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Plan

1. Background
• Bayesian Selective inference
• The submodel interpretation of parameters in model selection
• Frequentist post model selection inference

2. Bayesian post model selection inference
• Phrasing POSI as a Bayesian selective inference problem
• Bayesian POSI in a simplified example
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Background

Selective Inference?

Benjamini and Yekutieli ‘05, two separate type problems can arise when
providing inference for multiple parameters:

1. Simultaneity is the need to provide inferences that apply to all the
parameters.

2. Selective inference refers to the practice of providing marginal statistical
inferences for parameters that are selected after viewing the data.
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Selective inference

Selective inference a new problem?

• Post hoc inferences are selective inferences. Tukey ‘53, ‘’The Problem
of Multiple Comparisons,” suggests controlling FWE ≤ α because it
ensures that the probability of making any selected type-I error is less
than α.

• Soric ‘89: Goal of many studies is making statistical discoveries (=
finding non-zero effects); it is mainly the discoveries that are reported
and included into science; unless the proportion of false discoveries is
kept small there is danger that a large part of science is untrue ...

• Ioannidis ‘05, “Why most research findings are false?”

• Berk et al. ‘12, “Valid Post-Selection Inference”

• Weinstein et al. ‘12, “Selection Adjusted Confidence Intervals
with More Power to Determine the Sign”
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Selective inference

FDR control – a frequentist mechanism for ensuring that
≈ 95% of the research findings are true

Benjamini and Hochberg ‘95 considered the problem of testing H1 · · ·Hm

I A discovery is rejecting a null hypothesis
I A false discovery is erroneously rejecting a true null hypothesis
I Define

FDR = E{V/max(R, 1)}

R – number of discoveries
V – number of false discoveries

I BH procedure: a multiple testing procedure that controls FDR ≤ q,
i.e. ensure that ≈ 1− q of the discoveries are true discoveries
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Selective inference

FCR control – a frequentist mechanism for ensuring that
≈ 95% of the inferences for the selected parameters are true

Benjamini and Yekutieli ‘05 generalize the BH testing framework:

1. m parameters θ1 · · · θm with corresponding estimators T1 · · · Tm

2. Construct CI’s for selected parameters S̃(T1 · · · Tm) ⊆ {1 · · ·m}

I 1− q CIs for selected parameters don’t offer marginal 1− q coverage
probability.

I Suggest the False Coverage-statement Rate as a measure for the validity
of CI’s constructed for the selected parameters FCR = E{V/max(R, 1)}
where R = |S̃(T1 · · · Tm)|, V – number of non-covering CIs,

I For independent T1 · · · Tm and any selection rule: constructing marginal
1− R · q/m CI’s for each selected parameter ensures FCR ≤ q
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Bayesian selective inference

Bayesian selective inference

Bayesian selective inference framework:

• θ is the parameter, Y is the data and Ω is the data sample space.

• π(θ) is the prior distribution and f (y|θ) is the likelihood function.

• The multiple parameters, for which inference may or may not be
provided, are actually multiple functions of θ : h1(θ), h2(θ), . . .

• For each hi(θ) there is a given subset Si
Ω ⊆ Ω, such that inference is

provided for hi(θ) only if y ∈ Si
Ω is observed.
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Bayesian selective inference

Bayesian selective inference – a truncated data problem

• As inference is provided for hi(θ) only if y ∈ Si
Ω, Y = y used for

providing selective inference for hi(θ) is a realization of fSi(θ, y), the
joint distribution of (θ,Y) truncated by the event that y ∈ Si

Ω.

• We define fSi(θ, y) through a average risk:
if selective inference for hi(θ) involves an action δi(Y) associated with a
loss function L(hi(θ), δi), then fSi(θ, y) is the distribution over which the
expected loss ∫

θ

∫
y∈Si

Ω

fSi(θ, y) · L(hi(θ), δi(y)) dydθ (1)

is the average risk incurred in selective inference for hi(θ).
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Bayesian selective inference

Example 1: Predicting students’ academic abilities

We wish to predict a student’s “true” academic ability from his/her
observed academic ability – but only for students that are admitted to college

• True academic ability θi ∼ N(0, 1)

• Observed academic ability in high school Yi ∼ N(θi, 1)

• Only Students with 0 < Yi are admitted to college.

Find fS(θi, yi) for which prediction error is∫ ∞
θi=−∞

∫ ∞
yi=0

fS(θi, yi) · {θi − δ(yi)}2 dyidθi
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Bayesian selective inference

Predicting true ability for a random college student

Consider the case of a college professor predicting θi for a student in his class

• Joint distribution of (θi,Yi) for college student is generated by drawing
(θi,Yi) for a high school student and keeping it only if 0 < Yi.

• Thus, joint density of (θi, yi) used for predicting θi is

fS(θi, yi) ∝ e−
θ2

i
2 · e−

(θi−yi)
2

2 /Pr(Yi > 0) ∝ e−
(θ−yi/2)2

2·(1/2)
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Bayesian selective inference

Distribution of (θi,Yi) for college students
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Bayesian selective inference

Predicting true ability for a high school student

Now consider the case of a counselor at high school predicting θi for a student
arriving for mandatory counseling when there is a high school regulation
instructing counselors to predict academic ability only for students that can be
admitted to college

• Thus in this case θi ∼ N(0, 1)

• and then Yi used to predict θi is drawn from the N(θi, 1) density
truncated by the event 0 < Yi

• Now the joint density of (θi,Yi) used for predicting θi is

fS(θi, yi) ∝ e−
θ2

i
2 · e−

(θi−yi)
2

2 /Pr(Yi > 0|θi)
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Bayesian selective inference

Distribution of (θi,Yi) for high school students
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Bayesian selective inference

Joint distribution of selected (θi,Yi)
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Bayesian selective inference

Conditional density of θi|Yi = 1
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Bayesian selective inference

Return to distribution of (θi,Yi) for college students

• The joint truncated distribution of (θi,Yi)

fS(θi, yi) =
ISΩ(yi) · π(θi) · f (yi| θi)

Pr(Yi ∈ SΩ)
(2)

• The marginal truncated distribution of θi

πS(θi) =

∫
SΩ

π(θi) · f (yi| θi)

Pr(Yi ∈ SΩ)
dyi =

π(θi) · Pr(Yi ∈ SΩ| θi)

Pr(Yi ∈ SΩ)
(3)

• Dividing (2) by (3) yields the truncated conditional distribution of Yi|θi

fS(yi|θi) = ISΩ(yi) · f (yi| θi)/Pr(Yi ∈ SΩ| θi)
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Bayesian selective inference

Return to distribution of (θi,Yi) for high-school students

• The joint truncated distribution of (θi,Yi)

fS(θi, yi) =
ISΩ(yi) · π(θi) · f (yi| θi)

Pr(Yi ∈ SΩ|θi)
(4)

• The marginal truncated distribution of θi

πS(θi) =

∫
SΩ

π(θi) · f (yi| θi)

Pr(Yi ∈ SΩ|θi)
dyi = π(θi) (5)

• And again, the truncated conditional distribution of Yi|θi

fS(yi|θi) = ISΩ(yi) · f (yi| θi)/Pr(Yi ∈ SΩ| θi)
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Bayesian selective inference

Selection-adjusted Bayesian inference

1. The selection-adjusted prior distribution is πS(θ).

2. The selection adjusted likelihood is the truncated distribution of Y|θ

fS(y|θ) = ISΩ(y) · f (y| θ)/Pr(Y ∈ SΩ| θ)

3. Bayes rules are based on the selection-adjusted posterior distribution

πS(θ| y) ∝ πS(θ) · fS(y|θ)

George & Yekutieli (Wharton & TAU) Bayes POSI December 13, 2012 18 / 37



Bayesian selective inference

Fixed and Random parameters

• θ is called a fixed parameter in cases where only Y|θ is truncated. Fixed
θ are generally fixed effects whose value can be thought to be generated
once from π(θ) and remain unchanged. For fixed θ

πS(θ) = π(θ)

• θ is called a random parameter in cases where the joint distribution of
(θ,Y) is truncated. Random θ’s are usually the random effects whose
values are generated, and thus truncated, concurrently with the data. For
random θ

πS(θi) ∝ π(θi) · Pr(Yi ∈ SΩ| θi)

• If θ is assigned a non informative prior than the same non informative
prior is also used for the selection-adjusted prior

πS(θ) = π(θ)
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POSI

Berk et el. ‘12: the full model interpretation of parameters

• The full model is

Y = Xn×pβp×1 + ε , ε ∼ N(0, σ2In×n)

• Submodels are denoted

M = {j1 · · · jm) ⊂ {1 · · · p}, XM = {Xj1 · · ·Xjm}.

• The target of inference is µ = Xβ or some functionals thereof.

• βM = {βi : i ∈ M} selected after viewing the data assumed to consist of
the non-zero components of β.

• Thus, µM = XMβM are regarded as a computational compression and a
parsimonious statistical summary µ, and neither as models in their own
right nor as objects of future scientific research.
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POSI

The submodel interpretation of parameters

Berk et al. ‘12, suggest an alternative interpretation for selected sub models

• The submodel interpretation of parameters. A submodel M corresponds
to a subset of β and {βi : i /∈ M}, the deselected components of β, are
non-existent.

• Hence the relevant components are only those in βM and these will
generally differ from their siblings in β.

• Thus selecting model M implies that the target of estimation

βM = (XT
MXM)−1XT

MXβ ⇔ µM = XMβM.

• With βj·M denoting is the coefficient of the j’th predictor in X “adjusted”
for the other predictors in M.

• µM is the projection of µ on the vector space spanned by XM.
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POSI

Berk et al. ‘12: valid frequentist POSI

• Estimator: β̂M = (XT
MXM)−1XT

MY with β̂j·m ∼ N(βj·m, (XT
MXM)−1

jj σ
2)

• A marginal 1− α CI for βj·M:

β̂j·m ± K ·
√

(XT
MXM)−1

jj · s2 , K = tn−p,1−α/2

• To ensure valid POSI (for any coeff. in any selected model) Berk et al.
‘12 propose using a larger K = K(X) ensuring simultaneous coverage

Pr{ ∀M, ∀j ∈ M, βj·M ∈ β̂j·m ± K(X) · S.E.(β̂j·M) } ≥ 1− α

• K(X) can be O(
√

p), for orthogonal designs K(X) ∼ O(
√

2 log p), and
there are also cases where K(X) ∼ O(

√
log p)
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Bayesian POSI

Phrasing POSI as a Bayesian selective inference problem

Adopting the Berk et al. ‘12 submodel Interpretation of parameters:

• Given data generating model

Y = µ + ε, µ = Xβ, ε ∼ N(0, σ2In×n).

• The likelihood is f (y| µ, σ2) = Πn
i=1φ((yi − µi)/σ).

• The prior distribution is π(µ, σ2).

• The posterior given by π(µ, σ2| y) ∝ f (y| µ, σ2) · π(µ, σ2).

• There is a model selection scheme: M → SM
Ω ,

y ∈ SM
Ω ⇒ target for inference is hM(µ) = µM.
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Bayesian POSI

Bayes rules in Bayesian POSI

• Thus the distribution of (µ, σ2,Y) used for estimating µM is truncated
by the event Y ∈ SM

Ω .

• The average risk incurred by estimating µM is∫
µ

∫
σ2

∫
y∈SM

Ω

L(µM, δM(Y)) fS(µ, σ2,Y)dµ dσ2 dY.

• This implies that the Bayes rules in POSI are based on the selection
adjusted posterior distribution

πS(µ, σ2| Y = y) ∝ fS(µ, σ2, y).
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Bayesian POSI

Example 2: Linear regression with orthonrmal X-matrix,
known σ2 and marginal selection rule

• We study model selection on a linear regression

Y = Xβ + ε, εn×1 ∼ N(0, 1 · In×n)

• Xn×p = {X1 · · ·Xp} with XTX = In×n

• Coefficient vector βp×1 = (β1 · · ·βp)T with iid

βi ∼ 0.9 · N(0, 0.22) + 0.1 · N(0, 22) (6)

• Coefficient vector estimator

bp×1 = XTY, b|β ∼ N(β, 1 · Ip×p)

• Marginal selection rule

M = {i : BCrit ≤ |bi|}
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Bayesian POSI

Full model estimation error

Average l2 risk for estimators of the form µ̂ = Xβ̂, β̂i = β̂i(bi):

Eβ,b

n∑
i=1

(µi − µ̂i)
2 = Eβ,b{(Xβ − Xβ̂)T(Xβ − Xβ̂)}

= Eβ,b{(β − β̂)TXTX(β − β̂)}
= Eβ,b{(β − β̂)T(β − β̂)}

= Eβ,b

p∑
i=1

(βi − β̂i)
2

= p · Eβi,bi (βi − β̂i)
2 (7)

= p · Ebi Eβi|bi (βi − β̂i)
2
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Bayesian POSI

Three full model estimators

• β̂Bayes
i = Eβi|biβi the Bayes estimator with marginal average risk:

Ebi {Eβi|bi(βi − Eβi|biβi)
2} = EbiVar(βi|bi)

• β̂MLE
i = bi the MLE with marginal average risk:

Eβi Ebi|βi(βi − bi)
2 = 1

• β̂Thrsh
i = I(BCrit ≤ |bi|) · bi the hard thresholding estimator with ... :

Ebi {I(|bi| < BCrit) · Eβi|biβ
2
i + I(BCrit ≤ |bi|) · Eβi|bi(βi − bi)

2}
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Bayesian POSI

Model selection

• Model M is selected when the following occurs

SM
Ω = { y : BCrit ≤ bi ∀i ∈ M, bi < BCrit ∀i /∈ M }

• The corresponding X-matrix is XM = {Xi : i ∈ M}
• As X is orthomormal the target of estimation is

βM = ((XM)TXM)−1(XM)TXβ = {βi : i ∈ M}

that can also be expressed µM = XMβM
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Bayesian POSI

Errors in model selection

1. Submodel selection error: a bias term quantifying the loss incurred by
selecting a submodel

E‖µ− µM‖2

( = p · Ebi {I(|bi| < BCrit) · Eβi|bi(βi)
2 } )

2. Submodel estimation error: a variance term quantifying how difficult it
is to estimate the selected model

EfS(β,b)‖µM − µ̂M‖2

( this is of course the selective inference problem!!)
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Bayesian POSI

Random parameter truncated distribution of (β, b)

fS(β, b) = Πi∈M
I(BCrit ≤ |bi|) · π(βi) · f (bi|βi)

Pr(BCrit ≤ |bi|)

× Πi/∈M
I(|bi| < BCrit) · π(βi) · f (bi|βi)

Pr(|bi| < BCrit)

• Thus (βi, bi) independent

• For i ∈ M
fS(βi, bi) ∝ π(βi) · f (bi|βi)
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Bayesian POSI

Fixed parameter truncated distribution of (β, b)

fS(β, b) = Πi∈M
I(BCrit ≤ |bi|) · π(βi) · f (bi|βi)

Pr(BCrit ≤ |bi| | βi)

× Πi/∈M
I(|bi| < BCrit) · π(βi) · f (bi|βi)

Pr(|bi| < BCrit | βi)

• Thus (βi, bi) independent

• For i ∈ M

fS(βi, bi) ∝ π(βi) · f (bi|βi)/Pr(BCrit ≤ |bi| | βi)
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Bayesian POSI

Assessing the average risk in submodel

EfS(β,b)

n∑
i=1

(µM
i − µ̂M

i )2

= EfS(β,b){(XMβM − XMβ̂M)T(XMβM − XMβ̂M)}

= EfS(β,b){(βM − β̂M)T(XM)TXM(βM − β̂M)}

= EfS(β,b){(βM − β̂M)T(βM − β̂M)}

= EfS(β,b)

∑
i∈M

(βi − β̂i)
2 =

∑
i∈M

EfS(βi,bi)(βi − β̂i)
2

Bayes estimator β̃M = {β̃i = EπS(βi| bi)βi : i ∈ M} with average risk

|M| · EfS(bi){EπS(βi| bi)(βi)
2 − (EπS(βi| bi)(βi − β̂i))

2}
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Bayesian POSI

Marginal saBayes posterior mean and variance for BCrit = 2
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Bayesian POSI Modelling saBayes inference

Full model estimation error for p = 20

βi ∼ 0.9 · N(0, 0.22) + 0.1 · N(0, 22)

• Mean marginal effect size: Eβ2
i = 0.436

• Mean effect size is E‖β‖2 = 20 · 0.436 = 8.7

• Mean marginal estimation error: E(βi − β̂Bayes
i )2 = 0.210

• Relative estimation error is 0.482 = 0.210/0.436
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Bayesian POSI Modelling saBayes inference

Submodel selection and estimation error for p = 20

• Marginal model selection error Ebi {I(|bi| < BCrit) · Eβi|bi(βi)
2} = 0.132

thus mean submodel effect-size E‖µM‖2 = 20 · (0.436− 0.132) = 6.08

• Marginal selection probability Pr(BCrit ≤ |bi|) = 0.082 thus mean
number of selected parameters E|M| = 20 · 0.082 = 1.64

• Random β marginal submodel estimation error is
EfS(βi,b)(βi − β̃Bayes

i )2 = 1.065, thus the
submodel estimation error 1.747 = 1.65 · 1.065

• Fixed β marginal submodel estimation error is
EfS(βi,b)(βi − β̃Bayes

i )2 = 0.261, thus the
submodel estimation error 0.42 = 1.65 · 0.261

• Thus relative estimation errors are 1.747/6.08 and 0.42/6.08
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Bayesian POSI Modelling saBayes inference

Some final points

• Our Bayesian POSI provides comprehensive selection-adjusted inference

• Our selection adjustment generally much smaller than that of Berk et al.
‘12.

• In particular, if the selected model is strongly supported then the
selection adjustment is negligible.

• Work in progress ...
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Bayesian POSI Modelling saBayes inference
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