Inferring replicability from Cohrane reviews

Daniel Yekutieli

Statistics and OR Tel Aviv University

2 December 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- 1. Cochrane collaboration reviews
- 2. Testing framework for providing confidence statements regarding distribution of effect in new study

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- 3. Implementation of mean most powerful tests
- 4. Results

Influenza reviews – Outcome 4: local harms

Analysis 2.4. Comparison 2 Live aerosol vaccine versus placebo or 'do nothing'. Outcome 4 Local harms.

Review: Vaccines for preventing influenza in healthy adults

Comparison: 2 Live aerosol vaccine versus placebo or 'do nothine'

Outcome: 4 Local harms

Study or subgroup	Vaccine	Placebo/do nothing	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	H,Random,95%		H,Random,9 CI
Local - upper respiratory inf	ection symptoms				
aa Rytel 1977	16/93	7/46		14.5 %	1.13 [0.50, 2.55]
ab Evans 1976	41/79	25/81		63.5 %	1.68 [1.14, 2.48]
ab Betts 1977a	4/23	3/24		5.0 %	1.39 [0.35, 5.55]
ab Atmar 1990	17/46	4/26		10.1 %	2.40 [0.90, 6.38]
ab Keitel 1993b	11/29	2/9	.	5.6 %	1.71 [0.46, 6.31]
ab Keitel 1993a	11/30	0/10		1.3 %	8.16 [0.52, 127.23]
Subtotal (95% CI)	300	196	+	100.0 %	1.66 [1.22, 2.27]
-leterogeneity: Tau ² = 0.0; Ch lest for overall effect: Z = 3.2; 2 Local - cough		P = 0.73); I ² =0.0%			
aa Ohmit 2006	92/506	8/99		21.5 %	2.25 [1.13, 4.48]
aa Ohmit 2008	127/787	17/157	-	41.6 %	1.49 [0.93, 2.40]
ab Lauteria 1974	1/19	0/18		1.1.96	2.85 [0.12, 65.74]
aa Rytel 1977	7/93	3/46		6.3 %	1.15 [0.31, 4.26]
ab Rocchi 1979b	17/260	2/110		5.2.%	3.60 [0.85, 15.30]
aa Monto 1982	16/154	17/152	-	24.3 %	0.93 [0.49, 1.77]
Subtotal (95% CI) fotal events: 260 (Vaccine), 47	1819	582	-	100.0 %	1.51 [1.08, 2.10]
Heterogeneity: Tau ² = 0.01; C					
fest for overall effect: Z = 2.42					
8 Local - coryza aa Monto 1982	47/154	36/152	-	24.6 %	1.29 [0.89, 1.87]
aa Nichol 1999a	1323/2986	396/1490		75.4 %	1.67 [1.52, 1.83]
Subtotal (95% CI) fotal events: 1370 (Vaccine), 4 eleterogeneity: Tau ² = 0.01; C fest for overall effect: Z = 4.04	hi ² = 1.73, df = 1		•	100.0 %	1.56 [1.26, 1.94]

0.1 0.2 0.5 1 2 5 10 Favours vaccine Favours placeboldo nothing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Tenderness

I Local - tendemess/sorene	55				
aa Monto 2009	428/813	69/325	•	5.9 %	2.48 [1.99, 3.09
aa Jackson 2010a	1933/3783	530/3828	•	6.2 %	3.69 [3.39, 4.02
ab El'shina 1996	21/108	3/107		2.6 %	6.94 [2.13, 22.57
aa Weingarten 1988	28/55	4/53		32 %	6.75 [2.54, 17.93
aa Barrett 2011	1571/3623	274/3620	•	6.1 %	5.73 [5.08, 6.46
aa Frey 2010	2006/7414	384/3843	•	6.1 %	2.71 [2.45, 3.00
aa Ohmit 2006	270/501	20/99	+	5.3 %	2.67 [1.79, 3.98
ab Forsyth 1967	81/194	13/186		4.8 %	5.97 [3.45, 10.35
ab Caplan 1977	89/193	9/15	-	5.2 %	0.77 [0.49, 1.19]
ab Goodeve 1983	13/96	1/23		1.3 %	3.11 [0.43, 22.61
aa Bridges 2000b	309/582	130/595	•	6.0 %	2.43 [2.05, 2.88
aa Mesa Duque 2001	128/247	133/246	+	6.0 %	0.96 [0.81, 1.13
aa Bridges 2000a	315/594	106/586	•	6.0 %	2.93 [2.43, 3.54
ab Saxen 1999	60/216	15/211	+	4.8 %	3.91 [2.29, 6.66]
aa Nichol 1995	267/419	101/422	•	6.0 %	2.66 [2.21, 3.20
aa Tannock 1984	31/55	11/31		4.8 %	1.59 [0.94, 2.69
aa Ohmit 2008	412/818	22/155	+	5.4 %	3.55 [2.40, 5.26
aa Powers 1995a	21/26	5/24		3.8 %	3.88 [1.74, 8.65
ab Scheifele 2003	323/620	45/624	•	5.7 %	7.22 [5.40, 9.67
ab Pyrhönen 1981	89/151	12/154	-	4.7 %	7.56 [4.32, 13.23
Subtotal (95% CI)	20508	15147	•	100.0 %	3.13 [2.44, 4.02]
Total events: 8395 (Vaccine) Heterogeneity: Tau ² = 0.26; Test for overall effect: Z = 8 2 Local - erythema	Chi ² = 443.11, df = 19				
-					
			0.02 0.1 1 10 50		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Upper respiratory infection symptoms

Study or subgroup	Vaccine	Placebo/do nothing	Risk Ratio M- H,Random,95%	Weight	Risk Ratio M- H,Random,95%
	n/N	n/N	a		D
I Local - upper respiratory in	fection symptoms				
aa Rytel 1977	16/93	7/46		14.5 %	1.13 [0.50, 2.55]
ab Evans 1976	41/79	25/81	-	63.5 %	1.68 [1.14, 2.48]
ab Betts 1977a	4/23	3/24		5.0 %	1.39 [0.35, 5.55]
ab Atmar 1990	17/46	4/26		10.1 %	2.40 [0.90, 6.38]
ab Keitel 1993b	11/29	2/9		5.6 %	1.71 [0.46, 6.31]
ab Keitel 1993a	11/30	0/10		1.3 %	8.16 [0.52, 127.23]
Subtotal (95% CI)	300	196	•	100.0 %	1.66 [1.22, 2.27]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Sore throat

Study or subgroup	Vaccine	Placebo/do nothing	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,959 Cl
4 Local - sore throat					
aa Ohmit 2006	127/506	16/99		5.7 %	1.55 [0.97, 2.49]
aa Ohmit 2008	212/787	26/157	-	9.3 %	1.63 [1.12, 2.35]
ab Hrabar 1977	40/123	10/44		3.5 %	1.43 [0.78, 2.61]
aa Monto 1982	40/154	16/152		4.4 %	2.47 [1.45, 4.21]
ab Rocchi 1979b	20/260	3/110		0.9 %	2.82 [0.86, 9.30]
ab Atmar 1990	13/46	2/26		0.6 %	3.67 [0.90, 15.03]
aa Nichol 1999a	794/2986	243/1490	•	75.6 %	1.63 [1.43, 1.86]
Subtotal (95% CI)	4862	2078	•	100.0 %	1.66 [1.49, 1.86]
Total events: 1246 (Vaccine),	316 (Placebo/do no	thing)			

Heterogeneity: Tau² = 0.0; Chi² = 4.49, df = 6 (P = 0.61); l² = 0.0% Test for overall effect: Z = 8.87 (P < 0.00001)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- The data is the of effect estimators from K studies, $\hat{\theta}_1 \cdots \hat{\theta}_K$
- The study effects, $\theta_1 \cdots \theta_K$, are iid samples from an unknown effect population distribution $\pi(\theta)$
- Our goal is to provide inference regarding the distribution of θ_0 , the treatment effect in a new treatment group assumed to be also independently sampled from $\pi(\theta)$

Inferences regarding distribution of effect of new treatment

1. Confidence interval for q_p , p'th quantile of $\pi(\theta)$:

$$a,b\in\mathbb{R} \;\; ext{such that}\;\; \Pr_{\hat{ heta}_1\cdots\hat{ heta}_K}(q_p\in[a,b])\geq 1-lpha$$

2. Confidence interval for $p_A = Pr_{\theta_0 \sim \pi}(\theta_0 \in A)$:

$$0 \le \hat{p}_a \le \hat{p}_b \le 1$$
 such that $\Pr_{\hat{\theta}_1 \cdots \hat{\theta}_K}(p_A \in [\hat{p}_a, \hat{p}_b]) \ge 1 - \alpha$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Lower bound for predictive probability that $\theta_0 \in A$

Deriving right tailed $1 - \alpha$ confidence intervals for q_p

Algorithm:

1. For all $\tilde{a} \in \mathbb{R}$ we define

 $\Omega_0(\tilde{a}) = \{\pi : q_p(\pi) \le \tilde{a}\} \text{ and } \Omega_1(\tilde{a}) = \{\pi : \tilde{a} < q_p(\pi)\}$

2. and we use $\hat{\theta}_1 \cdots \hat{\theta}_K$ for level α test of

 $H_0(\tilde{a}): \pi \in \Omega_0(\tilde{a})$ vs. $H_1(\tilde{a}): \pi \in \Omega_1(\tilde{a})$

3. Set $a = \inf\{\tilde{a} : \text{ such that } H_0(\tilde{a}) \text{ is accepted}\}$

Denote the true π , $\bar{\pi}$ with *p*'th quantile $\bar{q}_p = q_p(\bar{\pi})$. Therefore $H_0(\bar{q}_p)$ is true, thus it is accepted with probability $\geq 1 - \alpha$, and if it is accepted then $a \leq \bar{q}_p$. Thus we get,

 $\Pr_{\hat{\theta}_1\cdots\hat{\theta}_K}(a\leq \bar{q}_p)\geq \Pr_{\hat{\theta}_1\cdots\hat{\theta}_K}(H_0(\bar{q}_p) \text{ is accepted })\geq 1-\alpha.$

Right tailed CI for median in the no-noise case with K = 8

Observed sequence of effects: -2, -0.5, 1.1, 2.4, 3.2, 4.9, 7.3, 7.5

• Test for $q_{1/2}(\pi) \leq \tilde{a}$: let $n(\tilde{a}) = \#\{\theta_k \leq \tilde{a}\}$, accept $H_0(\tilde{a})$ if

 $0.05 \le \Pr\{X \le n(\tilde{a})\} \text{ for } X \sim Binomial(8, 0.5).$

• R function: *pbinom*(*c*(8,7,6,5,4,3,2,1,0),8,0.5)

1.000, 0.996, 0.965, 0.855, 0.637, 0.363, 0.145, 0.035, 0.004

• Thus we accept $H_0(\tilde{a})$ for \tilde{a} with $3 \le n(\tilde{a})$,

 $1.1 = \inf{\{\tilde{a} : \text{ such that } H_0(\tilde{a}) \text{ is accepted}}$

- コン・4回シュービン・4回シューレー

 \Rightarrow right tailed 0.95 CI for median of π is $[1.1, \infty]$

Deriving right tailed $1 - \alpha$ confidence intervals for p_A

Algorithm:

1. For all $\tilde{p}_A \in [0, 1]$ we define

 $\Omega_0(\tilde{p}_A) = \{\pi : p_A(\pi) \le \tilde{p}_A\} \text{ and } \Omega_1(\tilde{p}_A) = \{\pi : \tilde{p}_A < p_A(\pi)\}$

2. and we use $\hat{\theta}_1 \cdots \hat{\theta}_K$ for level α test of

 $H_0(\tilde{p}_A) : \pi \in \Omega_0(\tilde{p}_A)$ vs. $H_1(\tilde{p}_A) : \pi \in \Omega_1(\tilde{p}_A)$

3. Set $\hat{p}_A = \inf{\{\tilde{p}_A : \text{ such that } H_0(\tilde{p}_A) \text{ is accepted}\}}$

For true $\bar{\pi}$ with $\bar{p}_A = \Pr_{\theta_0 \sim \bar{\pi}}(\theta_0 \in A)$, $H_0(\bar{p}_A)$ is true, it is accepted with probability $\geq 1 - \alpha$ and if it is accepted then $\hat{p}_A \leq \bar{p}_A$. Thus we get

$$\Pr_{\hat{\theta}_1\cdots\hat{\theta}_K}(\hat{p}_A \leq \bar{p}_A) \geq \Pr_{\hat{\theta}_1\cdots\hat{\theta}_K}(H_0(\bar{p}_A) \text{ is accepted }) \geq 1 - \alpha.$$

Right tailed CI for $p_{[0,\infty]}$ in the no-noise case with K = 8

Same sequence of effects: -2, -0.5, 1.1, 2.4, 3.2, 4.9, 7.3, 7.5

• Test for $p_{[0,\infty]}(\pi) \le \tilde{p}_A$: let $n_{[0,\infty]} = \#\{k : 0 \le \theta_k\}$, accept $H_0(\tilde{p}_A)$ if

 $0.05 \leq \Pr\{n_{[0,\infty]} \leq X\}$ for $X \sim Binomial(8, \tilde{p}_A)$

• R function: 1 – *pbinom*(6, 8, *c*(0.8, 0.6, 0.530, 0.529, 0.50)), 4)

0.5033, 0.1064, 0.0504, 0.0498, 0.0352

- コン・4回シュービン・4回シューレー

• We accept $H_0(\tilde{p}_A)$ with $0.530 \leq \tilde{p}_A$

 \Rightarrow right tailed 0.95 CI for $\Pr_{\theta_0 \sim \pi}(0 \le \theta_0)$ is [0.530, 1]

Deriving lower bound for predictive probability that $0 \le \theta_0$

- $\theta_0 \ge 0$ occurs, independently of $\hat{\theta}_1 \cdots \hat{\theta}_K$, with prob $p_0(\bar{\pi})$.
- To bound the prob that this event occurs we use the lower bound $\hat{p}_0 = 0.530$ that was based $\hat{\theta}_1 \cdots \hat{\theta}_K$.
- Let $Acc(\bar{\pi})$ denote the event that null hypothesis corresponding to $\bar{\pi}$, used for constructing the CI, is accepted
- $Acc(\bar{\pi})$ occurs with probability ≥ 0.95 and if it occurs then $0.530 \leq p_0(\bar{\pi})$

$$\begin{aligned} \Pr_{\theta_0;\hat{\theta}_1\cdots\hat{\theta}_K} \{ 0 \le \theta_0 \} &\ge & \Pr_{\theta_0;\hat{\theta}_1\cdots\hat{\theta}_K} \{ \theta_0 \in A, \ Acc(\bar{\pi}) \} \\ &= & \Pr_{\theta_0} \{ \theta_0 \in A | \ Acc(\bar{\pi}) \} \cdot \Pr_{\hat{\theta}_1\cdots\hat{\theta}_K} \{ Acc(\bar{\pi}) \} \\ &\ge & 0.530 \cdot 0.95 = 0.5035 \end{aligned}$$

Some comments and a question

(a) Left tailed CI's are derived similarly.

(b) 1 - α/2 left tailed and right tailed CI's yield a two-tailed 1 - α CI.
(c) The tests used for CI's for quantiles and probabilities are the same:

1. For $A \subset \mathbb{R}$ and $\tilde{p} \in (0, 1)$ we define two sets of distributions:

 $\Omega_0(\tilde{p}, A) = \{\pi : p_A(\pi) \le \tilde{p}\} \text{ and } \Omega_1(\tilde{p}, A) = \{\pi : \tilde{p} < p_A(\pi)\}$

2. We use the statistic $\#\{\theta_k \in A\}$ to test

 $H_0: \pi \in \Omega_0(\tilde{p}, A)$ vs. $H_1: \pi \in \Omega_1(\tilde{p}, A)$

Q: How do we test these null hypotheses with $\hat{\theta}_1 \cdots \hat{\theta}_K$?

Mean most powerful tests

General framework for testing complex hypotheses presented in Yekutieli (2014). This is how it can be adapted to this application:

- The parameter is $\pi \in \Omega$ with prior distribution $\mathcal{D}(\pi)$
- the data is $\hat{\theta} = (\hat{\theta}_1 \cdots \hat{\theta}_K)$ with likelihood $\Pr(\hat{\theta}|\pi)$
- The null hypothesis is H₀ : π ∈ Ω₀ and the alternative hypothesis is H₁ : π ∈ Ω₁, for a partition Ω₀ ∪ Ω₁ = Ω
- Tests are mappings $\mathcal{T} : \mathbb{R}^K \to \{0, 1\}$, where $\mathcal{T} = 1$ corresponds to rejecting H_0 , and for $S \subseteq \mathbb{R}^K$, let $\mathcal{T}(S) := I(\hat{\theta} \in S)$.
- The significance level of $\mathcal{T}(S)$ is $\sup_{\pi \in \Omega_0} Pr(\hat{\theta} \in S | \theta_1 \cdots \theta_K \sim \pi).$
- The mean significance level of $\mathcal{T}(S)$ is $Pr(\hat{\theta} \in S | \pi \in \Omega_0)$.
- The mean power of $\mathcal{T}(S)$ is $Pr(\hat{\theta} \in S | \pi \in \Omega_1)$.

Mean most powerful tests - cont.

• MMP tests are Bayes rules for the following loss function:

 $L(S;\lambda_1,\lambda_2) = \lambda_1 \cdot I(\hat{\theta} \in S, \ \pi \in \Omega_0) + \lambda_2 \cdot I(\hat{\theta} \notin S, \ \pi \in \Omega_1).$

• For the case that $\Omega_0 \cup \Omega_1 = \Omega$ the Bayes rule is

 $S^{Bayes}(\lambda_1,\lambda_2) = \{\hat{\theta}: \ \delta(\lambda_1,\lambda_2) \ge \Pr(\pi \in \Omega_0 | \hat{\theta}) \}$

- NP type result: $\forall \delta$, $\mathcal{T}(S^{Bayes}(\delta))$ has greater or equal mean power than all tests with smaller or equal mean significance level
- We set threshold δ_{α} that controls significance level of the test

$$\sup_{\tau\in\Omega_0} \Pr(\hat{\theta}\in S(\delta_\alpha)|\theta_1\cdots\theta_K\sim\pi)\leq\alpha$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A MMP test for distributions

To compute our statistic we can use any D that assigns probabilities to distributions. We use D defined as follows:

- 1. We partition $[a, b] \subseteq \mathbb{R}$ into *I* subintervals $[a_0, a_1] \cdots [a_{I-1}, a_I]$, with $A = \bigcup_{i \in I_A} [a_{i-1}, a_i]$ for $I_A \subset \{1 \cdots I\}$
- 2. We consider distributions that are step function in this partition

$$\pi(\theta) = \pi_1 \cdot \frac{I(\theta \in [a_0, a_1])}{a_1 - a_0} + \dots + \pi_I \cdot \frac{I(\theta \in [a_{I-1}, a_I])}{a_I - a_{I-1}}$$

3. We use the one-to-one correspondence between $\pi(\theta)$ and $\vec{\pi} = (\pi_1 \cdots \pi_I)$ to define $\mathcal{D}(\pi)$ as the *Dirichlet* $(\vec{\pi}, \vec{\alpha})$ density

Thus $\Omega_0(\tilde{p}, A) = \{\pi : p_A \leq \tilde{p}\}$ can be expressed $\{\vec{\pi} : \pi_A \leq \tilde{p}\}$ for $\pi_A = \sum_{i \in I_A} \pi_i$ and the test statistic becomes:

$$\Pr(\pi \in \Omega_0 | \hat{\theta}) = \Pr(\pi_A \le \tilde{p} | \hat{\theta})$$

The MMP test in the no noise case

• For
$$n_i = \#\{k : \hat{\theta}_k \in [a_{i-1}, a_i]\},$$

 $\vec{\pi} \mid \vec{n} \sim Dirichlet(\vec{\alpha} + \vec{n})$

• Thus for the corresponding sums over A and $A^C = [a, b] - A$,

$$\pi_A | \vec{n} \sim Beta(\alpha_A + n_A, \alpha_{AC} + n_{AC})$$

This means that:

1. Our statistic is very easy to compute

 $\Pr(\pi_A \le \tilde{p}|\hat{\theta}) = pbeta(\tilde{p}, \alpha_A + n_A, \alpha_{A^C} + n_{A^C})$

2. For any choice of intervals and any choice of $\vec{\alpha}$ the MMP test sorts the data sample space according to n_A (= naive test)!!!!!!!!

The MMP test in the general noisy case

Our model assumes the data is generated hierarchically:

- 1. Generate $\vec{\pi} \sim Dirichlet(\vec{\alpha})$
- 2. Generate iid $\delta_1 \cdots \delta_K$, $\Pr(\delta_k = i) = \pi_i$ for $i = 1 \cdots I$
- 3. For $\delta_k = i$, generate $\theta_k \sim U[a_{i-1}, a_i]$
- 4. For θ_k , generate $\hat{\theta}_k \sim f(\hat{\theta}_k | \theta_k)$

Expressing the conditional distribution of π given $\hat{\theta}_1 \cdots \hat{\theta}_K$,

$$\begin{aligned} \Pr(\pi|\hat{\theta}) &= \frac{\Pr(\pi,\hat{\theta})}{\Pr(\hat{\theta})} = \frac{\sum_{\vec{n}} \Pr(\pi,\hat{\theta},\vec{\delta}=\vec{n})}{\sum_{\vec{n}} \Pr(\hat{\theta},\vec{\delta}=\vec{n})} \\ &= \frac{\sum_{\vec{n}} \Pr(\pi|\hat{\theta},\vec{\delta}=\vec{n}) \cdot \Pr(\hat{\theta},\vec{\delta}=\vec{n})}{\sum_{\vec{n}} \Pr(\hat{\theta}|\vec{\delta}=\vec{n}) \cdot \Pr(\vec{\delta}=\vec{n})} \\ &= \frac{\sum_{\vec{n}} \Pr(\pi|\vec{\delta}=\vec{n}) \cdot \Pr(\hat{\theta}|\vec{\delta}=\vec{n}) \cdot \Pr(\vec{\delta}=\vec{n})}{\sum_{\vec{n}} \Pr(\hat{\theta}|\vec{\delta}=\vec{n}) \cdot \Pr(\vec{\delta}=\vec{n})} \end{aligned}$$

 $\Rightarrow \pi | \hat{\theta}$ is a mixture of Dirichlet distributions

・ロト・4回・4回・4回・4回・

Computing the test statistic

To compute our test statistic we express

$$\Pr(\pi|\hat{\theta}) = \frac{\Pr(\pi, \hat{\theta})}{\Pr(\hat{\theta})} = \frac{\Pr(\hat{\theta}|\pi) \cdot \Pr(\pi)}{\Pr(\hat{\theta})} = \frac{[\Pi_{k=1}^{K} f(\hat{\theta}_{k}|\pi)] \cdot \Pr(\pi)}{\Pr(\hat{\theta})}$$

where we numerically approximate

$$f(\hat{ heta}_k|\pi) = \int_{ heta_k} f(\hat{ heta}_k| \ heta_k) \pi(heta_k) d heta$$

Algorithm:

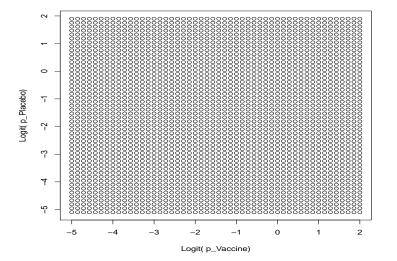
- 1. Draw 10⁵ iid realizations $\pi^l \sim Dirichlet(\alpha)$
- 2. For $l = 1 \cdots 10^5$, compute $\Pr(\hat{\theta} | \pi^l)$ and π_A^l
- 3. Compute

Example 1: 95% CI for $p_{[0,\infty]}$ for the sore throat outcome

Study or subgroup	Vaccine	Placebo/do nothing	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,959 Cl
4 Local - sore throat					
aa Ohmit 2006	127/506	16/99		5.7 %	1.55 [0.97, 2.49]
aa Ohmit 2008	212/787	26/157	-	9.3 %	1.63 [1.12, 2.35]
ab Hrabar 1977	40/123	10/44		3.5 %	1.43 [0.78, 2.61]
aa Monto 1982	40/154	16/152		4.4 %	2.47 [1.45, 4.21]
ab Rocchi 1979b	20/260	3/110		0.9 %	2.82 [0.86, 9.30]
ab Atmar 1990	13/46	2/26		0.6 %	3.67 [0.90, 15.03]
aa Nichol 1999a	794/2986	243/1490	•	75.6 %	1.63 [1.43, 1.86]
Subtotal (95% CI)	4862	2078	•	100.0 %	1.66 [1.49, 1.86]
Total events: 1246 (Vaccine),	316 (Placebo/do no	thing)			
11-1	2 - 440 - 4 - 4 /	- 0 (1) 12 -0.00(

Heterogeneity: Tau² = 0.0; Chi² = 4.49, df = 6 (P = 0.61); l² = 0.0% Test for overall effect: Z = 8.87 (P < 0.00001)

Parameterization for sore throat outcome review

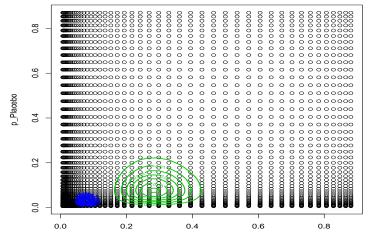

• Studies $k = 1 \cdots 7$

- Data: # of Vaccine treated n_{k,V}, # of Placebo treated n_{k,P},
 # of Vaccine affected X_{k,V}, # of Placebo affected X_{k,P}
- Parameters: $\theta_k = (p_V, p_P)$, for Vaccine risk p_V and Placebo risk p_P
- Likelihood:

 $X_{k,V} \sim Binom(n_{k,V}, p_{k,V})$ and $X_{k,P} \sim Binom(n_{k,P}, p_{k,P})$

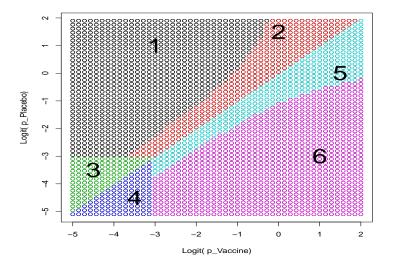
- The π 's are step function on 6 "interval" partition of $[0, 1] \times [0, 1]$ space of $(p_{k,V}, p_{k,P})$ with $\vec{\alpha} = (1.676, 0.564, 0.210, 0.210, 0.564, 1.776)$
- Ω₀(p̃, A) = {π : p_A ≤ p̃} is the set of distributions that give probability less than p̃ to the event p_V ≥ p_P (or log(RR) ∈ [0,∞])

Support of π Logit scale

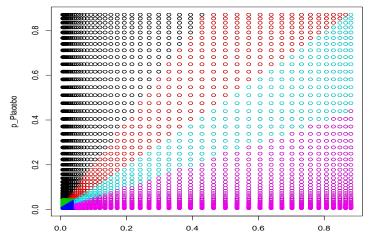

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Support of π

0.8 Ô Ō Ō ō ŏ ō ō ō õ ō ō ō õ õ ō 0 0 0 0 0 0 0 0 0.6 C 0 o_Placebo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 mmn0000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 õ õ õ õ õ õ õ õ õ õ õ õ õ 0.2 οõ ō COLOO & F 001000.00 0.0 0.0 0.2 0.4 0.6 0.8


p_Vaccine

(p_V, p_P) Likelihood for Studies 5 (blue) and 6 (green)


p_Vaccine

π intervals in Logit scale: $\Omega_0 = Int_1 \cup Int_2 \cup Int_3$

(日)

π intervals in p scale

p Vaccine

Warm up: $H_0: p_{[0,\infty]} < 0.5$

- $\Pr(p_{[0,\infty]} < 0.5|$ observed data) = 0.0150
- Is this a small value?

 $\Pr(p_{[0,\infty]} < 0.5| \text{ worst data}) = 0.0135 \text{ while}$

 $1 - pbeta(.5, \alpha_1 \cdots \alpha_3, \alpha_4 \cdots \alpha_6 + 7) = 0.0014$

• Is this significant?

We computed statistic for 10^3 data realizations from worst (?) null π (takes about a minute) and we got smaller test statistic values in 7/1000 realizations.

> dbinom(7, 7, c(.5, .6, .65, .66, .7)) = 0.0080.0280.0490.0550.082

 We set p̃ = .55, .60, .62, .61 · · · .70 and compared Pr(p_[0,∞] < p̃| observed data) with distribution of Pr(p_[0,∞] < p̃| data) for 10³ data realizations from corresponding worst (?) null π.

• Results: H_0 is accepted for $0.64 \leq \tilde{p}$

 \Rightarrow 95% CI for $p_{[0,\infty]}$ is [0.64, 1]

Example 2: Upper respiratory infection symptoms outcome

Study or subgroup	Vaccine n/N	Placebo/do nothing n/N	Risk Ratio M- H,Random,95% Cl	Weight	Risk Ratio M- H,Random,95%
Local - upper respiratory in		1014	G		3
aa Rytel 1977	16/93	7/46		14.5 %	1.13 [0.50, 2.55]
ab Evans 1976	41/79	25/81	-	63.5 %	1.68 [1.14, 2.48]
ab Betts 1977a	4/23	3/24		5.0 %	1.39 [0.35, 5.55]
ab Atmar 1990	17/46	4/26		10.1 %	2.40 [0.90, 6.38]
ab Keitel 1993b	/29	2/9		5.6 %	1.71 [0.46, 6.31]
ab Keitel 1993a	11/30	0/10		1.3 %	8.16 [0.52, 127.23]
Subtotal (95% CI)	300	196	•	100.0 %	1.66 [1.22, 2.27]

Let's test!

> dbinom(6,6,c(.6,.61,.62)) [1] 0.04665600, 0.05152037, 0.05680024 or maybe

> dbinom(6,6,c(.59,.60,.61)) [1] 0.04218053, 0.04665600, 0.05152037

- We set p̃ = .30, .35, · · · , .60 and compared Pr(p_[0,∞] < p̃| observed data) with distribution of Pr(p_[0,∞] < p̃| data) for 10³ data realizations from corresponding worst (?) null π.
- Results: observed statistic is smaller than null samples 0.05 quantile for $\tilde{p} = 0.35$ and larger than null samples 0.05 quantile for $0.40 \le \tilde{p}$

 \Rightarrow 95% CI for $p_{[0,\infty]}$ is [0.40, 1]

- Improve numerics
- Determining worst null π
- Confidence statements for conditional inference

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ