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Death Penalty example

Death Penalty example (Agresti 2002, Table 2.13)

326 subjects are the defendants in indictments involving cases with multiple
murders in Florida

Victim’s Race Defendent’s Race Death Penalty Count
White White Yes 19

No 132
Black Yes 11

No 52
Black White Yes 0

No 9
Black Yes 6

No 97
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Death Penalty example

Research question and some notations

Does probability of receiving death sentence depend on
defendant’s race?

• X – Race of Victim, Y – Race of Defendant, Z – Death Penalty verdict

• πijk – the probability that X takes on its ith value and Y takes on its jth
value and Z takes on its kth value

• Marginal OR between between defendant race and death penalty

θYZ = (π+11 · π22+)/(π+12 · π+21), for π+jk = π1jk + π2jk.

• Conditional OR between defendant race and death penalty

θYZ|X=1 = (π111 · π122)/(π121 · π112)

θYZ|X=2 = (π211 · π222)/(π221 · π212)
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Death Penalty example

Victim’s race assoc w. defendant race and death penalty

White defendant Black defendant
White victim 151 63
Black victim 9 103

θ̂XY = 27.1, 0.95 CI for θXY is [12.7, 64.8]

Death penalty No Death penalty
White victim 30 184
Black victim 6 105

θ̂XZ = 2.87, 0.95 CI for θXZ is [1.13, 8.73]
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Death Penalty example

Victim’s race is a confounder

As death penalty and white defendant are more likely for a white victim than
for a black victim, white defendants have higher probability of receiving
death penalty just because they are more likely to kill a white victim.

And indeed we see:

Death penalty No Death penalty
White defendant 19 141
Black defendant 17 149

θ̂YZ = 1.18, 0.95 CI for θXZ is [0.56, 2.52]
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Death Penalty example

Hypotheses

• Null hypothesis – conditional on victim’s race defendant’s and death
penalty are independent:

H0 : θYZ|X=1 = 1, θYZ|X=2 = 1

• The alternative hypothesis is Simpson’s paradox – the marginal
association has a different direction than the conditional associations:

H1 : θYZ|X=1 < 1, θYZ|X=2 < 1, θYZ > 1
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Death Penalty example

Observed counts

White victims: θ̂YZ|X=1 = 0.68

Death penalty No Death penalty
White defendant 19 132 151
Black defendant 11 52 63

30 184 214

Black victims: θ̂YZ|X=2 = 0

Death penalty No Death penalty
White defendant 0 9 9
Black defendant 6 97 159

6 106 112

Yekutieli (TAU) 8 / 35



Death Penalty example

Data sample space

Ω = {(N111,N211) : N111 ∈ (0, · · · , 6), N211 ∈ (0, · · · , 30)}

White victims Death penalty No Death penalty
White defendant N111 151− N111 151
Black defendant 30− N111 33 + N111 63

30 184 214

Black victims Death penalty No Death penalty
White defendant N211 9− N211 9
Black defendant 6− N211 97 + N211 103

6 106 112

Pr
H0

(N111 = x,N211 = y) = dhyper(x; 151, 63, 30) · dhyper(y; 9, 103, 6)
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Death Penalty example

Exact test for death penalty data

• To construct an exact test we need to order the 217 sample points
according their strength of evidence in favor of Simpson’s paradox

• The exact significance level of the observed data point is the sum of the
probabilities of the data points with greater or equal strength of evidence
than that of the observed data point.

• However, as Simpson’s paradox involves effects having conflicting signs,
determining strength of evidence in favor of Simpson’s paradox is
difficult

For example:
does data point (20, 0) with θ̂YZ|X=1 = 0, θ̂YZ|X=2 = 0.810, and θ̂YZ = 1.34
offer more evidence in favor of Simpson’s paradox than the observed data
point (19, 0)?
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Death Penalty example

Our proposed tests

We propose two statistics for ordering the points in the data sample space:

1. The posterior probability of the event corresponding to Simpson’s
paradox

P1 = {(π111 · · ·π222) : θYZ|X=1 < 1, θYZ|X=2 < 1, 1 < θYZ }.

2. The ratio between the posterior probability of P1 and the posterior
probability of the event

P0(ε) = {(π111 · · ·π222) : |log(θYZ|X=1)| ≤ ε, |log(θYZ|X=2)| ≤ ε }

with ε = 0.1.
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Death Penalty example

Computing the posterior distributions

• We use a Dirichlet prior with concentration parameters (0.5 · · · 0.5) for
(π111 · · · π222)

• For (N111 · · · N222), the posterior distribution of (π111 · · · π222) is
Dirichlet with concentration parameters (N111 + 0.5 · · · N222 + 0.5)

• To compute the posterior probabilities needed to compute our statistics,
we sample (π111, · · ·π222) from the posterior and count the proportion of
samples that (π111 · · · π222) is in PSmpsn

1 or in P0(ε).
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Death Penalty example

Exact p-value for the first test statistic

• Data point (20, 0) with PrH0(20, 0) = 0.087 has the largest posterior
probability of P1: 0.085954 (s.e. < 0.0001).

• The observed table with PrH0(19, 0) = 0.064 has the second largest
posterior probability of P1, 0.07983 (s.e. < 0.0001).

• Data point (21, 0) with PrH0(21, 0) = 0.101 has the third largest
posterior probability of of P1, 0.07955 (s.e. < 0.0001).

Thus the significance level of the observed table is:

0.151 = 0.087 + 0.064
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Death Penalty example

Exact p-value for the second test statistic

• The posterior probability of P0(ε) for the observed data point was
0.0054.

• Higher posterior probability was observed in 8 data points, among them
(20, 0) and (21, 0).

• In 121 data points the ratio between the posterior probability of P1 and
P0(0.1) was at least as high as that of (19, 0), 14.8 = 0.0797/0.0054.

The significance level of the observed table for the second statistic is 0.140,
the sum of the probabilities under the null for these 121 data points.
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Mean most powerful tests

Setup

• The parameter is p ∈ P and π(p) is the prior distribution.

• the data is N ∈ Ω; Pr(n| p) is the likelihood.

• The alternative hypothesis is H1 : p ∈ P1, where P1 ⊆ P is the
discovery event and P0 ⊆ P − P1 the non-discovery event.

• The null hypothesis H0 does not have to correspond to an explicit subset
or point in P0, all we will need is that H0 specifies a null distribution
PrH0(N = n) on Ω.

• Tests are mappings T : Ω→ {0, 1}, where T = 1 corresponds to
rejecting H0, and for S ⊆ Ω, let T (S) := I(n ∈ S).

• The significance level of T (S) is PrH0(N ∈ S).
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Mean most powerful tests

Optimal tests are Bayes classifiers

Our tests are Bayes rules for the following loss function:

L(S;λ1, λ2) = λ1 · I(N ∈ S, P ∈ P0) + λ2 · I(N /∈ S, P ∈ P1).

To derive the Bayes rules note that the marginal distribution of N is

Pr(N = n) =

∫
p
π(p) · Pr(N = n| p) dp,

and the conditional distribution of p given n is

π(p| n) = Pr(N = n| p) · π(p)/Pr(N = n).

Thus the average risk can be expressed∑
n

Pr(n) ·
∫

p
π(p| n) · [λ1 · I(n ∈ S, P ∈ P0) + λ2 · I(n /∈ S, P ∈ P1)] dp

=
∑
n∈S

Pr(n) · λ1 · Pr(P ∈ P0| n) +
∑
n/∈S

Pr(n) · λ2 · Pr(P ∈ P1| n)
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Mean most powerful tests

Specifying the Bayes classifier

• S that minimizes the average risk is

SBayes(λ1, λ2) = {n :
λ1

λ2
≤ Pr(P ∈ P1| n)

Pr(P ∈ P0| n)
}

• To derive level α tests we specify the Bayes classifiers according to the
significance level (instead of λ1 and λ2 ).

• Thus, for

SBayes(δ) = {n : δ ≤ Pr(P ∈ P1| n)

Pr(P ∈ P0| n)
},

We define SBayes(α) := SBayes(δα) with

δα = max{δ : PrH0(N ∈ SBayes(δ)) ≤ α }
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Mean most powerful tests

Mean most powerful tests

Definition 1.

1. The mean significance level of T (S) is Pr(N ∈ S| p ∈ P0).

2. The mean power of T (S) is Pr(N ∈ S| p ∈ P1).

3. T (S) is a mean most powerful test if all tests with less or equal mean
significance level have less or equal mean power.

Proposition 2. ∀δ, T (SBayes(δ)) is a mean most powerful test.

The proof is very similar to the proofs i haven’t given in the two previous
lectures
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Mean most powerful tests

A few remarks

• Determining P1, P0, and π(p), produces a family of mean most powerful
tests.

• By construction, T (SBayes(α)) has significance level α and has more
mean power than all mean most powerful tests with significance level
< α.

• According to Proposition 2, T (SBayes(α)) also has more mean power
than all tests with smaller or equal mean significance levels.

• Ideally, the prior distribution captures the knowledge regarding the
parameters. In our examples in we use conjugate non-informative priors
that provide easy test statistic computation and yield general optimal
tests for each alternative null hypothesis.
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Mean most powerful tests

A few more remarks

P1 is dictated by application, but P0 can be any subset of P − P1.

• We suggest either setting P0 = P − P1, or setting P0 = P0(ε) to be a
“small” ball around the null parameter value p0.
• For P0 = {p0}, the mean significance level equals the significance level,

thus T (SBayes(α)) would have more mean power then all level α tests.
Setting P0 = P0(ε) is a numeric solution for producing a very similar
tests.
• Setting P0 = P − P1 for which (1) holds, has the great technical

advantage that to construct the test, for each data point, we only need to
assess the posterior probability of P1. I think that in most cases the
choice of P0 has little effect (!!?)

Pr(P ∈ P1| n)

Pr(P ∈ P0| n)
=

Pr(P ∈ P1| n)

1− Pr(P ∈ P1| n)
, (1)
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Mean most powerful tests

Relation btwn our tests and Bayesian FDR controlling tests

• Pr(P ∈ P1| N) is equal to one minus the local FDR (Efron et al., 2001).

• Thus setting P0 = P − P1 we follow Storey (2007), who suggested
constructing optimal tests in which the local FDR for orderingg the data
points included into the rejection region.

• Unlike the Bayesian FDR approach, in which the Bayes FDR determines
the cutoff point of the rejection region, in our tests the cutoff point is
determined by the test’s significance level.
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Mean most powerful tests

Relation btwn our tests and Bayes factors

• Expressing

Pr(P ∈ P1| N = n)

Pr(P ∈ P0| N = n)
=

Pr(N=n| P∈P1)·Pr(P∈P1)
Pr(N=n)

Pr(N=n| P∈P0)·Pr(P∈P0)
Pr(N=n)

∝ Pr(N = n| P ∈ P1)

Pr(N = n| P ∈ P0)
,

reveals that we order the data points according to the Bayes factor
between “model” P1 and “model” P0.

• However, note that in our tests the cutoff point of the rejection region is
not a nominal Bayes factor value (cf Kass and Raftery, 1995).
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Mean most powerful tests

Relation btwn our tests and likelihood ratio tests

• For simple hypotheses, H0 : p = p0 ∈ P0 vs. H1 : p = p1 ∈ P1, our test
reduces to the likelihood ratio test if P0 = {p0} and P1 = {p1} or if the
prior distribution assigns all its probability to p0 and p1.
• The likelihood ratio test for composite hypotheses tests H0 : p ∈ Pnull vs.

H1 : p /∈ Pnull using the statistic

Λ(n) =
supp∈Pnull

Pr(N = n|p)

supp∈P Pr(N = n|p)
.

If P1 = P − Pnull and setting P0 = P − P1, Λ(n) is similar to one
minus our statistic, except that we consider the average rather than the
supremum of the likelihood. HOWEVER if P1 is a “small” subset of
P − Pnull our test that sorts the sample space according to P1 can be
considerably more powerful.
• This is shown in the next example and in our contingency table examples

in which Λ(n) is the X2 statistic.
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Mean most powerful tests

Difference btwn our tests and likelihood ratio test

µ = (µ1 · · ·µK), Y = (Y1 · · · YK) with Yk ∼ N(µk, 1).

H0 : µ ≡ 0, H1 : µ ∈ {µ : 3 ≤ µ1}.

• In the likelihood ratio test the data points are ordered according to ‖y‖.
As χ2

100,0.95 = 124.34, the rejection region for the α = 0.05 likelihood
ratio test is S = {y : 124.34 ≤ ‖y‖2}
• P1 = {µ : 3 ≤ µ1}. Setting P0 = P − P1 and using a flat prior for µ,

in our test the data points are ordered according to y1 and the rejection
for our α = 0.05 test is SBayes = {y : 1.64 ≤ y1}
• Thus, for K = 100 and µ = (3.2, 0 · · · 0), the power of the likelihood

ratio test is 0.179, while the power of our test is 0.940.
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Mean most powerful tests

Conditional level α tests

• Let a be the statistic that partitions the sample space Ω = ∪a∈AΩa,
where A = {a(N) : N ∈ Ω} is the set of statistic values.

• A conditional level α test is T (SA(α)) such that ∀a ∈ A,
PrH0(N ∈ SA(α)| N ∈ Ωa) ≤ α.

• Construction of SBayes
A (α):

1. Repeat 2 & 3 for each a ∈ A
2. Sort the data points N ∈ Ωa according to Pr(P ∈ P1|N).
3. Following that order, as long as PrH0(N ∈ SBayes

A (α)| N ∈ Ωa) ≤ α,
sequentially add data points into SBayes

A (α).
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Mean most powerful tests

A few remarks

• Conditional level α tests are also level α tests

• Per construction, SBayes
A (α) is a conditional level α test.

• For all a, T (SBayes
A (α) ∩ Ωa) is a mean most powerful test on Ωa.

• T (SBayes
A (α) ∩ Ωa) is a mean most powerful test for continuous Ω.

• For discrete Ω there may be other conditional level α test with smaller
mean significance level and larger mean power.
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Mean most powerful tests

Job Satisfaction Example (Agresti 2002, Table 2.8)

Job Satisfaction
Income Very Little Moderately Very

(Dollars) Dissatisfied Dissatisfied Satisfied Satisfied
<15000 1 3 10 6

15000-25000 2 3 10 7
25000-40000 1 6 14 12
>40000 0 1 9 11
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Mean most powerful tests

Testing independence between income and job satisfaction

• Pearson’s Chi-squared test (R chisq.test function), corresponding to a
general alternative hypothesis of dependance between of income and job
satisfaction: X2 = 5.97 with 9 degrees of freedom and p-value 0.743.

• Spearman’s rank correlation coefficient (R cor.test function), alternative
hypothesis of positive correlation between income and job satisfaction:
ρ = 0.177 with p-value 0.042.

• Kendall’s rank correlation coeficient (R cor.test function), corresponding
to alternative hypothesis of concordance between of income and job
satisfaction: τ = 0.152 with p-value 0.043.

All significance levels are based on parametric approximation of the test
statistics’ distribution under the null hypothesis
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Mean most powerful tests

Concordance

• πij is probability of respondent having income level i and job satisfaction
level j
• A pair of respndents is concordant if they have different income and job

satisfaction and the respondent with higher income has higher job
satisfaction, its probability:

ΠC = 2
∑

i

∑
j

πij(
∑
i<h

∑
j<k

πhk)

• A pair of respondents is discordant if they have different income and job
satisfaction and the respondent with higher income has lower job
satisfaction, its probability:

ΠD = 2
∑

i

∑
j

πij(
∑
i<h

∑
k<j

πhk)

• Concordance is measured by Kendall’s gamma:

γ = (ΠC −ΠD)/(ΠC + ΠD)
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Mean most powerful tests

Exact test for independence vs concordance alternative

• We assume (N11 · · · N44) ∼ multinom(π11 · · · π44),

• H0 : πij = πi+π+j.

• To construct the exact tests note that under H0 conditioning on
N1+ = n1+, · · · ,N+4 = n+4:

Nij ∼ MVhypergeometric(n1+, · · · n+4)

• There are 90, 208, 550 possible 4-by-4 tables with the same row and
columns sums as Table 2

• Setting π̂ij = nij/n++, yields γ̂ = 0.221.

• The exact significance level for the test for concordance based on the γ̂
statistic is p− value = 0.0415, computed by summing the probabilities
under the null of observing the 21, 101, 151 tables with 0.221 ≤ γ̂
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Mean most powerful tests

Our exact test for concordance alternative

• Our statistic is the pstrior probability of the concordance event,

Pr(0 ≤ γ| N11 · · · N44) (2)

• We use a Dirichlet prior for which posterior distribution is
Dirichlet(N11 + 0.5 · · · N44 + 0.5)

• To assess (2) we sample (π11, · · ·π44) from the posterior and record the
proportion of times the concordance event occurs.
• The probability of concordance for Nij = nij, based on a sample of 107

draws from the posterior, was 0.9564 (s.e. < 0.0001).
• To compute the significance of this statistic, we sample of 50, 000 4-by-4

tables from the null, for each table we assess the probability of
concordance, and record the proportion of tables with probability of
concordance ≥ 0.9564.
• The estimated significance level was p− value = 0.036 (s.e. < 0.001).
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Mean most powerful tests

Exact test for the positive dependence alternative

• Our statistic is the posterior probability of the event:

PPos
1 = {(π11, · · · , π44) : Pr(πj|i ≤ t) ≥ Pr(πj|i+1 ≤ t) ∀i, j} (3)

with πj|i = πij/πi+

• Using the same prior as before, we assess the statistic’s value by
sampling (π11, · · ·π44) from the posterior and record the of times (3)
occurred.

• The observed statistic value is 0.0118 (s.e. < 0.0001), and its estimated
significance level is p− value = 0.0093 (s.e. < 0.001)

Yekutieli (TAU) 32 / 35



Mean most powerful tests

Job Satisfaction Simulation

The simulation compares the power of the conditional exact test whose test
statistic is γ̂ with the conditional exact test whose test statistic is
Pr(0 ≤ γ| N11 · · · N44)

• The null distribution of (N11 · · · N44) is the conditional multivariate
hypergeometric considered before
• The alternative distribution is multinomial(π̂ij = nij/96) truncated to

have N1+ = n1+, · · · ,N+4 = n+4.
• Simulation: We generate 105 realizations of (N11 · · · N44) from the

alternative distribution and then use the process described before to
compute the two kinds of p-values for each realized (N11 · · · N44)

• For the γ̂ statistic the mean p-value was 0.0988 and 0.537 (s.e. < 0.005)
of the p-values were smaller than 0.05
• For the p-values computed based on the probability of concordance

statistics, the mean p-value was 0.0947 and 0.550 (s.e. < 0.005) of the
p-values were smaller than 0.05.
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Mean most powerful tests

Discussion

• We presented methodology for the analysis of contingency tables in
which use of exact tests is well established. However our conditional
tests can easily be extended to non-parametric tests in which the null
hypothesis can be generated with permutations or bootstrap samples, and
also to numeric parametric tests!

• Our tests are computationally intensive. We therefore suggest using them
in (1) “difficult” cases where the parameter space is high dimensional
and we know how to express the alternative hypothesis as a subset of the
parameter space however it is not clear how to construct a test statistic
for this hypothesis; (2) in cases where there is prior information on the
parameter; (3) for very high dimensional and very sparse tables in which
the asymptotic results for the test statistic distribution fail.
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Mean most powerful tests
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