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 SUMMARY. We consider the problem of testing for partial conjunction of hypothesis, which argues that
 at least u out of n tested hypotheses are false. It offers an in-between approach to the testing of the
 conjunction of null hypotheses against the alternative that at least one is not, and the testing of the
 disjunction of null hypotheses against the alternative that all hypotheses are not null. We suggest powerful
 test statistics for testing such a partial conjunction hypothesis that are valid under dependence between
 the test statistics as well as under independence. We then address the problem of testing many partial
 conjunction hypotheses simultaneously using the false discovery rate (FDR) approach. We prove that if the
 FDR controlling procedure in Benjamini and Hochberg (1995, Journal of the Royal Statistical Society, Series B
 57, 289-300) is used for this purpose the FDR is controlled under various dependency structures. Moreover,
 we can screen at all levels simultaneously in order to display the findings on a superimposed map and
 still control an appropriate FDR measure. We apply the method to examples from microarray analysis and
 functional magnetic resonance imaging (fMRI), two application areas where the need for partial conjunction
 analysis has been identified.

 Key WORDS: False discovery rate; Functional MRI; Global null; Meta-analysis; Microarray; Multiple
 comparisons.

 1. Introduction
 In many modern biostatistics applications there is a need
 to combine p-value maps. In functional magnetic resonance
 imaging (fMRI) the signal in the brain indicating activity is
 recorded over time while the subject is involved in a cogni
 tive task. From the map of p-values, regions in the brain that
 participated in the task are identified. When several cogni
 tive tasks are studied the researcher is interested in the brain

 regions that participated in most (or at least one) of several
 cognitive tasks. The map is indexed by the brain location,
 and the p-values across tasks in the same location may be
 dependent. Another example from genomics research is that
 of meta-analysis of microarray experiments to help identify
 genes that were consistently differentially expressed in most
 experiments that examine the same problem. The index in the
 map is the gene, and the p-values for the same gene across
 experiments are independent.

 Pooling together inferences made under different yet related
 conditions enables the researcher to (1) gain statistical power,
 or (2) make a stronger scientific statement. The first goal is
 the more familiar one, as it is in frequent use in meta-analysis.

 Although there may be only a weak evidence against the null
 hypothesis at each study, pooling the evidence across studies
 may yield very convincing results. Methods are abundant for
 producing a single combined p-value to show that at least one
 hypothesis is false by testing the conjunction of null hypothe
 ses, also known as the global null hypothesis, the intersection
 null hypothesis, or the omnibus null hypothesis. Fisher's com
 bined p-value is probably the best known method for this
 purpose (see, e.g., Lazar et al. [2002], Zaykin et al. [2002],
 and Loughin [2004]).

 Even when the above goal is achieved, the scientific conclu
 sion arrived at is quite weak, in the sense that the evidence

 may stem from a very strong result in a single study and none
 in the others. Thus the second goal for combining p-values ad
 dresses this weakness: we would like to show that the results

 across studies are consistent in the sense that the null hypoth
 esis at each and every study can be rejected. To show such
 a result, the disjunction of null hypotheses is tested against
 the alternative that all hypotheses are false (i.e., against the
 conjunction of alternative hypotheses). The need to answer
 such questions has arisen quite naturally in fMRI analysis
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 (see Friston, Holmes, and Worsley [1999] and Nichols et al.
 [2005]), where the disjunction of null hypotheses is known as
 the conjunction null. The analysis is challenging because this
 null is tested in many brain locations.

 As noted above the findings from the rejection of the con
 junction of null hypotheses are often too general to be sci
 entifically meaningful. Yet rejecting the disjunction of null
 hypotheses is often too restrictive, making it practically very
 difficult to reject anywhere when screening a large number of
 such hypotheses. A natural compromise is to test instead the
 partial conjunction null that at least a prespecified number of
 the null hypotheses hold, against the alternative that at least
 u out of the n null hypotheses are false.

 Such a test is called the partial conjunction test. For
 mally, consider n > 2 null hypotheses at each "location"
 s e {l,...,S},H0i(s), H02(s),...,Hon(s), and let pi(s),...,
 Pn(s) be their associated p-values. Let k(s) be the (unknown)
 number of false null hypotheses in location s, then our ques
 tion "Are at least u out of n null hypotheses false?" can be
 formulated as follows:

 l(S/n(s) : k(s) < u versus H?/n(s) : k(s) > u. (1)

 Friston, Penny, and Glaser (2005) have recognized the use
 fulness of testing Hq n(s) in fMRI research, when searching
 for regions in the brain that participate in u different cognitive
 tasks out of n tasks of similar nature. They suggested using
 the maximum p-value at each location as the test statistic,
 adjusting its distribution to take care of both the w-out-of
 n and of the multiple locations simultaneously by control
 ling the family wise error rate. However, this method has two
 drawbacks. First, it has very low power at a location even if
 the location responds to all but one condition, as noted by
 McNamee and Lazar (2004) and demonstrated in Section 7.
 Second, unless the conjunction hypothesis where u = n is
 tested, the method is only valid for independent test statis
 tics within every brain location.

 The approach we suggest here is different. First, in Sec
 tion 2 we present a simple general principle for combining
 the p-values at each location s to derive a valid p-value for
 testing Hq/ti(s). The actual choice should further rely on the
 dependency structure between the p-values at each location,
 as discussed in Sections 2.1 and 2.2. All choices lead to the
 use of the maximum p-value when the tested null is the dis
 junction of null hypotheses (where u = n) and lead to familiar
 tests when the tested null is the conjunction of null hypothe
 ses (where u = 1).
 We then suggest to screen the valid partial conjunction

 p-value map across locations while controlling for the false
 discovery rate (FDR). The (perhaps more) intuitive proce
 dure in such settings, to apply an FDR controlling procedure
 on each p-value map separately and then take the intersec
 tion of the discovered locations, does not control the FDR of
 the combined discoveries. In the extreme situation where the
 conjunction of threshold maps is that of the falsely discovered
 locations, the FDR will be 1. In Section 3 we prove that the
 procedure in Benjamini and Hochberg (1995), hereafter BH,
 on the pooled p-values for partial conjunctions, controls the
 FDR when the original maps are independent even when the
 p-values within every map are dependent and discuss the va
 lidity of this procedure in other realistic settings. Because it

 may be of interest to look at all levels of partial conjunction
 Hq n, for u = 1,... ,n, in Section 4 we define an appropri
 ate error measure to control in this case and prove that it is
 controlled by the procedure in BH.

 In Sections 5 and 6 we give examples from fMRI and mi
 croarray analysis, respectively. In Section 7 we discuss the
 power of the methodology suggested via simulations. In Sec
 tion 8 we give our final remarks.

 2. Combining p-Values
 Many methods for combining p-values can be designed. Un
 der the partial conjunction null Hq n(s), let Ui,..., Un-u+i be
 the p-values for which the null hypotheses hold, in the sense
 that Ui^tU(0,1) for i ? 1,..., n - u + 1, and let Pi,..., Pu_i
 be the other p-values. Without loss of generality, for a vec
 tor of p-values from the partial conjunction null, let the first
 n ? u + 1 entries correspond to the p-values where the
 null hypothesis holds and let Pu/n(s) = f(Ui,...,Un-u+i,
 Pi,..., Pu-i) be the combined p-value. As long as the com
 bining method makes sense, in that / is nondecreasing in all
 its components, /(?/_,..., Un-U+U hi(Px),..., hu-i(Pu-i)) <
 f(Ui,..., Un-u+i, Pi,..., Pu-i) for functions hi(x) < x, i =
 l,...,u - 1. Therefore, if the event {Pu/n(s) < q} occurs
 then the event {/(?/_,..., ?/n-u+i, /i-i(Pi), > ^u-i(Pu-i)) <
 q} occurs and we just proved the following lemma.

 Lemma 1. Under Rq/ti(s), let hi(Pi) < Pi for some
 function hi(-),i = l,...,u ? 1, and let P* n(s) ?
 f(Ui,...,Un.u+u hi(Pi),...,hu_i(Pu?i)) and Pu^(s) =
 f(Ui,..., Un.u+1, Pi,..., Pu_i). Then P?/n(s)iPu/n(s).

 Lemma 1 helps us construct valid pooled p-values. Be
 cause the stochastically smallest Pu/n(s) under Hq n(s) will
 occur when u ? 1 p-values are identically zero, the pooled
 value Pu/n(s) will be valid if it depends only on the n ?
 w+ 1 largest p-values using a combining function that satis
 fies f(Ui,..., Un-u+i,0,..., 0)^(0,1). Below we give several
 valid p-values.

 2.1 Combining p-Values under Dependence

 Given Pi(s) the p-value for testing H0.(s), and the sorted val
 ues being P(i)(s) < P(2)(s) < < P(n)(s), the intersection of
 hypotheses nf=1 H0j(s) is rejected at level a by Simes' test if
 there exists an i such that p^ < ?a. Equivalently, use the ad
 justed p-value minj__i,...?n{YP(i)(s)}, rejecting the intersection
 hypothesis if the adjusted p-value is smaller than a.

 For testing the partial conjunction null Hq n(s), we com
 bine the n ? u + 1 largest p-values similarly, thus creating a
 restricted and shifted Simes p-value,

 p?/"(_)= min l{n~U+1)P{u-M)(s)\. (2) i=l,...n-u+l I I J

 For example, suppose that the test of three conditions
 ends up with p-values 0.5, 0.022, and 0.015. For testing that
 the alternative hypothesis holds for all three conditions we
 use p3/3(s) = P(3)(s) = 0.5, for at least two conditions we
 use p2/3(s) = min{2p(2)(s), P(3)(s)} = 0.044, and for at
 least one condition we use p1^3(s) = min{3p(i)(s), 1.5p(2)(s),
 p{3)(s)} = 0.033.

 The Simes test was originally developed for independent
 test statistics, where it is an exact test. Efforts over the last
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 years have extended its applicability. Sarkar (1998) was the
 first to show that the Simes test is valid under a specific de
 pendency structure. It is now well established that the Simes
 test is valid under any of the following conditions. (Dl) The p
 values per location are independent (Simes, 1986). (D2) The
 p-values per location satisfy the positive regression depen
 dency on a subset (PRDS) property, as defined in Benjamini
 and Yekutieli (2001): P({Pi(s), i = l,...,ra} E A\Pj(s) =
 x) is nondecreasing in x for any j in the subset of null hy
 potheses and any increasing set A, where set A is increasing
 if x E A and y > x implies that y E A. Important examples
 include comparison of various independent treatments with
 the same control and the set of p-values for testing one-sided
 hypotheses based on Gaussian test statistics that are posi
 tively correlated. (D3) The p-values per location for testing
 one-sided hypotheses are based on t-statistics from positively
 correlated normals with a joint estimator of the variability
 (Benjamini and Yekutieli, 2001; case 4).

 Theorem 1. Let pu^n(s) be the pooled p-value using equa
 tion (2). If the set of p-values corresponding to null hypotheses
 at location s satisfy either of the conditions D1-D3 above, then
 pu/n(s) is a valid p-value for testing H (s).

 See Web Appendix A for the proof.
 For general dependence we may always revert to Bonfer

 roni, leading to

 p^n(s) = (n-u + l)piu)(s). (3)
 Because P(P?/?(s) < q) = P(P{u)(s) < j^_) <

 P(U?-1u+1{Ul(s)<J^r)})<q, we have the following
 theorem:

 Theorem 2. Let pu^n(s) be the pooled p-value using equa
 tion (3). Then pu/n(s) is a valid p-value for testing H^'n(s).

 2.2 Combining Independent p-Values

 Let Z(i) (s) < < 2(n)(s) be the sorted z-scores corresponding
 to the n p-values (zi(s) = <?_1(1 ? pi(s))). For the partial con
 junction null Hq n(s), the p-value motivated by the Stouffer
 method for combining p-values is

 (n-u+\ \

 5Z{i){s) (4)
 Vn-u+l /

 and the p-value motivated by the Fisher method for combin
 ing p-values is

 pu/"(s) = P ( x?(?-?+i) > -2^1ogp(i)(S) j . (5)
 These are valid partial conjunction p-values because they

 are both increasing functions of pi(s),... ,pn(s), so Lemma
 1 can be invoked, and the combining function / in each case
 satisfies f(Uu...,Un-u+u0,...,0) - U(0, 1).

 Many other valid combining p-values can be generated. For
 a systematic comparison of combining methods for testing the
 global null and for further references see Loughin (2004). A
 similar modification of these combining methods can be used
 for more partial conjunction tests.

 3. Screening While Controlling the FDR
 Consider now the situation where we test a large family of
 partial conjunction hypotheses Hq n(s), s = 1,...,5. Once
 we have a valid combined p-value per location utilizing one of
 equations (2)-(5) as appropriate, we can use an FDR control
 ling procedure on the combined location p-values. The ques
 tion arises whether conditions on the individual p-value maps
 that permit the use of an FDR controlling procedure per map
 separately, endow the combined partial conjunction p-values

 with the condition that allows the use of the same FDR con
 trolling procedure.

 If the p-values within the individual maps are independent
 the answer is simple, any FDR controlling procedure for in
 dependent test statistics will obviously control the FDR at
 the desired level q. However, the independence assumption is
 often not met. For example, in fMRI a single null hypothesis
 tested is often one sided (did the stimulus increase the activity
 in the brain location?) and the p-values are based on (approx
 imately) Gaussian test statistics that are nonnegatively cor
 related across neighboring brain locations. Such PRDS struc
 ture allows the use of the procedure in BH. Now, if several
 p-value maps are combined, within each map the location
 p-values satisfy the PRDS property and the n p-values in
 each location are independent, the following condition guar
 antees that the combined p-value map also satisfies the PRDS
 property:

 Condition 1. If / : $ln ?> 3ft is the combining function
 and U\,..., Un-u+i are U(0, 1) random variables, then
 f(Ul,...,Un-tt+u0,...,0) = G(2Z +19(Ui)), where G(-)
 and g(-) are increasing functions and the probability density
 of g(Ui) is a Polya frequency function of order 2 (PP2) (see
 Efron [1965] for details on these functions).

 In particular, the combining functions motivated by
 Fisher's and Stouffer's methods for combining p-values
 satisfy the above conditions but the combining func
 tions motivated by the Simes or Bonferroni methods do
 not. For the Fisher method: f(U\,..., Un-u+i,0,...,0) =

 P(x\{n-u+l] > -2(E::r' logt/,)), so G(x) = P(x2(___+I) > ? 2x) is increasing in x for x < 0 and g(u) =
 logu is increasing in u; g(U\) = \ogU\ has an ex
 ponential distribution and therefore a PF2 density.
 For the Stouffer method: f(U\,..., C/n__u+1, 0,..., 0) =
 *(?r=7+1(-*"'(l-tfi))/(n-? + !)))*. so G(x) = *(*/
 (n ? u + 1)) is increasing in x and g(u) = ? & l(l ? u)
 is increasing in u; g(Ui) = ? <_>-1(l ? ?/.) has a standard
 normal distribution and therefore a PF2 density.

 Theorem 3. Assume that the p-values within individual
 maps satisfy the PRDS property, and that the p-values in each
 location are independent. Furthermore if condition 1 is satis

 fied, the BH procedure on the partial conjunction p-value map
 controls the FDR at the desired level q.

 See Web Appendix B for the proof.
 It follows that applying the procedure in BH after using

 equation (4) or (5) to combine the p-values in each location
 will control the FDR at the desired level q if within every
 map the p-values satisfy the PRDS assumption and the n p
 values in each location are independent. Although it is quite
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 likely that BH screening after using equation (2) to combine
 the p-values at each location also controls the FDR, we do
 not have such a result. Simulations with PRDS dependency
 across locations in the same map and across maps in same
 locations, detailed in Web Appendix C, suggest that the BH
 procedure on the pooled map using equation (2) controls the
 FDR.

 Previous works show that the BH procedure controls the
 FDR for p-value maps with many dependency structures
 other than PRDS. Reiner (2007) shows via a combination of
 simulations and analytic results that applying the BH pro
 cedure on p-values from two-sided tests of correlated nor
 mal test statistics with any correlation structure controls the
 FDR. In an asymptotic framework, Storey, Taylor, and Sieg
 mund (2004) gave convergence conditions on the distribution
 of the p-values for the inference on a single map of dependent
 p-values using BH to be valid. We show in Web Appendix
 D the asymptotic validity of partial conjunction screening
 when these conditions are satisfied for every map. Storey
 et al. (2004) also suggested more powerful procedures than
 the BH for FDR control. The asymptotic validity of these pro
 cedures carries over to the partial conjunction p-value map.
 To summarize, we believe that in most practical situations
 where the BH procedure is appropriate when screening in
 dividual maps, it is also so for screening partial conjunction
 hypotheses. (If in doubt it can always be applied at a more
 conservative level of q/(%2 =i *) to guarantee FDR control at
 level q, see Benjamini and Yekutieli [2001]).

 4. Screening at All Levels u
 As partial conjunction Hq is a flexible in-between approach
 for any 1 < u < n, it may be tempting to look at all n such
 maps. In Figure 1, for example, we display three such maps
 superimposed, where at each location s the largest u for which
 Hq n(s) can be rejected is presented. In applications where it
 is interesting to create and examine all n maps (e.g., screening
 for conjunctions in a group of people, see Heller et al. [2007]),
 it is necessary to define an overall error measure to control for

 multiplicity. We will define the FDR for screening at all levels
 u and prove that it is controlled when the BH procedure is

 applied at every level u to the combined p-values based on
 Simes (2).

 Define an overall location discovery at s if for some u
 Hq n(s) is rejected. Let k(s) = max{u \ Hq n(s) is rejected}
 be the strongest overall result we can claim about s, and de
 fine the discovery at location s false if the claim is too strong,
 in that k(s) > k(s). Then, the overall FDR is the expected
 proportion of the overall false discoveries out of the overall
 discoveries.

 Theorem 4. // each partial conjunction map based on
 Simes (2) is PRDS, and is tested by the procedure in BH at
 level q, the overall FDR of the superimposed analysis is also
 less or equal to q.

 See the Appendix for the proof.
 Actually the proof only makes use of the fact that the

 combining function satisfies the following monotonicity prop
 erty p(n~1)/n(s) < pu/n(s). To achieve control of the overall
 FDR for the combining methods (3)-(5), we can introduce the
 monotonicity requirement by defining p* (s) = p1^n(s) and
 p*/n(s) = max{piu_1)/n(s), pu/n(s)} for u = 2,... ,n. Then,
 if the resulting maps are PRDS, using the procedure in BH
 on {p* (s): s = 1,..., S} for u = 1,..., n will also assure
 overall FDR control.

 5. Application to fMRI
 In this example, the subject viewed at different time points
 different pictures belonging to four categories: faces, houses,
 common man-made objects, and geometric patterns. The re
 searcher is interested in finding the regions in the brain that
 were more active during the presentation of the first three pic
 ture categories than during the viewing of geometric patterns.
 For each of the first three categories, a t-test statistic was
 computed for testing the contrast that the brain activity dur
 ing the presentation of pictures from that category was larger
 than during the presentation from the fourth category. Be
 cause the resulting three test statistics in each brain location
 are positively correlated, the combining method in equation
 (2) is used.

 contrast ^^^^H|f ^l^^_______r^
 O 2 contrasts iW^ ^wm
 # 3 contrasts

 Figure 1. Activation maps for a single subject presented on unfolded cortical hemispheres: blue regions activated in all three
 contrasts with FDR < 0.05 (blue regions in color version at website); white or black (yellow, or blue) regions activated in at
 least two contrasts with FDR < 0.05; dark gray encircled with black, white, or black (red, yellow, or blue) regions activated
 in at least one contrast with FDR < 0.05.
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 Figure 1 shows the superimposed maps that passed the
 FDR cutoff of 0.05 for testing that at least one, at least two,
 or all three contrasts were greater than zero. From this fig
 ure, the regions that were found to react to all three contrasts
 at an FDR level of 0.05 are colored in blue; the regions that
 were found to react to at least two contrasts at an FDR level

 of 0.05, are colored in blue or yellow; and the regions that
 reacted to at least one contrast at an FDR level of 0.05 are
 colored in red, yellow, or blue. The partial conjunction anal
 ysis reveals the much wider region associated with a single
 contrast. However, when a conjunction of at least two cate
 gories are considered (the union of yellow and blue regions),
 then the delineated regions shrink and become confined to a
 well-studied cortical region, the object-related lateral occipi
 tal complex (LOC), whose most robust functional signature is
 a preferential activation to images of objects compared to tex
 ture patterns (Malach et al., 1995; Malach and Levy, 2002).
 See Heller et al. (2007) for more details on this example as
 well as for more examples.

 Remark. On single p-value maps from neuroimaging data,
 Genovese, Lazar, and Nichols (2002) argue that the FDR pro
 cedure controls the FDR at level q because the correlations
 are local and tend to be positive. This reasoning carries over
 to the pooled p-value map, so the BH procedure is justified by
 the asymptotic argument in Section 3. Moreover, simulations
 in Web Appendix C show the FDR control for finite samples.

 6. Application to Microarray Meta-Analysis
 Microarray technology is used to measure simultaneously the
 expression of thousands of genes under various experimental
 conditions. Rapidly growing collections of large datasets are
 becoming available for subsequent analysis. Given the differ
 ences in characteristics of the raw datasets, combining the
 results can help identify the consistently true signals as well
 as give indications about possibly inconsistent findings.

 Chromatin immunoprecipitation (ChIP) is a well
 established procedure used to investigate interactions
 between proteins and DNA. Coupled with whole-genome
 DNA microarrays, ChlPs allow one to determine the entire
 spectrum of in vivo DNA binding sites for any given protein.
 Proteins called transcription factors (TFs) regulate tran
 scription by binding to DNA motifs upstream of their target
 genes. The availability of the genome sequence for budding
 yeast allowed ChIP to be coupled to high throughput analysis
 on microarrays ("chips") to monitor and measure the binding
 of a given set of TFs to the upstream regulatory regions
 of thousands of genes. We applied our combining methods
 to three well-known ChlP-chip genomewide TF binding
 datasets (see details in Pyne, Futcher, and Skiena [2006]).
 Pyne et al. (2006) combined these datasets by first applying
 a cutoff value for each p-value map with a conservative FDR
 threshold so that only p-values that were below their FDR
 threshold are combined using the truncated Fisher method
 (adjusted as suggested by Zaykin et al. [2002]), then the
 combined map cutoff is chosen with an FDR controlling
 procedure. Pyne et al. (2006) added a calculation for finding
 the genes where at least two or all three datasets cleared
 their cutoffs under the global null hypothesis. So in fact
 their definition of a discovery in at least two or all three

 Table 1
 Number of significant genes for protein Swi4 (that forms part

 of TF SBF)

 All 3 At least 2 At least 1

 Pyne et al. (2006) 64 103 162
 Stouffer method 73 195 321
 Fisher method 73 176 305
 Naive method 78 121 161

 datasets is different from ours. Moreover, the p-values in the
 combined map are calculated under the assumption that the
 map thresholds are fixed even though the thresholds are data
 dependent, so the control of the FDR is not guaranteed. We
 apply the Fisher- and Stouffer-based methods for combining
 the p-values, and then threshold the combined p-value maps
 with an FDR level of 0.05. We adjusted for missing values
 conservatively by marking their p-values as 1. In Table 1
 we compared our method with the naive method of cutting
 off every dataset with its own nominal FDR level of 0.05,
 and with the results in Pyne et al. (2006). We discover more
 than Pyne et al. (2006), suggesting our procedure is more
 powerful. The naive method makes more discoveries for u =
 3, but significantly less discoveries with u < 3 because it
 does not gain power from pooling together information from
 several sources. Of course, because it does not guarantee
 control of FDR, the naive method is not recommended. Note
 that for global testing, the naive method FDR is bounded
 above by 3q, so a simple solution is to threshold each map at
 the q/3 level. However, if every map is threshold at 0.05/3,
 only 118 rejections of the global null are made.

 The finding that the gene was differentially expressed in
 at least one dataset may be too weak scientifically, and the
 requirement that the gene should be significant in all three
 datasets may be too severe, so it ignores interesting gene dis
 coveries. Therefore, the genes that were found to be differ
 entially expressed in at least two datasets may be the most
 interesting to look at.

 7. A Simulation Example
 We considered different settings in order to compare the power
 of the suggested methods of pooling p-values, as well as ex
 amine how the choice of u affects the power. In each of 1000
 locations 10 independent unit variance Gaussian noise mea
 surements were simulated, and in 100 locations a signal of
 size p was added in A: out of the 10 repetitions (k = 3, 7, 9)
 per location. The signal size p was independently sampled for
 each location and map from a N(p0, al) distribution, where
 we varied po = 2,..., 6 and a0 = 0,..., max(2, /io/2).
 We pooled the p-values using equations (2), (4), or (5), as

 well as using the maximum p-value method (see Friston et al.
 [2005] for details) because this is the only method used up
 to now for 1 < u < n. Next, we computed the resulting map
 threshold using the suggested BH procedure.
 The simulation results show that none of the pooling meth

 ods dominate. The power of each method depends both on
 the configuration of signal p and on the proportion k/n of
 false hypotheses. A careful examination of the identifiable fac
 tors that affect the choice between the combining methods
 in terms of power are outside the scope of this manuscript
 (see Loughin [2004] for some insight when u = 1). Our key
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 Figure 2. Power as a function of u when the FDR level is 0.05 and the simulated setting is that in which the number of
 p-values per location that come from the alternative is either null or 3 (first column), 7 (second column), or 9 (third column).
 The combining method is based on (a) equation (5) (solid line) (b) equation (4) (dashed line) (c) equation (2) (dotted line),
 and (d) the maximum p-value method (dash-dot line). Each row corresponds to a different /io(c"o = 2): uq = 2 (top), p0 =
 4 (middle), and /i0 ? 6 (bottom). There is not one pooling method that is more powerful than all others in all simulation
 settings; there is a sharp decrease in power when u increases.

 observations are that (1) the maximum p-value method has
 little power to reject the partial conjunction null whenever at
 least one p-value comes from a null hypothesis, regardless of
 how small the other p-values may be, and (2) the power de
 creases sharply when u increases, supporting our motivation
 for the partial conjunction test with u < n rather than testing
 of the disjunction of nulls (u = n) when screening for many
 hypotheses. In the representative Figure 2 we see that when
 the partial conjunction hypothesis is false, if most p-values
 come from the alternative (e.g., k = 7 or k = 9) then pool
 ing the p-values using equations (4) or (5) is usually more
 powerful than using equation (2), but when the number of
 p-values that come from the alternative is small (e.g., k = 3)
 pooling the p-values using equation (2) may be more pow
 erful even under independence between p-values within each
 location.

 8. Discussion
 In this article we have suggested powerful new methods to
 combine both independent and dependent p-value maps for
 testing partial conjunctions. We showed that the power de
 creases as a function of the conjunction parameter u, and dis
 cussed the advantages of choosing a u to be larger than 1 but
 smaller than n. If screening at all levels of u is of interest, we
 suggested superimposing the maps to discern the results and
 we showed that if the procedure in BH was used for each par
 tial conjunction at level q then for the superimposed map the
 expected proportion of false overall discoveries is bounded at
 the same level q. The result is restricted to the above proce
 dure, but we suspect the procedure can be generalized while
 maintaining control of the overall FDR and advances on this
 front are desirable. Several other extension are discussed be
 low.
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 In the cases considered, the identity of the null hypotheses
 rejected in every location is not important, and only the pro
 portion of null hypotheses rejected is of interest. If the identity
 of the rejected null hypotheses is of interest as well, stepwise
 procedures can be applied in every location (e.g., in Tamhane
 and Dunnett, 1999) to discover whether at least u out of n
 null hypotheses are rejected and in addition identify these u
 hypotheses, but the level of testing needs to be adjusted so
 that the FDR on locations is properly defined and controlled.

 For combining a large number of maps n sampled from
 a population, for example, when each map corresponds to a
 subject, it may be interesting to estimate rather than test the
 proportion of nonnull hypotheses per location, say by getting
 a lower confidence bound on this proportion (Friston, Holmes,
 and Worsley [1999] and Friston, Holmes, Price, Buchel, and

 Worsley [1999] address this issue in fMRI). This is an interest
 ing point for further research, in particular using the approach
 of confidence intervals after selection suggested in Benjamini
 and Yekutieli (2005).

 9. Supplementary Materials
 Web Appendices and Figures referenced in Sections 2.1-7 are
 available under the Paper Information link at the Biometrics
 website http: //www.biometrics. tibs. org.
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 Appendix

 Proof of Theorem 4- Let m* be the number of locations
 s for which exactly i hypotheses are false, namely k(s) =
 i, and let Ii be their corresponding location indices for i =
 0,..., n. Then Ym=o m* ~ & *s tne total number of locations
 andUJLj/i = {1,...,5}.

 Let Ru be the number of hypotheses rejected when
 testing Hq n(s) on all S locations using the proce
 dure in BH for FDR control at level q. Note that
 Ri > R2 >- > Rn if pn/n(s) > > pu/n(s) > >
 p1/n(s). To see this, note that because YllLi Ifai ^
 Ruq/m] = Ru we have ^ i l[piU~1)/n < #u9/m] > Ru. But
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 because Ru-i = max{/c : Ylu=i ^\Pi ? ^q/771] __! ^} then
 Ru-i __ -R-t- Moreover, the number of false discoveries is

 Ei=i ?, /,-_! l(-?J'/nW < Rj%)- For example, if a e /i then
 if s is rejected when testing u = 3 it is also rejected when
 testing u = 2 because p2/n(s) < p3^n(s) and _R3 < _R2 so we
 should count it only once as an error (at the level u = 2).
 Moreover, because H0/n(s) was also rejected the number of
 overall discoveries is R\. Therefore,

 j=\ aelj
 \ R, /

 3=1 selj.i \ Bj )

 j = l s lj_i k=l
 (A.l)

 ?-^ ^?' m *-^ m \ m J
 j=i selj-i j=i

 where C -k is the set that when screening for partial conjunc
 tions with parameter u = j exactly k p-values are rejected
 including the 5 from the partial conjunction null, so the third
 inequality follows if the partial conjunction p-values are PRDS
 (or independent) according to the proof in Benjamini and
 Yekutieli (2001).
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