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Background

The classical learning curve

We all know the Bias-Variance Trade-Off:

The common knowledge - very low training error → very high variance

One may think of some criteria for finding the optimal model
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Background

Is NN immune to variance?

On the other hand - very rich models such as NN are trained to exactly fit
the train data, and yet they obtain high accuracy on test data

How can we reconcile the modern practice with the classical bias-variance
trade-off?
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Background

A ”jamming transition”

Spigler in mid 2018, argued that in fully-connected networks, a phase
transition delimits the over and under-parametrized regimes where fitting
can or cannot be achieved
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Background

Reconciling the discrepancy

Just one year ago - Belkin et al first analyzed the behavior of rich models
around the interpolation point

Since then many authors published results, that justified the innovative
approach
Hastie, Rosset, and Tibshirani provided a precise quantitative explanation
for the potential benefits of over-parametrization in linear regression
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Background

Empirical risk minimization

Given a training sample (x1, y1), · · · , (xn, yn), where (xi , yi ) ∈ Rd × R,

we learn a predictor hn : Rd → R.

In ERM, the predictor is taken to be

hn = argmin
h∈H

{
1

n

n∑
i=1

l (yi , h(xi ))

}

Empirical risk (train error): 1
n

∑n
i=1 l (yi , hn(xi ))

Interpolation: l (yi , hn(xi )) = 0 ∀i

True risk (test error): Ex ,y [l (yi , hn(xi ))]
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Background

Controlling H

Conventional wisdom in machine learning suggests controlling the capacity
of H:

H too small → under-fitting (large empirical and true risk)

H too large → over-fitting (small empirical risk but large true risk)

Example (OLS)

β̂n = argmin
β∈Rp

{
1

n

n∑
i=1

(
yi − xTi β

)2
}

True risk ∝ p
n−p

Yet, best practice in DL: network should be large enough to permit
effortless zero train-loss

Oren Yuval Learning curve in modern ML , The ”double descent” behavior 8 / 47



Background

Controlling H

Conventional wisdom in machine learning suggests controlling the capacity
of H:

H too small → under-fitting (large empirical and true risk)

H too large → over-fitting (small empirical risk but large true risk)

Example (OLS)

β̂n = argmin
β∈Rp

{
1

n

n∑
i=1

(
yi − xTi β

)2
}

True risk ∝ p
n−p

Yet, best practice in DL: network should be large enough to permit
effortless zero train-loss

Oren Yuval Learning curve in modern ML , The ”double descent” behavior 8 / 47



Background

Controlling H

Conventional wisdom in machine learning suggests controlling the capacity
of H:

H too small → under-fitting (large empirical and true risk)

H too large → over-fitting (small empirical risk but large true risk)

Example (OLS)

β̂n = argmin
β∈Rp

{
1

n

n∑
i=1

(
yi − xTi β

)2
}

True risk ∝ p
n−p

Yet, best practice in DL: network should be large enough to permit
effortless zero train-loss

Oren Yuval Learning curve in modern ML , The ”double descent” behavior 8 / 47



Main findings

The “double descent” risk curve

The main finding of Belkin’s work is summarized in the “double descent”
risk curve:

This is demonstrated on important model classes including neural networks
and a range of real data sets

The capacity of H is identified with the number of parameters needed to
specify the function hn
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Main findings

Fitting beyond the interpolation point

When zero train error can be achieved, we choose hn as follows:

hn = argmin
h∈H

{
||hn|| s.t :

1

n

n∑
i=1

l (yi , h(xi )) = 0

}

Looking for the simplest/smoothest function that explain the data

By increasing the capacity of H, we are able to find interpolating
functions that have smaller norm
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Main findings

Why is the “double descent” important?

Stating that interpolation does not necessarily lead to poor
generalization, as long as you ”deep” enough in the interpolation
regime

Reconciling the modern practice with a statistical point-of-view

Explicit analysis for Linear Models

The true risk in the over-parameterized regime is typically lower!
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Real data simulations

Neural networks

One Hidden layer with N random features

Minimizing squared loss or ||a||2 when N ≥ n

x̃k = ϕ(x ; vk) = ϕ(< x , vk >) , vk ∼ MN(0, Ip)
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Real data simulations

Neural networks

Risk curve for RFF model on
MNIST

Near interpolation -
parameters are ”forced”
to fit the training data

Increasing N results in
decreasing the l2 norm of
the predictors
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Real data simulations

Neural networks

Fully connected two-layers network with H hidden units

Optimizing the weight using SGD with up to 6 · 103 iterations:

Interpolation is not assured even in the over-parameterized regime

Automatically prefers minimal-norm solution

Sub-optimal behavior can
lead to high variability in
both the training and test
risks that masks the double
descent curve
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Real data simulations

Neural networks

Risk curves for two-Layers
fully connected NN on
MNIST

Train risk may increase
with increasing number
of parameters
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Real data simulations

Decision trees

It was shown by Wyner et al (2017) that AdaBoost and Random-Forests
perform better with large (interpolating) decision trees and are more
robust to noise in the training data

They questioned the conventional wisdom that suggests that boosting
algorithms for classification requires regularization/early stopping/low
complexity

The effect of noise-point
on a classifier:
interpolating Vs
non-interpolating
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Real data simulations

Decision trees

Risk curves for
Random-Forests on MNIST

The complexity is
controlled by the size of
a decision tree, and the
number of trees

Averaging of
interpolating trees
ensures substantially
smoother function
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Real data simulations

Thinking about it...

The peak at the interpolation threshold is observed within a narrow range
of parameters - sampling parameter-space out of that range may lead to
the misleading (but conventional) conclusions

The understanding of the ”double descent” behavior is important for
practitioners to choose between models for optimal performance
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Theoretical analysis for Least-Squares

Why Least-Squares?

Easy to analyze

Easy to explain

Easy to simulate

Any non-linear model can be approximated by a linear one with large
number of random features

E[y |z ] = f (z ; θ) ≈ ∇θf (z ; θ0)Tβ

There is a well known connection between the gradient descent and the
minimun-norm Least-Squares solution
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Theoretical analysis for Least-Squares

The Linear model

yi = xTi β + εi ; i = 1, · · · , n

xi ∈ Rp, E[xi ] = 0, Cov(xi ) = Σ

E[εi ] = 0, Var(εi ) = σ2

We consider an asymptotic setup where n, p →∞ and p/n→ γ ∈ (0,∞)

We also assume that ||β||22 = r2 - constant ”signal”

Some assumptions over the distribution of x may be taken:

x ∼ MN(0,Σ)

x = Σ1/2z , zj ∼ (0, 1)

Isotropic features: Σ = Ip

x = ϕ(Wz), where W ∈ Rp×d a random matrix with i.i.d. entries
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Theoretical analysis for Least-Squares

The Linear model

Assuming that the model is well-specified, the out-of-sample prediction
risk is:

R(β̂;β) = EXYx0

(
xT0 β̂ − xT0 β

)2

Assuming isotropic features, we can decompose the risk to bias and
variance terms:

R(β̂;β) = EX

[
||E[β̂|X ]− β||22

]
+ EX

[
tr [Cov(β̂|X )]

]
:= B(β̂;β) + V (β̂)

Taking β̂ = (XTX )−1XTY , we get:

E[β̂|X ] = β ; Cov(β̂|X ) = σ2(XTX )−1 → σ2

n − p
Ip

and therefore R(β̂;β)→ σ2γ
1−γ
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Theoretical analysis for Least-Squares

High dimensional Least-Squares

When γ > 1, the empirical risk ||Y − Xβ||22 can be eliminated, and we are
looking for the minimum l2 norm estimator :

β̂ = argmin
β∈Rp

{
||β||2 s.t : ||Y − Xβ||22 = 0

}

Solving with Lagrange multipliers:

argmin
β,λ

{
βTβ + λT (Y − Xβ)

}
We get:

β̂ = XT λ̂ ; λ̂ = (XXT )−1Y =⇒ β̂ = XT (XXT )−1Y

One can write: β̂ = (XTX )+XTY
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Theoretical analysis for Least-Squares

Computing the bias term

Now we have:
E[β̂|X ] = XT (XXT )−1Xβ 6= β

and therefore the bias term is:

B(β̂;β) = EX

[
||E[β̂|X ]− β||22

]
= βT (Ip − EX [XT (XXT )−1X ])β

We can show that EX [XT (XXT )−1X ]→ n
p Ip, and therefore:

B(β̂;β) = βTβ − n

p
βTβ = r2(1− 1

γ
)

Note that:

EX

[
||E[β̂|X ]||22

]
→ n

p
r2 =

r2

γ
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Theoretical analysis for Least-Squares

Computing the variance term

Recall that:
V (β̂) = EX

[
tr [Cov(β̂|X )]

]
Now we have:

Cov(β̂|X ) = σ2(XXT )−1XXT (XXT )−1 = σ2(XXT )−1 → σ2

p − n
In

and therefore:

V (β̂)→ σ2

γ − 1
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Theoretical analysis for Least-Squares

Limiting Risk

For the asymptotic setting, we can obtain the following formula:

A new bias-variance trade-off in the over-parameterized regime

The behavior can be controlled by the SNR = r2/σ2

If SNR > 1, there is a local min at γ =
√
SNR√

SNR−1

As γ →∞, the estimator β̂ converge to the null estimator β̃ = 0, and
the total risk is r2
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Theoretical analysis for Least-Squares

Empirical results

Figure: σ2 = 1, r2 varies from 1 to 5
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Theoretical analysis for Least-Squares

Misspecified model

yi = xTi β + ωT
i θ + εi ; i = 1, · · · , n

xi ∈ Rp, ωi ∈ Rd , E[(xi , ωi )] = 0, E[εi ] = 0, Var(εi ) = σ2

For simplicity, we assume that Cov((xi , ωi )) = Ip+d

In this case we can write:

yi = xTi β + δi ; i = 1, · · · , n

E[δi ] = 0, Var(δi ) = σ2 + ||θ||22

We also assume that ||β||22 + ||θ||22 = r2 - constant ”signal”
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Theoretical analysis for Least-Squares

Misspecified model

The risk is:

R(β̂;β, θ) = EX

[
||E[β̂|X ]− β||22

]
+ EX

[
tr [Cov(β̂|X )]

]
+ ||θ||22

:= B(β̂;β) + V (β̂; θ) + M(β, θ)

For the variance term we have:

V (β̂; θ) = (σ2 + ||θ||22) γ
1−γ , for γ < 1

V (β̂; θ) = (σ2 + ||θ||22) 1
γ−1 , for γ > 1
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Theoretical analysis for Least-Squares

Misspecified model

The total risk for γ < 1:

||θ||22 + (σ2 + ||θ||22)
γ

1− γ

The total risk for γ > 1:

||θ||22 + ||β||22(1− 1

γ
) + (σ2 + ||θ||22)

1

γ − 1

What can be a conventional connection between γ and ||θ||22?

How the signal is distributed over γ?
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Theoretical analysis for Least-Squares

Polynomial decay of the signal

We now assume that:
||θ||22 = r2(1 + γ)−a

||β||22 = r2(1− (1 + γ)−a)

for some a > 0

Figure: ||θ||22 = ((1 + γ)−a, a ∈ {0.5, 1, 2, 5}
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Theoretical analysis for Least-Squares

Polynomial decay of the signal

We now obtain the following formula:

We can see that R(γ = 0) = R(γ =∞) = r2 (the null risk)

For a ≤ 1 + 1
SNR , Ra(γ) is a monotonically increasing function in the

under-parameterized regime

If SNR ≤ 1, the risk in the over-parameterized regime always worse
than the null risk

If SNR > 1, there is a local minimum in the over-parameterized
regime, and it is global for small enough a
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Theoretical analysis for Least-Squares

Empirical results

The ”double descent” behavior achieved...
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Theoretical analysis for Least-Squares

Thinking about it...

Yet, we did not see the same behavior as in the NN simulations...

The reason may be - the distribution of the signal over the parameters
space

What if - the majority of the signal is located within some range in the
over-parameterized regime?

Figure: ||θ||22 = g(γ)
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Theoretical analysis for Least-Squares

Model evaluation

For the task of models evaluation and selection we may use the
leave-one-out cross-validation estimator (CV for short):

CVn =
1

n

n∑
i=1

(
yi − f̂ −in (xi )

)2

We may also want use the ”shortcut formula”:

CVn =
1

n

n∑
i=1

(
yi − f̂n(xi )

1− Sii

)2

=
1

n

n∑
i=1

(
yi − [SY ]i

1− Sii

)2

where S is the linear smoother matrix
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Theoretical analysis for Least-Squares

Model evaluation

For any linear interpolator:

SY = Y =⇒ S = In =⇒ yi − [SY ]i
1− Sii

=
0

0

in particular for the min-norm interpolator: S = XXT (XXT )−1 = In

Fortunately, we can solve this problem! Rewrite S to be:

S = XXT (XXT + λIn)−1 , λ→ 0+
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Theoretical analysis for Least-Squares

Model evaluation

Now we can apply L’Hopital’s rule by with derivative at λ = 0

(yi − [SY ]i )
′

(1− Sii )
′ =

[
XXT (XXT + λIn)−2Y

]
i

[XXT (XXT + λIn)−2]ii
|λ=0=

[
(XXT )−1Y

]
i

[(XXT )−1]ii

Finally, the CV estimator can be calculated with the following formula:

CVn =
1

n

n∑
i=1

([
(XXT )−1Y

]
i

[(XXT )−1]ii

)2
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Theoretical analysis for Least-Squares

Ridge regression

The min-norm estimator is related to the Ridge regression estimator as
follows:

β̂ = limλ→0+ β̂λ

where β̂λ is the Ridge regression estimator:

β̂λ = argmin
β∈Rp

{
1

n
||Y − Xβ||22 + λ||β||2

}
= (XTX + nλIp)−1XTY

Thus, an optimal tune β̂λ should be better than β̂

The limiting risk for the optimal β̂λ can be written explicitly as:
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Theoretical analysis for Least-Squares

Ridge regression

In overview looking we can simplify the optimal risk into:

R(β̂λ∗ ;β, θ) ≈ ||θ||22 + f (σ2; γ) + g(||β||22; γ)

where f (z ; γ)→ 0, g(z ; γ)→ z as γ →∞

and g(z ; 0) = f (z ; 0) = 0

Looks like trade-off between observed and unobserved signals

Again, the distribution of the signal over γ may play a role...
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Theoretical analysis for Least-Squares

Ridge regression - optimal risk curves

Oren Yuval Learning curve in modern ML , The ”double descent” behavior 39 / 47



Theoretical analysis for Least-Squares

Optimal risk curves - misspecified model

R(β̂λ∗ ;β, θ) ≈ ||θ||22 + f (σ2; γ) + g(||β||22; γ)

Optimal risk curves with
||θ||22 = (1 + γ)−a, a = 2

Why is the minimum risk
around γ = 1?

”... it seems we want the
complexity of the feature
space to put us as close to
the interpolation boundary as
possible...”
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Theoretical analysis for Least-Squares

Optimal risk curves - misspecified model

R(β̂λ∗ ;β, θ) ≈ ||θ||22 + f (σ2; γ) + g(||β||22; γ)

Optimal risk curves with:

σ2 = 1, r2 = 5

||θ||22 = (1 + γ)−a,
a ∈ {1, 2, 4}

Curves get steeper as r2

grows

What conclusions can we
draw regarding Neural
Networks?
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Theoretical analysis for Least-Squares

Additional results - nonlinear features

Asymptotic variance in a nonlinear feature model, x = ϕ(Wz)
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Theoretical analysis for Least-Squares

Additional results - correlated features

Asymptotic variance and bias for auto-regressive structure, Σij = ρ|i−j |

Reminder:
B(β̂;β) = βT (Ip − EX [XT (XXT )−1X ])β
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Theoretical analysis for Least-Squares

Additional results - correlated features

Asymptotic risk for auto-regressive structure, Σij = ρ|i−j |
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Theoretical analysis for Least-Squares

CV-tuned Ridge regression

Finite-sample risks for CV-tuned ridge regression estimator compered to
Asymptotic risk (20 independent training samples)
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Summery

Summary

There is a growing interest in Interpolators in ML

The double descent phenomenon must be well understood and taken into
account for model optimization

The linear model analysis explains the bias-variance trade-off in the
interpolation regime

The real-life trade-off:

Balance between signalobs -bias-variance

Controlled by complexity-regularization/early stopping
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