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Abstract

Benjamini and Hochberg (1995) suggest that the False Discovery
Rate may be the appropriate error rate to control in many applied
multiple testing problems. A simple procedure was given there as
an FDR controlling procedure for independent test statistics and was
shown to be much more powerful than comparable procedures which
control the traditional familywise error-rate. We prove that this same
procedure also controls the false discovery rate when the test statis-
tics have positive regression dependency on each of the test statistics
corresponding to the true null hypotheses. This condition for positive
dependency is general enough to cover many problems of practical
interest, including the comparisons of many treatments with a single
control, multivariate normal test statistics with positive correlation
matrix, and multivariate £. Furthermore, the test statistics may be
discrete, and the tested hypotheses composite without posing special
difficulties. For all other forms of dependency a simple conservative
modification of the procedure controls the false discovery rate. Thus
the range of problems for which a procedure with proven FDR control
can be offered is greatly increased.
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1 Introduction

1.1 Simultaneous hypotheses testing

The control of the increased type I error when testing simultaneously a family
of hypotheses is a central issue in the area of multiple comparisons. Rarely
are we interested only in whether all hypotheses are jointly true - or not,
which is the test of the intersection null hypothesis. In most applications,
we infer about the individual hypotheses, realizing that some of the tested
hypotheses are usually true - we hope not all - and some are not. We wish
to decide which ones are not true, indicating at (statistical) discoveries. An
important such problem is that of multiple endpoints in a clinical trial: a
new treatment is compared with an existing one in terms of a large number

of potential benefits (endpoints).

Example 1.1 Multiple endpoints in clinical trials.

As a typical example, consider the double-blind controlled trial of oral clo-
dronate in patients with bone metastases from breast cancer, reported in Pa-
terson et al (1993). Eighteen endpoints were compared between the treatment
and the control groups. These endpoints included, among others: the number
of patients developing hypercalcemia, the number of episodes, the time the
episodes first appear, number of fractures, and morbidity. As is clear from
the condensed information in the abstract, the researchers were interested in

all 18 particular potential benefits of the treatment.

The traditional concern in such multiple hypotheses testing problems, has
been about controlling the probability of erroneously rejecting even one of
the true null hypotheses - the Family-Wise Error-rate (FWE). The books by
Hochberg and Tamhane (1993), Westfall and Young (1993), Hsu (1996), and
the review by Tamhane (1997), all reflect this tradition. The control of the
FWE at some level a requires each of the individual m tests to be conducted

at lower levels, as in the Bonferroni procedure where a is divided by the



number of tests performed.

The Bonferroni procedure is just an example, as more powerful FWE
controlling procedures are currently available for many multiple testing prob-
lems. Many of the newer procedures are as flexible as the Bonferroni, making
use of the p-values only, and a common thread is their step-wise nature (see
recent reviews by Tamhane (1997), Shaffer (1995) and Hsu (1996) ). Still,
the power to detect a specific hypothesis while controlling the FWE is greatly
reduced when the number of hypotheses in the family increases, the newer
procedures not withstanding. The incurred loss of power even in medium
size problems has led many practitioners to neglect multiplicity control alto-
gether.

Example 1.1 (continued) Paterson et al (1993) summarize their results
in the abstract as following: ”In patients who received clodronate, there was
a significant reduction compared with placebo in the total number of hypercal-
cemic episodes (28 v 52; p < .01), in the number of terminal hypercalcemic
episodes (7 v 17; p < .05), in the incidence of vertebral fractures (84 v 124
per 100 patient-years; p < .025), and in the rate of vertebral deformity (168
v 252 per 100 patient-years; p < .001)...”

All siz p-values less than .05 are reported as significant findings. No
adjustment for multiplicity was tried - not even a concern voiced.

While almost mandatory in psychological research, most medical jour-
nals do not require the analysis of the multiplicity effect on the statistical
conclusions, a notable exception being the leading New England Journal of
Medicine. In genetics research, the need for multiplicity control has been rec-
ognized as one of the fundamental questions, especially since entire genome
scans are now common (see Lander and Botstein (1989), Barinaga (1994),
Lander and Kruglyak (1995), Weller et al (1998)). The appropriate balance
between lack of type I error control and low power (”the choice between Scylla

and Charybdis” in Lander and Kruglyak (1995)) has been heavily debated.



1.2 The False Discovery Rate

The False Discovery Rate (FDR), suggested by Benjamini and Hochberg (1995)
is a new and different point of view at how the errors in multiple testing could
be considered. The FDR is the expected proportion of erroneous rejections
among all rejections. If all tested hypotheses are true controlling the FDR
controls the traditional FWE. But when many of the tested hypotheses are
rejected, indicating that many hypotheses are not true, the error from a sin-
gle erroneous rejection is not always as crucial for drawing conclusions from
the family tested, and the proportion of errors is controlled instead. Thus
we are ready to bear with more errors when many hypotheses are rejected,
but with less when fewer are rejected. (This frequentist goal has a Bayesian
flavor.) In many applied problems it has been argued that the control of the
FDR at some specified level is the more appropriate response to the multi-
plicity concern: examples are given in Section 2.1 and discussed in Section
4.

The practical difference between the two approaches is neither trivial nor
small and the larger the problem the more dramatic the difference is. Let us
demonstrate this point by comparing two specific procedures, as applied to
Example 1.1. To fix notation, let us assume that of the m hypotheses tested
{H?,HY,... H2}, mg are true null hypotheses, the number and identity
of which are unknown. The other m — mg hypotheses are false. Denote
the corresponding random vector of test statistics {X;, Xs,..., X}, and
the corresponding p-values (observed significance levels) by {Pi, P, ... Py}
where P, =1 — FH?(XZ-).

Benjamini and Hochberg (1995) showed that when the test statistic are
independent the following procedure controls the FDR at level g-mq/m < g¢:

Procedure: Let py) < pa) < ... < pm) be the ordered observed

p-values. Define .
1
max{i: p) < q), (1)

and reject H?l) e H(Ok). If no such i exists reject no hypothesis.
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In the case that all tested hypotheses are true, i.e. when mg = m, this
theorem reduces to Simes’ global test of the intersection hypothesis proven
first by Seeger (1968) and then independently by Simes (1986). However,
when my < m the procedure does not control the FWE. To achieve FWE

control Hochberg (1988) constructed a procedure from the global test, which

g9
m—z+1

of f—z. The constants for the two procedures are the same at 2 =1 and i =m

has the same stepwise structure but each P;) is compared to instead
but elsewhere the FDR controlling constants are larger.

Example 1.1 (continued):

Compare the two procedures conducted at the .05 level wn the multiple
endpoint ezample. Hochberg’s FWE controlling procedure rejects the two hy-
potheses with p-values less than .001, just as the Bonferroni procedure does.
The FDR controlling procedure rejects the four hypotheses with p-values less
than .01. In this study the ninth p-value 1s compared with .005 if FWE control
1s required, with .025 if FDR control is desired.

More details about the concept and procedures, other connections and

historical references are discussed in Section 2.2.

1.3 The problem

When trying to use the FDR approach in practice, dependent test statistics
are encountered more often than independent ones, the multiple endpoints
example of the above being a case in point. A simulation study by Benjamini
et al (1997) showed that the same procedure controls the FDR for equally
positively correlated normally distributed (possibly studentized) test statis-
tics. The study also showed, as demonstrated above, that the gain in power
is large. In the current paper we prove that the procedure controls the FDR
in families with positively dependent test statistics (including the case inves-
tigated in the mentioned simulation study). In other cases of dependency,
we prove that the procedure can still be easily modified to control the FDR,

although the resulting procedure is more conservative.



Since we prove the theorem for the case when not all tested hypotheses are
true, the structure of the dependency assumed may be different for the set of
the true hypotheses and for the false. We shall obviously assume that at least
one of the hypotheses is true, otherwise the FDR is trivially 0. The following
property, which we call Positive Regression Dependency on each one from
a Subset Iy, or PRDS on I, captures the positive dependency structure for
which our main result holds. Recall that a set D is called increasing if z € D
and y > z, implied that y € D as well.

Property PRDS For any increasing set D, and for each 1 € I, P(X €
D|X; = ) is non-decreasing in x.

The PRDS property is a relaxed form of the positive regression dependency
property. The latter means that for any increasing set D, P(X € D|X; =
z1,...X; = ;) is non-decreasing in (z1,...z;) (Sarkar, 1969). In PRDS the
conditioning is on one variable only, each time, and required to hold only for
a subset of the variables. If X is MTP,, X is positive regression dependent,
and therefore also PRDS over any subset (details in Section 2.3), a property
we shall simply refer to as PRDS.

1.4 The results

We are now able to state our main theorems:

Theorem 1.2 If the joint distribution of the test statistics is PRDS on the
subset of test statistics corresponding to true null hypotheses, the procedure
gwen by (1) controls the FDR at level < Tq.

In section 2 we discuss in more detail the FDR criterion, the historical back-
ground of the procedure and available results, and review the relevant notions
of positive dependency. This section can be consulted as needed. In Section
3 we outline some important problems where it is natural to assume that
the conditions of Theorem 1.2 hold. In Section 4 we prove the theorem. In

the course of the proof we provide an explicit expression for the FDR, from



which many more new properties can be derived, both for the independent
and the dependent cases. Thus issues such as discrete test statistics, com-
posite null hypotheses, general step-up procedures, and general dependency,
can be addressed. This is done in Section 5. In particular we prove there the

following theorem:

Theorem 1.3 When the procedure is conducted with q/(X2,1) taking the
place of q in (1), it always controls the FDR at level < ™q.

As can be seen from the above summary, the results of this paper greatly

increase the range of problems for which a powerful procedure with proven

FDR control can be offered.

2 Background

2.1 The FDR criterion

Formally, as in Benjamini and Hochberg (1995), let V denote the number of
true null hypotheses rejected, and R the total number of hypotheses rejected,
and let Q be the unobservable random quotient,
Q - { V/R if R>0
0 otherwise.
Then the FDR is simply E(Q). Their approach calls for controlling the FDR
at a desired level g, while maximizing F(R).

If all null hypotheses are true (the intersection null hypothesis holds) the
FDR is the same as the probability of making even one error. Thus control-
ling the FDR controls the latter, and ¢ is maybe chosen at the conventional
levels for a. Otherwise, when some of the hypotheses are true and some are
false, the FDR is smaller (Benjamini and Hochberg (1995)). The control of
FDR assumes that when many of the tested hypotheses are rejected it may
be preferable to control the proportion of errors rather than the probability

of making even one error.



The FDR criterion, and the step-up procedure that controls it, have been
used successfully in some very large problems: thresholding of wavelets co-
efficients Abramovich and Benjamini (1996), studying weather maps Yeku-
tieli and Benjamini (1999), and multiple trait location in genetics Weller et
al (1998), among others. Another attractive feature of the FDR criterion is
that if it is controlled separately in several families at some level, then it is
also controlled at the same level at large (as long as the families are large
enough, and do not consist only of true null hypotheses).

Although the FDR controlling procedure has been implemented in stan-
dard computer packages (MULTPROC in SAS), one of its merits is the sim-
plicity with which it can be performed by succinct examination of the ordered
list of p-values from the largest to the smallest, and comparing each p(;) to 7
times g/m stopping at the first time the former is smaller than the latter and
rejecting all hypotheses with smaller p-values. Rough arithmetic is usually

enough.

2.2 Positive Dependency

Lehmann (1966) first suggested a concept for bivariate positive dependency,
which is very close to the above one, and amounts to being PRDS on ev-
ery subset. Generalizing his concept from bivariate distributions to the
multivariate ones was done by Sarkar (1969). A multivariate distribution
is said to have positive regression dependency if for any increasing set D,
P(X € D|X; = z1,...X; = z;) is non-decreasing in (z1,...z;).

A stricter condition, implying positive regression dependency, is multivariate
total positivity of order 2, denoted MTP,: X is MTP, if for all x and y,

f(x)- fy) < f(min(x,y) - f(maz(x,y)), (2)

where f is either the joint density or the joint probability function, and the
minimum and maximum are evaluated component-wise. While being a strong

notion of dependency, MTP, is widely used, as this property is easier to show.



Positive regression dependence implies in turn that X is positive associated,
in the sense that for any two functions f and g, which are both increasing
(or both decreasing) in each of the coordinates, C'ov(f(X)g(X)) > 0.

PRDS has two properties for which it is different from the above concept.
First, monotonicity is required after conditioning only on one variable at a
time. Second, the conditioning is done only on any one from a subset of the
variables. Thus if X is MTP,, or if it is positive regression dependent, then
it 1s obviously positive regression dependent on one over any subset. Nev-
ertheless PRDS and positive association do not imply one another, and the
difference is of some importance. For example, a multivariate normal distri-
bution is positively associated iff all correlations are non-negative. Not all
correlations need be non-negative for the PRDS property to hold (see Section
3.1 case 1 below). On the other hand, a bivariate distribution may be pos-
itively associated, yet not positive regression dependent (Lehmann (1966)),
and therefore also not PRDS on any subset. A stricter notion of positive as-
sociation, Rosenbaum’s (1984) conditional (positive) association, is enough
to imply PRDS: X is conditionally associated, if for any partition (X, X3)
of X, and any function h(X;), X, given h(X;) is positively associated.

It is important to note that all of the above properties, including PRDS,
remain invariant to taking co-monotone transformations in each of the coor-
dinates (Eaton (1986)). Note also that D is increasing iff D is decreasing, so
the PRDS property can equivalently be expressed by requiring that for any
decreasing set C, and for each 7 € Iy, P(X € C|X; = z) is non-increasing in
x. Therefore, whenever the joint distribution of the test statistics is PRDS on
some Iy so does the joint distribution of the corresponding p-values, be they
right-tailed or left-tailed. Background on these concepts is clearly presented
in Eaton (1986), supplemented by Holland and Rosenbaum (1986).



2.3 Historical background and related results

The FDR controlling multiple testing procedure (Benjamini and Hochberg
(1995)), given by (1), is a step-up procedure that involves a linear set of
constants on the p-value scale (step-up in terms of test statistics, not p-
values). The FDR controlling procedure is related to the global test for the
intersection hypothesis, which is defined in terms of the same set of constants:
reject the single intersection hypothesis if there exist a4 s.t. p() < %a. Simes
(1986) showed that when the test statistics are continuous and independent,
and all hypotheses are true, the level of the test is a. The equality is referred
to as Simes’ equality, and the test has been known in recent years as Simes’
global test. However the result had already been proven by Seeger (1968)
(Shaffer (1995) brought this forgotten reference to the current literature).
See Sen (1999) for an even earlier, though indirect, reference.

Simes (1986) also suggested the procedure given by (1) as an informal
multiple testing procedure, and so did Elkund, some 20 years earlier (Seeger
(1968)). The distinction between a global test and a multiple testing proce-
dure is important. If the single intersection hypothesis is rejected by a global
test, one cannot further point at the individual hypotheses which are false.
When some hypotheses are true while other are false (i.e. when my < m),
Seeger (1968) showed referring to Elkund, and Hommel (1986) showed re-
ferring to Simes, that the multiple testing procedure does not necessarily
control the FWE at the desired level. Therefore, from the perspective of
FWE control, it should not be used as a multiple testing procedure. Other
multiple testing procedures that control the FWE have been derived from
the Seeger-Simes equality, e.g. by Hochberg (1988), and Hommel (1986).

Interest in the performance of the global test when the test statistics are
dependent started with Simes (1986), who investigated whether the proce-
dure is conservative under some dependency structures, using simulations.
On the negative side, it has been established by Hommel (1988) that the
FWE can get as high as a- (1+1/2+ ...+ 1/m). The joint distribution for
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which this upper bound is achieved is quite bizarre, and rarely encountered
in practice. But even with tamed distributions, the global test does not al-
ways control the FWE at level a. For example, when two test statistics are
normally distributed with negative correlation the FWE is greater than a,
even though the difference is very small for conventional levels (Hochberg and
Rom (1996)). On the other hand, extensive simulation studies had shown
that for positive dependent test statistics the test is generally conservative.
These results were followed by efforts to extend theoretically the scope of
conservativeness, starting with Hochberg and Rom (1996). These efforts
have been reviewed in the most recent addition to this line of research by
Sarkar (1998). An extensive discussion with many references can be found
in Hochberg and Hommel (1998).

Directly relevant to our work are the two strongest results for positive
dependent test statistics: Chang et al (1996) proved the conservativeness
for bivariate distributions which are positive regression dependent. Sarkar
(1998) proved the conservativeness for multivariate distributions with MT P,
densities. The condition for positive dependency is weaker in the first but
the proof applies to bivariate distributions only. Theorem 1.2, when applied
to the limited situation where all null hypotheses are true, generalizes the
result of Chang et al (1996) to multivariate distributions. Although the final
result is somewhat stronger than that of Sarkar (1998), the generalization
is hardly of importance for the limited case in which all tested hypotheses
are true. The full strength of Theorem 1.2 is in the situation when some
hypotheses may be true and some may be false, where the full strength of a
multiple testing procedure is needed. For this situation the results of Section

2.1 for independent test statistics are the only ones available.
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3 Applications

In the first part of this section we establish the PRDS property for some
commonly encountered distributions. Recall the sets of variables we have:
test statistics for which the tested hypotheses are true and test statistics
for which they are false. We are inclined to assume less about the joint
distribution of the latter, as will be reflected in some of the following results.
In the second part we review some multiple hypotheses testing problems
where controlling the FDR is desirable, and where applying Theorem 1.2
shows that using the procedure is a valid way to control it. We emphasize the
normal distribution and its related distributions in the first part. For many
of the examples in the second part, using normal distribution assumptions
for the test statistics is only a partial answer, as methods which are based
on other distributions for the test statistics are sometimes needed (such as

non parametric). These issues are beyond the scope of this study.

3.1 Distributions

1. Multivariate Normal Test Statistics. Consider X ~ N(u,X) a vector
of test statistics each testing the hypothesis y; = 0 against the alternative
p; >0, forz =1,...m. For 1 € Iy, the set of true null hypotheses, u; = 0.
Otherwise u; > 0.

Assume that for each ¢ € Iy, and for each j # ¢, ¥;; > 0, then the
distribution of X is PRDS over ;.

Proof. For any i € Iy, denote by X(®) the remaining m — 1 test statistics,
By is its mean vector, ;) ; is the column of covariances of X; with X@,
and X (;;) is ¥ after dropping the i-th row and column.
The distribution of X() given X; = z; is N(u), =), where

20 =%, - E(i),izi_,ilzl(i),i and pt = pg + 2025 (2 — ).
Thus if ;) ; is positive, the conditional means increase in ;. Since the co-

variance remains unchanged, the conditional distribution increases stochas-
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tically as x; increases, i.e., for any increasing functions f, if z; < z; then
E(f(X)|X; = z:) < E(f(X9)| X = ;). (3)
Hence the PRDS over I holds. g

Note, that the inter-correlations among the test statistics corresponding
to the false null hypotheses need not be non-negative. The fact that less
structure is imposed under the alternative hypotheses may be important in
some applications, see for example the multiple endpoints problem in the
following section.

2. Latent variable models. In monotone latent variable models, the distri-
bution of X is assumed to be the marginal distribution of some (X, U), where
the components of X given U = u are (a) independent, and (b) stochastically
co-monotone in u.

If, furthermore, U is univariate, X is said to have a unidimensional latent
variable distribution (Holland and Rosenbaum (1986)). Holland and Rosen-
baum (1986) show that a unidimensional latent distribution is conditionally
positively associated. Therefore it is also PRDS on any subset.

It is interesting to note that the distributions for which Sarkar and Chang
(1997) prove their result are all unidimensional latent variable distributions.

For the multivariate latent variable model, if U is MTP,, and each
X;|U =u is MTP, in z; and u, then the distribution of X is MTP, (called
latent MTP,.) See again Holland and Rosenbaum (1986), based on a lemma
of Karlin and Rinott (1980). While MTP; is not enough to imply conditional
positive association, it is enough to assure PRDS over any subset.

We shall now generalize the unidimensional latent variable models, to
distributions in which the conditional distribution of X given U is not inde-
pendent but PRDS on a subset . In this class of distributions the random
vector X is expressed as a monotone transformation of a PRDS random

vector Y and an independent latent variable U, the components of X are

Xj = gj(}/;'a U)
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Lemma 3.1 If (1) Y is a continuous random vector, PRDS on a subset
Io; (2) U an independently distributed continuous random variable; (3) for
j = 1...m the components of X, X; = g;(Y;,U) are strictly increasing
continuous functions of the coordinates Y; and in U; (4) fori € Iy, U and

Y; are PRDS on X;; then X is PRDS on I,.

The proof of this lemma is somewhat delicate and lengthy, and is given in
the appendix. Condition (4) of the lemma depends on both the transforma-
tion g; and the distribution of Y; and U. In the following example condition

(4) is asserted via the stronger TP, condition.

Example 3.2 U, and U; are independent chi-square or inverse chi-square
random variables, W = U, - U;. We show that U; is PRDS on W by showing
the T P, property for each pair (U;, W), ¢ = 0, 1. Since for 7 = 0,1

fo.w(z1,22) = 1/ - fu,(21) - fo,_;(22/21),

it is sufficient to assert that fy,_,(z2/z1) is TPy in z; and z,. It is easy to
check that this property holds for both the chi-square and inverse chi-square

distributions.

Corollary 3.3 If Y is multivariate normal, |Y| PRDS on the subset Iy for
which p; = 0 and S? is an independently distributed x2, then |X| = |Y|/S is
PRDS on I.

Proof. Using example 3.2, setting Uy = |Y;|?, and U; = 1/5?, condition (4)
holds so we can apply lemma 3.1. Ll

3. Absolute values of multivariate normal and t. Y ~ N(p,X) and
consider two-sided tests: p; = 0 against the alternative p; # 0. Test statistics
are multivariate ¢, obtained by dividing |Y| by an independent (pooled) chi-
square distributed estimator S > 0. According to corollary 3.3 if |Y|is PRDS

14



over the set of true null hypotheses then |Y|/S is also PRDS over the set of
true null hypotheses.

If ¥ = I, the components of |Y| are independent and thus PRDS over
any subset. For ¥ # I, |Y| is known to be MT P, under some conditions
(see Karlin and Rinott (1981)), but only when all y; = 0. This case was
already covered by Sarkar (1998) and is an uncommon example in which all
null hypotheses are true, hence the FDR equals the FWE.

Y can also contain a subset of dependent y = 0 components of the above
form and a subset of g # 0 components, each component corresponding to
p = 0 independent to all g # 0 components, |Y| is then PRDS over the
subset for which g = 0.

4. Studentized multivariate normal. Consider now Y multivariate normal
as in case 1, studentized as in case 3 by S. Because the direction of mono-
tonicity of ¥;/S in S changes as the sign of Y; changes, Y/S is not PRDS.
Yet we will now show that if g, the level of the test, is less than 1/2 procedure
(1) applied to Y /S offers FDR control.

We will show this by introducing a new random vector ST(Y,S) defined
as following: if Y; > 0 then S*(Y;,S) = Y;/S, otherwise S*(Y;,5) = Y;. The
transformation S*(Y,S) is increasing in both Y; and in 1/S, which satisfies
condition (3) in lemma 3.1. Condition (4) of lemma 3.1 is also kept, but
only for positive values of Y;, for which we can express S*(Y;,S) = |¥;|/S.
According to Remark 4 in the appendix, S*(Y,S) is PRDS, but only when
the conditioning is on positive values of S*(Y;,.5).

According to remark 4.2, the PRDS condition must only hold for P; €
[0, g]. For g < 1/2 this means positive value of S*(Y;, S). Hence when applied
to S*(Y,S) procedure (1) controls the FDR.

Finally notice that since ¢ < 1/2 all the critical values of procedure (1) are
positive, and for Y > 0, ST(Y,S) = Y/S. Hence the outcome of applying
procedure (1) on Y/S is identical to the outcome of applying procedure (1)
on S*(Y,S), therefore procedure (1) will also control the FDR when applied
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to Y/S.

3.2 Applied problems

Problem 1. Sub-group (subset) analysis in the comparison of two treatments.
When comparing a new treatment to a common one, it is usually of interest
to find subgroups for which the new treatment may prove out to be better.
If there is no 'pooling’ across sub-groups involved, then the test statistics are
independent. More typically averages are compared within the sub-groups,
yet a pooled estimator of the standard deviation Speoreq 1s used. Hence we
have test statistics which are independent and approximately normal, con-
ditionally on Spooted- These (usually) one-sided correlated t-tests fall under
case 4, and thus Theorem 1.2 applies.

Problem 2. Screening orthogonal contrasts in a balanced design Consider
a balanced factorial experiment with m factorial combinations and n repeti-
tions per cell, which is performed for the purpose of screening many potential
factors for their possible effect on a quantity of interest. Such experiments
are common, for example, in industrial statistics when screening for possible
factors affecting quality characteristics, and in the pharmaceutical industry
when screening for potentially beneficial compounds. In the above two, eco-
nomical considerations make it clear that in identifying a set of hypotheses
for further research allowing a controlled proportion of errors in the identified
pool is desirable. In fact the chosen level for ¢ may be higher than the levels
usually used for a. The distributional model is that of (usually) two-sided
correlated t-tests, which thus fall under case 3.

Problem 8. Many-to-One comparisons in Clinical Trials. Differently
phrased this is the problem of comparing a few treatments with a sin-
gle control, using one-sided tests. See the recent review by Dunnett and
Tamhane (1999) for the many approaches and procedures that control the
FWE. If the interest lies in recommending one of the tested treatments based

solely on the current experiment, FWE should be controlled. But if the the
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conclusion is closer in nature to the conclusion of problem 2, the control of
FDR is appropriate (see detailed discussion in Benjamini et al (1993).)

In the normal model, X; = (Y; — ¥5)/e:S, ¥i, 1 =0,1,...,m independent
normal random variables, with variances c;o? which are known up to o, 5%, an
independent estimator such that S?/0? ~ x2/v. (Y; — Y5)/c; is multivariate
normal with p;; > 0 hence PRDS, thus according to case 4 X is PRDS on
the set of true null hypotheses..

Example 3.4 The study of uterine weights of mice conducted by Steel and
Torrie (1980) and discussed in Westfall and Young (1993), a comparison of six
groups receiving different solutions to one control group. The lower tailed
p-values of the pooled variance t-statistics are: 0.183, 0.101, 0.028, 0.012,
0.003, 0.002. Westfall and Young (1993) show that using p-value resampling
and Step-Down testing three hypotheses are rejected at FWE 0.05. Four
hypotheses are rejected when applying procedure (1) using FDR level of
0.05.

Problem j. Multiple endpoints in clinical trials. Multiple endpoints, that
is the multiple outcomes according to which the therapeutic properties of one
treatment are compared with those of an established treatment, raises one
of the most serious multiplicity control problems in the design and analysis
of clinical trials. For a recent review see Wassmer et al (1998). Eighteen
outcomes were studied in example 1.1, but the number may reach hundreds,
so addressing this problem by controlling the FWE is overwhelmingly conser-
vative. A common remedy is to specify very few primary endpoints on which
the conclusion will be based, and give a lesser standing to the conclusions
from the other secondary endpoints, for which FWE is not controlled. How-
ever, it 1s not uncommon to find the advocated features of a new treatment
to come mostly from the secondary endpoints.

The FDR approach is very natural for this problem, and the emphasize

on primary endpoints is no longer essential ( but feasible as in Benjamini
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and Hochberg (1997)).

The test statistics of the different endpoints are usually dependent. Their
dependency is in most cases neither constant nor known, and stems both
from correlated treatment effect ( for non null treatment effects) and a la-
tent individual component affecting the value of all endpoints of the same
person. The individual component introduces a latent positive dependence
between all test statistics. Thus test statistics of null hypotheses are posi-
tively correlated to all other test statistics. Treatment effect may introduce
negative correlation between the affected endpoints, which may dominate the
latent positive dependency. Thus we want to allow those endpoints which
are affected by the treatment to have whatever dependence structure among
themselves.

Then, using the results of Case 1, Case 2 and case 4 above, Theorem 1.2
applies for the one-sided tests, be they normal tests , or t-tests. The situa-
tion with two sided tests is more complicated, as case 3 requires a stronger

assumption.

Example 3.5 Low lead levels and IQ Needleman et al (1979) studied the
neuropsychologic effects of unidentified childhood exposure to lead, by com-
paring various psychologic and classroom performances between two groups
of children differing in the lead level observed in their shed teeth. While
there is no doubt that high levels of lead are harmful, Needleman’s findings
regarding exposure to low lead levels, especially due to their contribution to
the environmental Protection Agency’s review of lead exposure standards,
are controversial. Needleman’s study was attacked on the ground of method-
ological flaws, for details see Westfall and Young (1993). One of the method-
ological flaws pointed out is control of multiplicity. Needleman et al (1979)
present three families of endpoints, and comment on the results of separate

multiplicity adjustments within each family as summarized below (under the

FWE heading).
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p-values FWE FDR

Family (omitting sum Rej. # of | Rej. # of
score p-values) thrshld. rej. | thrshld. rej.
“Teacher’s Behavioral | .003 .05 .05 .14 .005 3 .02 5
Ratings” .08 .01 .04 .01
.05 .003 .003
“Score of Wechsler .04 .05 .02 .49 .004 0 .004 0
Intelligence Scale .08 .36 .03 .38
for Children(Revised)” | .15 .90 .37 .54
“verbal Processing .002 .03 .07 .37 .004 3 .016 4
and Reaction .90 .42 .05 .04
Times” .32 .001 .001 .01
The three families .001 2 .012 9
jointly

The critics argue that multiplicity should be controlled for all families
jointly. Using Hochberg’s method at 0.05 level, correcting within each family,
six hypotheses are rejected. Correcting for all 35 responses, lead is found to
have an adverse effect in only two out of 35 endpoints.

Applying procedure (1) at 0.05 FDR level, the attack on Needleman find-
ings on grounds of inadequate multiplicity control is unjustified, whether
analyzed jointly or each family separately, lead was found to have an adverse

effect in more than a quarter of the endpoints.

4 Proof of Theorem

Proof. For ease of exposition let us denote the set of constants in (1), which
define the procedure, by
1 .
G =—q, 1=1,2,...,m (4)
m

Let A, , denote the event that the procedure rejects exactly v true and s

false null hypotheses. The FDR 1is then,

m1 ™Mo

E(Q)=>.>

s=0v=1 v —I_ s

v

Pr(A,,). (5)
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In the following lemma Pr(A, ,) is expressed as an average.

Lemma 4.1

1’"0

Pr(A ZPr ({P: < quis}[) Aus)- (6)

Proof. For a fixed v and s, let w denote a subset of {1...mg} of size v, and
Ay, the event in A, , that the v true null hypotheses rejected are w. Note
that Pr{P; < qu4, N Ay,} equals Pr{A} } if i € w, and is otherwise 0.

S Pe({Ps < g} () Au) = 3o X Pe({P < qur} ) 42.)

i=1 w

= PP < g 42) = X301 € w) Pr{az,)

w z=1 w z=1

= Y v-Pr(4y,) = v-Pr{4,.}. (7)

Combining equations (5) with Lemma 4.1, the FDR is

m1 Mo

=X {Zrmw<%am&g}

8=0v= 1’U—|—S 1.0

m1 ™Mo

Z{ZZ—PI {P<QU+a}ﬂ Avs)} (8)

=0 aO'ul

Now that the dependency of the expectation on v is only through A4, ,, we
reconstruct A, , from events that depend on ¢ and £k = v + s only, so the
FDR may be expressed similarly.

For i = 1...mqg, let P(®) be the remaining m — 1 p-values after dropping
P;. Let C ) denote the event in which if P; is rejected then v — 1 true null
hypotheses and s false null hypotheses are rejected alongside with it. That
1s, C ) is the projection of { P; < gu4,} N A,, onto the range of P{*) and
expanded again by cross multiplying with the range of P;. Thus we have:

{Pz' S qu+a} N Av,a - {Pz S qu+a} N 0182 (9)

20



Denote by C,ﬁ") = U{C’ézz : v+ s = k}. For each ¢ the C’,gi) are disjoint, so
the FDR can be expressed as:

moml

BQ) =YY ;Pr(P<q n P} (10)

i=1 k=1
where the expression no longer depends on v and s, as desired.

In the last part of the proof we construct an expanding series of increasing
sets, on which we use the PRDS property to bound the inner sum in (8) by
g/m. For this purpose, define D,(:) = U{CJ@ :j<k}fork=1...m. D,(:)
can also be described using the ordered set of the p-values in the range of
P, {pg)) <...< pgg_l)}, in the following way:

(i)(k)a Gr+2 < P(i)(k+1) cos Gm < P(i)(m_n } (11)
for k=1...m — 1, and D% is simply the entire space. Expressing D,(:) as
above, it becomes clear that for each k, D,(:) is a nondecreasing set.

We now shall make use of the PRDS property, which states that for p < p’

Di={p : g1 <p

Pr(D|P,=p)<Pr(D|P=p). (12)
Following Lehmann (1966), it is easy to see that for j < since ¢; < ¢
Pr(D|P<q¢)<Pr(D|P<q), (13)

for any nondecreasing set D, or equivalently,

Pr({Pi <@} N D)) _ Pr({P < qenn} N DY)
Pr(P; < qx) - Pr(P; < gr41) '

(14)

Invoking (14) together with the fact that D;-Ql = Dy) U C]@l
Ek<m-—1

Pr({ <@} n DY)  Pr({ Pi< g} N CY))

yields for all

Pr( P < qx) Pr( P; < gr41)
Pr({ i< gei} N DY)  Pr({ P < geni} N Ci)y)
- Pr( P; < gt1) Pr( P; < gr41)

_ Pr({ P, < gr+1} N Dl(:l )

Pr( P; < qrt1) (15)
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Now, start by noting that C'; = D;, and repeatedly use the above inequal-

ity forz =1,...,m — 1, to fold the sum on the left into a single expression,

m , (7') , (")
< <
Z Pr({R qk} N C’,e ) < Pr({ P, < qm} Dm) 1, (16)
Pr(Pi < Qk) Pr(Pi < Qm)

k=1

where the last equality follows because D{) is the entire space.

Going back to expression (10) for the FDR,

Pr({P < g} N Ck )
Pr(Pz S Qk) ’

S |»~m I|MS
?rlH

||MS

(17)

because Pr(P; < q¢) < qr = iq under the null hypothesis (with equality for

continuous test statistics where each P; is uniform), so finally, invoking (16),

< & Pr({P < gk C mo

i=1 k=1 m

9
m

|

Remark 4.2 Note that PRDS is a sufficient but not a necessary condition.
In particular the PRDS property need not hold for all monotone sets D and
all values of p;. According to inequality (12), it is enough that they hold for
monotone sets of the form of (11) and P; € [0, g].

This remark is used to establish that theorem 1.2 holds for one sided
multivariate ¢ and g < 1/2, even though the distribution is not PRDS.

5 Generalizations and further results

If the test statistics are jointly independent, the FDR as expressed in (10) is

moml

ZZ Pr{P<—q}ﬂC )

zlkl
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my m k :

= ZPr(P; < —q)-Pr( C) (19)
i:lkzz:lk m k
mg a m . m

= 2.y Py =22 20
Zm > Pr(C) — 4, (20)

which yields an alternative (and possibly simpler) proof to the result in Ben-
jamini and Hochberg (1995). Moreover, the proof there depends critically on
the assumption that the P-values are uniformly distributed under the null
hypotheses, and therefore do not apply to discrete test statistics. But for

discrete test statistics, we have that

k k

Pr(P; < ) < —q, 1=12,...,mq. (21)
m

> —q
m
Therefore, when passing from (19) to (20), we need only change the equality

to inequality in order to complete the proof of the following theorem:

Theorem 5.1 For independent test statistics the procedure controls the FDR
at level less or equal to ™%q. If the test statistics are also continuous, the FDR

15 ezactly Tq.

The argument leading to the above theorem used only the fact that for dis-
crete test statistics the tail probabilities are smaller. Thus, in a similar way,
it follows that the FDR is controlled when the procedure is used for testing

composite null hypotheses, as in one-sided tests.

Theorem 5.2 For independent one-sided test statistics, if the distributions
i each of the composite null hypothesis are stochastically smaller than the
null distribution under which each p-value is computed, the procedure controls
the FDR at level less or equal to Tq.

The surprising part of Theorem 5.1 is that equality holds no matter what
the distributions of the test statistics corresponding to the false null hypothe-
ses are. The following theorem shows that this is a unique property of the

step-up procedure which uses the constants {%q} More generally, we can
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define step-up procedures SU(a), using any other monotone series of con-
stants oy < a1 < ... < oyt let B = max{7 : p;) < s}, and if such k exists
reject Hyy ... H).

Theorem 5.3 Testing m hypotheses with SU(a), assume that the distribu-
tion of the P-values, P = (Pgo,P;) is jointly independent. 1. If the ratio
ay/k is increasing in k, as the distribution of P increases stochastically the
FDR decreases. 2. If the ratio oy /k is decreasing in k, as the distribution of

P, increases stochastically the FDR increases.

Proof. Given the set of critical values & for k = 1,...m we define the

following sets:

Thus if P& ¢ Cr(d) and P; < ay then H} is rejected along with k — 1 other
hypotheses, but if P; > a4 H? is not rejected. Notice that sets Ci(&) are
ordered. If P() ¢ Ch(a) and P) < P’ then all ordered coordinates of

P’ are greater or equal to corresponding coordinates of P(®*). Therefore for

j=1...m—1, P('](;) > aj, thus P'@ ¢ Ci(a) for some I < k.

Next we define the function fz, fz:[0,1]™' — R,
f2(P9) = ay /k, for PO) € Cy(d). (23)

The FDR of all step-up procedures can be expressed similarly to expres-
sion (10). Start deriving lemma 4.1, by substituting aj in place of ak/m
throughout the proof. Then, denoting the FDR of SU(a) by E(Q(&)), we

use the independence of the test statistics to get:

g

B(Q(a)) = Pr({P, < as} N PO € C4(a)) (24)

NgE
| =

o
Il
—
ax
Il
—

Pr(P; < ak)Pr(P(i) € Cr(a)) (25)

o
Il
—
ax
Il
—

I I
NERINNSE
NSERANGE
?r.|$ x| =

PI‘(P(i) € Ck(c_f)) = Z Epi fa. (26)
=1

o
Il
—
ax
Il
—
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Note that the distribution of the test statistics corresponding to the mq
true null hypotheses is fully specified as U[0,1]. If a;/k increases in k, the
function fz is a decreasing function. Stochastic increase in the distribution
of P is characterized by the decrease of the expectation of all decreasing
functions, in particular a decrease in all the summands of the right side
of (26). Thus if P; increases stochastically the FDR decreases. If ai/k
decreases in k, the function fz is an increasing function. Thus if P; increases
stochastically the FDR increases. (The case where ay/k is constant has been

covered by Theorem 5.1.) q

These more general step-up procedures are especially important in partic-
ular settings, where the structure of dependency can be precisely specified. In
such a case a specific set of constants can be used for designing a step-up pro-
cedure which exactly achieves the desired FDR at the specified distribution.
Troendle (1996) took this route, calculating a monotone series of constants
which upon being used in the above fashion control the FDR for normally
distributed test statistics which are equally and positively correlated. His
calculations were done under the unproven assertion that when the non-zero
means are set at infinity the FDR is maximized. In order to use Theorem
5.3 for that purpose it should be generalized first to hold under some joint
distribution other than independent, say PRDS. We do not have yet such a
result.

An important question that remains to be answered is the scope of prob-
lems for which the two-sided tests retain the same level of control. An-
other important open question is whether the same procedure controls the
FDR when testing pairwise comparisons of normal means, either studentized
or not. Simulation studies, by Williams et al (1999) and by Benjamini et
al (1993), and some limited calculations in the latter, show that this is the
case. It is known that the distribution of the test statistics is not MTP,.
The PRDS condition does not hold as well.
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When facing such problems, it i1s always comforting to have a fall-back
procedure. The available FWE controlling procedure can be modified by
and it will then control the FWE at level a for
any joint distribution of the test statistics - as long as the hypotheses are
all true (Hommel (1986)). Similarly, Theorem 1.3 establishes that the same
modification of the procedure controls the FDR at the desired level, for any

working at level a/X7 1 )

joint distribution of the test statistics.

Proof. For simplicity of the exposition we shall use ¢ in (1), and show that
the FDR is increased by no more than E;-“:ll
Denote p;; = Pr({P; € [(’;L—l)q, #q]} N C,gi)). Note that,

(41 —1)

ipijk =Pr({P; € q, n%f]]} N U, o) = %- (27)

Returning to expression (10), the FDR can be expressed as,

E(Q) = . i%gpuk:ZZZEpz;k (28)

=1 k=1" j=1 i=1 j=1 k=3
mg m m 1 mg m 1 m m 1 q

< E Z E ~ Dijk < Z Z Zpuk = My (29)
i=1 j=1k=j J i=1j= 17 =1 Jljm

Obviously, as the main thrust of this paper shows, the adjustment by
27;1% ~ log(m) + % is very often unneeded, and yields too conservative a
procedure. Still, even if only a small proportion of the tested hypotheses
are detected as not true (approximately log(m)/m), the procedure is more
powerful than the comparable FWE controlling procedure of Holm (1979).
The ratio of the defining constants can get as high as (m + 1)/4log(m) in
favor of the FDR controlling procedure, so its advantage can get very large.

It should be noted that throughout all results of this work, the procedure
controls the FDR at a level too low by a factor of mq/m. Loosely speaking,
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the procedure actually controls the “False Discovery Likelihood Ratio”,
v
E(g)<gq (30)

Other procedures, which get closer to controlling the FDR at the desired
level, have been offered for independent test statistics in Benjamini and
Hochberg (2000), and in Benjamini and Wei (1999). Only little is known
about the performance of the first for dependent test statistics (Benjamini
et al (1997)), and nothing about the second.

Finally, recall the resampling based procedure of Yekutieli and Benjamini
(1999), which tries to cope with the above problem, and at the same time
utilize the information about the dependency structure derived from the
sample. The resampling based procedure is more powerful, at the expense of

greater complexity and only approximate FDR control.

Acknowledgment: we are thankful to Ester Samuel-Cahn, Yosef Rinott
and David Gilat for their helpful comments, and to a referee for keeping us

honest.

Appendix: Proof of Lemma 3.1. Proof. For each i € Iy and increasing

set D, we have to show that
Pr(XeD|X;=2)
is increasing in z. We will achieve this by expressing,
Pr(Xe€D|X;=2) = Eyx,=Pr(X €D | X; =2,U) (31)
and showing that for z < z”:

EU|X,~:a: PI‘(X eD | X; = ar:,U)
< EU|X,-:a:’ PI‘(X eD | X; = m’, U) (32)
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We prove the lemma in two steps.

(1) For each z < ' we construct a new random variable U’ whose marginal
distribution is stochastically smaller than the marginal distribution of U,
but its conditional distribution given X; = 2’ is identical to the conditional
distribution of U given X; = z.

(2) We show that the newly defined random variable U’ satisfies

Pr(XeD | X;=2,U=u) < Pr(XeD|X;,=2",U =u). (33)

By re-expressing the second term in inequality (32) in terms of U’, and then

using inequality (33) the proof is completed:

EU|X,~::1:’ PI'(X eD | Xi = m', U)
= EU’|X,’:E’ PI'(X € D | Xi = iDI, UI)
> BEyjx—Pr(X € D | X; =2,U).

Step (1) The construction of U”:
According to condition (4) of this lemma U is PRDS on Xj, this means that
the cdf of U|X; = 2’ is less or equal to the cdf of U|X; = z:

FU|X,':::’ < FU|X,'::1: . (34)

In order to avoid technicalities let us assume that U|X; = z has the same
support as U for any z. Now the following increasing transformation is well
defined, and satisfies

how(v) = Fyix._o(Fuix=(u))
< Frlxeo(Foxi=e(u)) = v, (35)

because of (34). The new random variable U’ is defined as

U' = how(U)
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and is, from (35), stochastically smaller than U. Because g, Y and U are
continuous, the conditional distribution of U given X; is continuous, hence

hy o and its inverse h,s , can be defined. Using the notation
' = hg(u), (36)

we can state the following properties.

(1) v < ', again because of (35), and h, , being its inverse.

(i) Fuxi=a(u) = Fyixi—a(¥),

which follows directly from the definition of A, ..

(iii) The events U < ' and U’ < u are identical, as U’ is a monotone function

of U.
Combining (i), (ii), and (iii), we get

Pr(U<u|X;=2z) = Pr(U<|X;=2)
= Pr(U'<u| X;=12).

Hence U|X; = ¢ and U’|X; = 2’ are identically distributed.

Step (2) a proof of inequality (33):

The function g; is one to one, so the value of U and X; uniquely determine the
value of Y;. Thus for each u, and the corresponding u’ defined in expression

(36), denote y and y’ those values of Y; which satisfy

gi(y,u) =z, and g;(y',v) = z".

We now establish that for the pair 2’ > z, and the pair v’ > u as above,

we also have that y’ > y. As g; is strictly increasing in both components,
fixing X; then Y; <y iff U > u, thus

Pr(Y; <y| X;=2) = Pr(U >u| X; =2z) = 1 — Fyjx;=a(u).
Similarly, ¥; < ¢' if U > 4/
Pr(Y; <y'| Xi=2') = Pr(U >4 X;=2") = 1 — Fyx;=or ().
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As Fyx;=-'(v') = Fyjx;==(u), y and y' are quantiles corresponding to the
same probability. Returning to condition (4) of the lemma Y; is PRDS on
X;, therefore Y;|X; = z' is stochastically greater than Y;|X; = z, thus y < ¢'.

We now define:
Y(D,u) := {Y: g(Y,u) €D}

Note that if D is an increasing set then Y(D,u) is an increasing set. We can
now proceed to complete the proof of step (2):

Pr(XeD|X;=2,U=u)
Pr(Y € Y(D,u) | Yi=y,U = u)

< Pr(Y eY(D,u) | Y=y, U =) (37)
< Pr(YeY(Dw)| Y=y, U=1) (38)
= Pr(XeD|X;=2,U=1).

= Pr(XeD|X;=2 U =nu). (39)

Inequality (37) holds because Y is PRDS and independent of U. Using again
the independence, and the fact that if v < v’ then Y(D,u) C Y(D,u’'), we
get inequality (38). Finally as U’ = u iff U = u' we get the equality in
expression (39). This completes the proof of Step (2), and thereby the proof
of Lemma 3.2. g

Remark 1: Note that the seemingly simple route of proving lemma 3.2 via

showing
PrXeD|X;=2,U=u) < Pr(XeD|X;=2"U=nu), (40)

does not yield the desired result, because the distribution of U|X; = z is
different than the the distribution of U|X; = z'.

Remark 2: In the course of the proof we established the monotonicity of
Pr(XeD|Y,=y,U=u)
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in y and in u. However, because g; is increasing, fixing X; and increasing U

will decrease Y;, because Y is PRDS, and
Pr(X € D | Xi = 2,U = ) (41)

does not necessarily increase in u. If expression 41 increases in u, for example
when the components of Y are independent, proof of lemma 3.2 is immedi-
ate because the distribution of U|X; = z' is stochastically greater than the
distribution of U|X; = z.

Remark 3: The assumption that U|X; = = has the same support as U is not
critical. With appropriate definition of the inverse of the conditional cdf of
U, FI;|1X,~7 h . can be well defined over the entire range of U. h,, can also be
defined similarly. It will be the inverse of h, . only on the respective ranges.
Properties (i) - (iii) still hold under this more complicated construction.
Remark 4: If conditions (1)-(3) of the lemma are met, while condition (4):
U and Y; are PRDS on X; is only true for X; such that X; > z; then altering
the proof accordingly, X is PRDS on X; > z;.
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