874 .873 .874 .781 .777 .775 .66 .658 .656

Table 2: Power relative to the Oracle procedure for ρ = 0, at selected values of m0 and m.
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Figure 1: Estimated FDR values for m = 16, . . . , 512. Legend: TST - solid line; MST - dotted line;
ORC - dotted dashed; ABH - dashed; M-S-HLF - dashed triple dotted; LSU - short dash long dash.
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Figure 2: Estimated FDR values for m = 5, 000, 10, 000, and 15, 000. Legend: TST - solid line;
MST - dotted line; ORC - dotted dashed; ABH - dashed; M-S-HLF - dashed triple dotted; LSU -
short dash long dash.
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Figure 3: The simulated distribution of the estimators m̂0 used in the TST ABH and M-S-HLF
adaptive procedures for the case of m0 = 48 and m = 64. Each box displays the median and
quartiles per usual. The whiskers extend to the 5% and the 95% percentile. The circles are located
at the extremes (the 0.01% and 99.99% percentiles).
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