
© 2012 Royal Statistical Society 1369–7412/12/74515

J. R. Statist. Soc. B (2012)
74, Part 3, pp. 515–541

Adjusted Bayesian inference for selected
parameters

Daniel Yekutieli

Tel Aviv University, Israel

[Received May 2010. Final revision September 2011]

Summary. We address the problem of providing inference from a Bayesian perspective for
parameters selected after viewing the data. We present a Bayesian framework for providing
inference for selected parameters, based on the observation that providing Bayesian inference
for selected parameters is a truncated data problem.We show that if the prior for the parameter is
non-informative, or if the parameter is a ‘fixed’ unknown constant, then it is necessary to adjust
the Bayesian inference for selection. Our second contribution is the introduction of Bayesian
false discovery rate controlling methodology, which generalizes existing Bayesian false discov-
ery rate methods that are only defined in the two-group mixture model. We illustrate our results
by applying them to simulated data and data from a microarray experiment.
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1. Introduction

We discuss providing Bayesian inference for parameters selected after viewing the data. Current
thought is that selection has no effect on the inference of parameters from a Bayesian perspec-
tive. We show that this is not necessarily so. Consider generating a sample from a Bayesian
framework by randomly generating the parameter and conditionally on the parameter data are
generated. In one case, selection is applied to samples of the parameter and the data, and in the
other case the parameter is sampled and then selection is applied to data samples. The example
below shows that selection matters in the latter case, but not in the former case.

1.1. Example 1
Let θ denote students’ true academic ability. The marginal density of θ in the population of
high school students is N.0, 1/. The observed academic ability of students in high school is
Y ∼ N.θ, 1/, and students with 0 < Y are admitted to college. We wish to predict a student’s
true academic ability from his observed academic ability—but only if the student is admitted to
college. We shall show that the Bayesian inference is different for a random high school student
from for a random college student.

We first consider the case of a college professor predicting θ for a student in his class. The
joint distribution of .θ, Y/ for a random college student can be generated by generating .θ, y/ for
a random high school student and selecting .θ, y/ only if 0 < y. Thus the joint density of .θ, y/

that is used for predicting θ is
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and the conditional distribution of θ given Y = y is N.y=2, 1
2 /. The predicted academic ability

for a student with y =1 is E.θ|y =1/=0:5.
For the case of the high school teacher predicting θ for a student in his class, we assume

that there is a high school regulation instructing teachers to predict academic ability only for
students who can be admitted to college. This means that, for any true academic ability θ, the
values of Y that are used to predict θ are drawn from the N.θ, 1/ density truncated by the event
0<Y . Since θ for a random student is N.0, 1/, the joint density of .θ, y/ that is used for predicting
θ is

fS.θ, y/∝ exp
(

− θ2

2

)
exp

{
− .θ −y/2

2

}/
Pr.Y> 0|θ/: .2/

In this case there is no closed expression for the conditional distribution of θ given Y = y, but
since Pr.Y>0|θ/ decreases in θ then it is stochastically smaller than N.y=2, 1

2 /, and the predicted
academic ability for a student with y =1 is E.θ|y =1/=0:10.

In this paper, we address selection that arises in the statistical analysis of large data sets in
which the aim is to find interesting parameters and then provide inferences for these selected
parameters. Throughout the paper we use the following simulated example to illustrate the dis-
cussion. One can consider it as an example of a microarray experiment in which θi is the log-fold
change in expression of gene i and Yi is the observed log-expression-ratio. We shall now show
that, even when the selection is applied to the parameter and the data, it is necessary to correct
Bayesian inference for selection if the prior on the parameter is non-informative.

1.2. Example 2
The simulation includes 105 independent identically distributed (IID) samples of .θi, Yi/. To
generate θi, we first sample λi from {10, 1} with probabilities 0:90 and 0:10, and then draw θi

from the Laplace distribution, π1.θi|λi/=λi exp.−λi|θi|/=2. Thus the marginal distribution of
θi is

π.θi/=0:9π1.θi|λi =10/+0:1π1.θi|λi =1/: .3/

Yi =θi + "i, with "i independent N.0, 1/.
In our analysis we apply the level q=0:2 Benjamini and Hochberg (1995) false discovery rate

FDR controlling procedure to the two sided p-values, pi =2{1−Φ.|Yi|/}, to find interesting θi,
and then construct 0:95 credible intervals for each interesting θi. The Benjamini and Hochberg
(BH) procedure yielded R=932 discoveries (p.932/ =0:001862 <0:001864=0:2×932=105): the
set of θi with |Yi|> 3:111. The 932 selected .θi, Yi/ are displayed in Fig. 1.

We use two prior models for constructing credible intervals for θi. In the first model the prior
distribution for θi is π.θi/ in equation (3). In this case the posterior distribution of θi (we derive
it later in the paper) is the conditional distribution of θi given Yi. Thus the probability that
θi is in the 0:95 credible interval constructed for it is, per definition, 0:95. Furthermore, since
selection is applied to θi and Yi, selection should have no effect on the Bayesian inference. And,
indeed, 0:953 of the selected θi (888 out of 932) are covered by their respective 0:95 credible
intervals.

In the second model we assume that the marginal distribution of θi is unknown and we
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Fig. 1. Simulated example—scatter plot of jYi j>3.111 (Yi -values are drawn on the abscissa of the plot; the
ordinates are θi -values): , marginal 0.95 confidence intervals; , 0.05 false coverage statement
rate adjusted confidence intervals

replace it with the non-informative prior π.θi/=1. The posterior distribution of θi for this prior
distribution is N.Yi, 1/. Thus Yi ± Z1−0:05=2 is a 0:95 credible interval for θi (these are the full
lines in Fig. 1). Even though the posterior distribution for non-informative priors is not the
conditional distribution of the parameters given the data, these are equal tail credible intervals
based on minimally informative priors that are known to provide good frequentist performance
(Carlin and Louis (1996), section 4:3) that are expected to cover approximately 0:95 of the θi.
These credible intervals cover 0:951 of all 100000 θi, but only 0:654 of the selected θi (610 out
of 932).

Before presenting our inferential framework in Section 1.9, we review a frequentist approach
for discovering interesting parameters and providing inferences for these discoveries in Section
1.3. In Section 1.5 we further motivate the importance of our problem by reviewing literature
on providing inference for interesting parameters in genomic studies. In Sections 1.6–1.8 several
aspects of Bayesian analysis that are relevant to our work are reviewed.

1.3. Control over the false coverage statement rate
Soric (1989) asserted that the goal of many scientific experiments is to discover non-zero effects
and as a result made the important observation that it is mainly the discoveries that are reported
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and included in science, and warned that unless the proportion of false discoveries in the set of
declared discoveries is kept small there is danger that a large part of science is untrue.

Benjamini and Hochberg (1995) considered the problem of testing m null hypotheses H1. . .Hm,
of which m0 are true null hypotheses. They referred to the rejection of a null hypothesis as a
discovery and the rejection of a true null hypothesis as a false discovery. To limit the occurrence
of false discoveries when testing multiple null hypotheses they introduced the false discovery
rate FDR=E{V= max.R, 1/}, where R is the number of discoveries and V is the number of false
discoveries, and introduced the BH multiple-testing procedure that controls FDR at a nominal
level q.

Benjamini and Yekutieli (2005) generalized the BH testing framework. In their selective infer-
ence framework there are m parameters θ1. . .θm, with corresponding estimators T1. . .Tm, and
the goal is to construct valid marginal confidence intervals (CIs) for the subset of parameters that
are selected by a given selection rule S.t1. . . tm/⊆{1. . .m}. They showed that CIs constructed
for selected parameters no longer ensure the nominal coverage probability and suggested the
false coverage statement rate FCR as the appropriate criterion to capture the error for CIs con-
structed for selected parameters. FCR is also defined by E{V= max.R, 1/}; however, R is the
number of CIs constructed and V is the number of non-covering CIs. Benjamini and Yekutieli
(2005) introduced a method of ensuring FCR � q for independent T1. . .Tm and any selection
criterion: construct marginal 1−Rq=m CIs for each of the R selected parameters. In cases where
each θi can be associated with a null value θ0

i and the selection criteria are multiple-testing pro-
cedures that test θi =θ0

i versus θi �=θ0
i , Benjamini and Yekutieli (2005) showed that the level q BH

procedure can be expressed as the least conservative multiple-testing procedure that ensures that
all level q FCR-adjusted CIs for θi, for which the null hypothesis is rejected, will not cover the
respective θ0

i . Furthermore, they showed that for independent T1. . . Tm if all θi �=θ0
i then applying

the level q BH procedure to select the parameters and declaring each selected θi greater than θ0
i

if Ti > θ0
i and smaller than θ0

i if Ti < θ0
i controls the directional FDR (the expected proportion

of selected parameters assigned the wrong sign) at level q=2.

1.4. Example 3
In example 2 all θi �=0; thus for any multiple-testing procedure FDR≡0. However, declaring θi

positive for the BH discoveries with Yi >0 and negative for the BH discoveries with Yi <0 ensures
directional FDR less than 0:1. The number of simulated positive selected θi with negative Yi

and negative selected θi with positive Yi is 56; thus the observed directional FDR is 0:060.
The full lines in Fig. 1 are two-sided normal 0:95 CIs: Yi ±Z1−0:05=2 (recall that these are also

the non-informative prior 0:95 credible intervals from example 2). These 0:95 CIs cover 95089
of the 100000 simulated θi, but only 610 of the 932 selected θi; thus the observed FCR is 0:346.
The broken lines are 0:05-FCR-adjusted CIs: Yi ± Z1−0:05×932=.2×105/. The observed FCR for
the FCR-adjusted CIs is 0:046.

1.5. Selective inference in genomic association studies
The need to correct inference for selection is widely recognized in genomewide association stud-
ies, which typically test association between a disease and hundreds of thousands of markers
located throughout the human genome, often expressed as an odds ratio of manifesting the
disease in carriers of a risk allele. Only multiplicity-adjusted significant findings are reported.
This limits the occurrence of false positive results; however, it introduces bias into the odds
ratio estimates. Analysing 301 published studies covering 25 different reported associations,
Lohmueller et al. (2003) found that for 24 associations the odds ratio in the first positive report
exceeded the genetic effect that is estimated by meta-analysis of the remaining studies. Zollner
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and Pritchard (2007) suggested correcting for the selection bias by providing point estimates
and CIs based on the likelihood conditionally on having observed a significant association.
Zhong and Prentice (2008) further assumed that in the absence of selection the log-odds-ratio
estimator is normally distributed. Similarly to our Bayesian analysis of the simulated example,
they based their inference on a truncated normal conditional likelihood.

1.6. Parameter selection in Bayesian analysis
Berry and Hochberg (1999) commented that the Bayesian treatment of the multiplicity problem
also includes decision analysis, rather than just finding posterior distributions.

Scott and Berger (2006) discussed Bayesian analysis of microarray data. The prior model for
θi, the expectation of the log-fold change in expression of gene i, is that θi =0 with probability p
and θi ∼N.0, V/ with probability 1−p. The decision analysis that was performed in Scott and
Berger (2006) is the discovery of the subset of active genes. Scott and Berger (2006) declared
a gene active (θi �= 0) if the posterior expected loss of this action is smaller than the posterior
expected loss of declaring the gene inactive (θi =0). The loss function for deciding that θi =0 is
proportional to |θi|, and the loss for erroneously deciding that θi �=0 is the fixed cost of doing a
targeted experiment to verify that the gene is in fact active.

The decision analysis in Bayesian FDR-analysis of microarray data is also deciding which
genes are active. In Efron et al. (2001), θi is selected if its local FDR, which is the posterior
probability given yi that θi = 0, is less than a nominal value q. Storey (2002, 2003) suggested
specifying selection rules for which the positive FDR, pFDR, which is defined as the conditional
probability that θi =0 given that θi is selected, is less than q. In the optimal discovery procedure
that was suggested in Storey (2007), the statistic that was used for specifying the selection rule
is a plug-in estimator of the local FDR. Storey (2007) showed that the optimal discovery pro-
cedure provides the maximal probability of selecting θi among all selection rules with the same
pFDR-level.

1.7. Selection bias in Bayesian analysis
Dawid (1994) explained why selection should have no effect on Bayesian inference:

‘Since Bayesian posterior distributions are already fully conditioned on the data, the posterior distri-
bution of any quantity is the same, whether it was chosen in advance or selected in the light of the
data’.

Senn (2008) reviewed the disparity between Bayesian and frequentist approaches regarding
selection. He considered the example of providing inference for θi* , which is the effect of the
pharmaceutical associated with the largest sample mean yi* , among a class of m compounds
with Yi ∼ N.θi, 4/. He first showed that if θi are IID N.0, 1/ the posterior distribution of θi* is
N.yi*=5, 4=5/. He then assumed a hierarchical model in which the treatments form a compound
class. The class effect is λ∼ N.0, 1 − γ2/ and θi are IID N.λ, γ2/. In this case he showed that
the posterior distribution of θi* depends on the number of other compounds and their overall
mean; however, it is unaffected by the fact that θi* was selected because it corresponds to the
largest sample mean.

The observation that Bayesian inference may be affected by selection was already made in
Mandel and Rinott (2007, 2009). Mandel and Rinott (2007) considered the scenario of provid-
ing inference for p, which is the probability of success in a binomial experiment, conditionally
on observing two or more successes. Similarly to example 1, they distinguished between the case
that in each binomial experiment p is drawn independently from its prior distribution and the
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case that the value of p is the same in all binomial experiments, and they showed that in the
second case the Bayesian inference is affected by selection.

1.8. Fixed and random effects in Bayesian analysis
In the Bayesian framework there can be no fixed effects since the parameters are regarded as hav-
ing probability distributions. However, discussing one-way classification Box and Tiao (1992),
section 7.2, used the sampling theory terminology of fixed and random effects to distinguish
between situations in which the individual means can be regarded as distinct values that are
expected to bear no strong relationship to each other that can take on values anywhere within a
wide range, and situations in which the individual means can be regarded as draws from a dis-
tribution. Box and Tiao illustrated this distinction with the example of one-way classification of
several groups of laboratory yields. In the first case the groups correspond to different methods
of making a particular chemical product, whereas in the second case the groups correspond to
different batches made by the same method. The distinction only carries through to the prior
model that is elicited for the group means. In the first case the group means are elicited flat
non-informative priors. They called this model the fixed effect model. In the second case the
group means are IID N.λ, σ2/. This model is called the random-effect model.

1.9. Preliminary definitions
Let θ denote the parameter, Y denote the data and Ω is the sample space of Y. π.θ/ is the
prior distribution of θ, and f.y|θ/ is the likelihood function. The multiple parameters for which
inference may or may not be provided are actually multiple functions of θ: h1.θ/, h2.θ/, . . . . In
selective inference for each hi.θ/ there is a subset Si

Ω ⊆Ω, such that inference is provided for
hi.θ/ only if y ∈ Si

Ω is observed. For example, in our analysis of microarray data in Section 6,
Y is the entire set of observed gene expression levels; θ = .σ2, μ/ consists of the variances and
expectations of the log-expression levels for all the genes in the array, and inference is provided
for hg.θ/=μg, the expectation of the log-fold change in expression of gene g =1, . . . , G, only if
gene g is declared differentially expressed by the BH procedure.

Control over FCR is a frequentist mechanism for providing selective inference. Note that in
example 2 a randomly selected θi is covered by its FCR-adjusted CI with probability 0.95 or
greater. But this frequentist selective inference mechanism suffers from several intrinsic limita-
tions: it is impossible to incorporate prior information on the parameters; it does not provide
selection-adjusted point estimates or selection-adjusted inference for functions of the parame-
ters; the selection adjustment is the same regardless of the selection criterion applied and the
value of the estimator. Fig. 1 suggests that the selection adjustment needed shrinks the CIs
towards 0, rather than just widening the CIs, and the larger |Yi| the smaller selection adjustment
is needed for θi.

In selective inference the entire data set Y =y is observed. However, as inference is provided
for hi.θ/ only if y ∈ Si

Ω, then Y = y used for providing selective inference for hi.θ/ is actually
a realization of the joint distribution of .θ, Y/, truncated by the event that y ∈ Si

Ω (describing
Bayesian selective inference a truncation problem was suggested by Bradley Efron in private
communication; for a discussion on truncation see Mandel (2007) and Gelman et al. (2004),
section 7.8). Thus to provide Bayesian selective inference for hi.θ/ we introduce a framework for
providing Bayesian inference based on the truncated distribution of .θ, Y/. We call this inference
selection-adjusted Bayesian inference.

Predicting true academic ability from observed academic ability for a high school student
and for a college student, which was discussed in example 1, are Bayesian selective inference
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problems in which inference is provided for h.θ/=θ only if SΩ ={y : 0<y} occurs. Even though
the selection mechanism is different, in both cases, .θ, y/ for which θ is predicted from y are
truncated samples from the distribution of .θ, Y/ in the population of all high school students.

1.10. Outline of the paper
In Section 2 we discuss modelling selection-adjusted Bayesian inference: we provide an opera-
tive definition for the joint truncated distribution of .θ, Y/; we distinguish between parameters
according to the way that their distribution is affected by selection and derive the joint truncated
distribution of .θ, Y/ in either case; for either case, and also for parameters with non-informative
priors, we define the components (i.e. prior, likelihood and posterior) of selection-adjusted
Bayes inference; we then specifically derive these components for .θ, Y/ that correspond to Box
and Tiao’s random-effect model and fixed effect model. In Section 3 we define selection-adjusted
Bayes inference as the Bayes rules in Bayesian selective inference. We also present a Bayesian
FCR for the random-effect model and explain the relationship between selection-adjusted Bayes
inference and providing FCR-control.

In Section 4 we present Bayesian FDR controlling methodology for specifying selection rules
in the random-effects model for cases in which selection is used for making statistical discoveries.
We also provide an empirical Bayes algorithm for applying this methodology in cases that cor-
respond to Box and Tiao’s fixed effect model. In Section 5 we explain the relationship between
the Bayesian FDR methods that are presented in Section 4 and existing Bayesian FDR meth-
ods, and describe how to provide selection-adjusted Bayes inference in the two-group mixture
model.

In Section 6 we analyse microarray data. The goal of the analysis is to find overexpressed
and underexpressed genes while controlling directional FDR � 0:05, and to provide inference
for the change in expression for these selected genes. The level 0:10 BH procedure applied to
t-statistic p-values fails to discover any differentially expressed genes. Applying the level 0:10
BH procedure to p-values corresponding to hybrid classical–Bayes moderated t-statistics yields
245 discoveries; however, it is not clear how to provide frequentist selective inference for these
discoveries. For comparison, our level 0:05 Bayesian FDR selection rule based on the moderated
t-statistic yields 1124 discoveries, and the level 0:05 Bayesian FDR selection rule based on the
optimal statistic yields 1271 discoveries. In the second part of the analysis, we provide Bayes-
ian selective inference for the expected base 2 log-fold change in expression for a differentially
expressed gene.

The paper concludes with a discussion of the conceptual and methodological contributions
of this paper.

2. Modelling selection-adjusted Bayesian inference

The primary problem in modelling selection-adjusted Bayes inference is specifying the joint
truncated distribution of .θ, Y/, which we denote fS.θ, y/. It is important to note that fS.θ, y/

is the joint distribution of .θ, Y/ according to which selective inference is provided for h.θ/, and
not the joint distribution of .θ, Y/, f.θ, Y/=π.θ/f.y|θ/. We use this characterization for defining
fS.θ, y/.

Definition 1. Assume that selective inference for h.θ/ involves an action δ.Y/ that is associated
with a loss function L{h.θ/, δ}. fS.θ, y/ is defined as the distribution over which the expected
loss



522 D.Yekutieli

rS.δ/=
∫

θ

∫
y∈SΩ

fS.θ, y/L{h.θ/, δ.y/}dy dθ .4/

is the average risk incurred in selective inference for h.θ/.

2.1. ‘Fixed’, ‘random’ and ‘mixed’ parameters in Bayesian selective inference
Example 1 illustrated that fS.θ, y/ is determined by the way that selection acts on θ. Unlike Box
and Tiao who used the terms fixed and random effects to describe the type of prior distribution
elicited for θ, we use the terms fixed, random and mixed parameters to describe the way that
the distribution of θ is affected by selection. For each parameter type, we derive fS.θ, y/, πS.θ/,
the marginal truncated distribution of θ, and fS.y|θ/, the truncated conditional distribution
of Y |θ.

2.1.1. Fixed parameter truncated sampling model
We call θ a fixed parameter if its distribution is unaffected by selection and selection is applied
to the conditional distribution of Y given θ. Fixed parameters are unknown constants whose
values are assumed to be sampled from π.θ/ and remain unchanged. Thus, for each value of
θ, the risk that is incurred in providing selective inference for h.θ/ is the expected loss over the
truncated conditional distribution of Y |θ∫

y∈SΩ

f.y|θ/=Pr.SΩ|θ/L{h.θ/, δ.y/}dy,

for Pr.SΩ|θ/=∫
y∈SΩ

f.y|θ/dy, and the average risk is its expectation over the marginal density
of θ,

rS.δ/=
∫

θ

∫
y∈SΩ

π.θ/f.y|θ/=Pr.SΩ|θ/L{h.θ/, δ.y/}dy dθ: .5/

Thus in this case the joint truncated distribution of .θ, Y/ is

fS.θ, y/= ISΩ.y/π.θ/f.y|θ/=Pr.SΩ|θ/, .6/

the marginal truncated density of θ is

πS.θ/=π.θ/ .7/

and the truncated conditional distribution of Y |θ is

fS.y|θ/= ISΩ.y/f.y|θ/=Pr.SΩ|θ/: .8/

2.1.2. Random-parameter truncated sampling model
We call θ a random parameter in cases where selection is applied to the joint distribution of
.θ, Y/. In this case θ is drawn from π.θ/ and Y is drawn from f.y|θ/, but inference is provided for
h.θ/ only for .θ, y/ with y ∈SΩ. Thus the average risk incurred in providing selective inference
h.θ/ is

rS.δ/=
∫

θ

∫
y∈SΩ

π.θ/f.y|θ/=Pr.SΩ/L{h.θ/, δ.y/}dy dθ, .9/

for Pr.SΩ/=∫
θ

∫
y∈SΩ

π.θ/f.y|θ/dy. Thus the truncated distribution of .θ, Y/ is

fS.θ, y/= ISΩ.y/π.θ/f.y|θ/=Pr.SΩ/: .10/
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Integrating out y yields the marginal truncated distribution of θ

πS.θ/=π.θ/Pr.SΩ|θ/=Pr.SΩ/: .11/

Dividing equation (10) by equation (11) reveals that in this case the truncated distribution of
Y |θ is also the conditional likelihood in equation (8).

2.1.3. Mixed parameter truncated sampling model
We call θ a mixed parameter in cases where selection is applied to the conditional distribution
of .θ, Y/ given λ, for a hyperparameter λ∼π2.λ/ with θ|λ∼π1.θ|λ/. Thus conditioning on λ, θ
is ‘random’ and the average risk that is incurred in providing selective inference is∫

θ

∫
y∈SΩ

π1.θ|λ/f.y|θ/=Pr.SΩ|λ/L{h.θ/, δ.y/}dy dθ, .12/

where Pr.SΩ|λ/=∫
θ

∫
y∈SΩ

π1.θ|λ/f.y|θ/dy dθ. Taking expectation over λ yields the average risk

rS.δ/=
∫

λ

∫
θ

∫
y∈SΩ

π2.λ/
π1.θ|λ/f.y|θ/

Pr.SΩ|λ/
L{h.θ/, δ.y/}dy dθ dλ: .13/

Thus the truncated density of .λ, θ, y/ is

fS.λ, θ, y/= ISΩ.y/π2.λ/π1.θ|λ/f.y|θ/=Pr.SΩ|λ/: .14/

Changing the order of integration in equation (13) we obtain

rS.δ/=
∫

θ

∫
y∈SΩ

{∫
λ

π2.λ/π1.θ|λ/

Pr.SΩ|λ/
dλ

}
f.y|θ/L{h.θ/, δ.y/}dy dθ, .15/

and thus the truncated density of .θ, y/ is

fS.θ, y/= ISΩ.y/f.y|θ/

∫
λ
π2.λ/π1.θ|λ/=Pr.SΩ|λ/dλ: .16/

Integrating out y yields the marginal truncated distribution of θ

πS.θ/=Pr.SΩ|θ/

∫
λ

π2.λ/π1.θ|λ/

Pr.SΩ|λ/
dλ: .17/

And again, dividing equation (16) by equation (17) reveals that the truncated distribution of
Y |θ is fS.y|θ/ in equation (8).

Remark 1. It is important to note that classifying θ as a fixed, random or mixed parameter
is context dependent and must be done case by case. In example 1, θ is an unknown constant,
for both a random college student and a random high school student. However, comparing
expressions (1) and (2) with (6) and (10) reveals that θ is a fixed parameter for a random high
school student, and a random parameter for a random college student.

Senn’s (2008) example of providing inference for the most active compound can be expressed
as a selective inference problem in which, for i = 1, . . . , m, inference is provided for hi.θ/ = θi

only if Si
Ω = {y : yi = max.y1, . . . , ym/} occurs. When θ is the vector of treatment effects of m

distinct compounds, each component of θ is a distinct unknown constant whose value is sam-
pled from N.λ, γ2/ and remains unchanged; therefore θ is a fixed parameter. Now suppose that
θi ∼N.λ, γi/ are batch effects of m batches treated by a single compound, with compound effect
λ∼N.0, 1−γ2/. In this case, λ is a fixed unknown constant and, conditional on λ, θ is a random
batch effect. Thus θ is a mixed parameter.
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2.2. Defining the components of Bayesian selective inference
The selection-adjusted prior distribution is, when it is available, the marginal truncated distri-
bution of θ. We have shown that the selection-adjusted prior distribution for fixed, random or
mixed θ is πS.θ/ given in equations (7), (11) or (17). To specify the marginal truncated distribu-
tion of θ, we need π.θ/ to be the marginal distribution of θ and we need to know how selection
acts on θ.

An important case in which π.θ/ is not the marginal distribution of θ is when π.θ/ is a non-
informative prior distribution. Non-informative priors are used to allow conditional analysis on
θ when no prior information on θ is available (Berger (1985), section 3.3.1). As Y also provides
all the information on θ in the truncated data problem, we argue that the prior distribution
that is used for selection-adjusted Bayes inference should also be a non-informative prior. We
further argue that whereas the lack of prior knowledge on θ may affect our decision to pro-
vide selective inference, the opposite is not true—the decision to provide inference for only
certain values of Y should have no effect on the non-informative prior that is elicited for θ. We
therefore suggest using the same non-informative prior for selection-adjusted Bayes inference,
πS.θ/=π.θ/, which means that if the prior for θ is non-informative then it is treated as a fixed
parameter.

The selection-adjusted likelihood is fS.y|θ/ in equation (8), the truncated conditional distri-
bution of Y given θ. Note that conditioning on θ ensures that the selection-adjusted likelihood
is the same in the three truncated sampling models and does not depend on the marginal dis-
tribution of θ.

The selection-adjusted posterior distribution is defined by

πS.θ|y/=πS.θ/fS.y|θ/=mS.y/, .18/

for mS.y/=∫
πS.θ/fS.y|θ/dθ. For non-informative priors it is generated by updating the non-

informative prior according to the selection-adjusted likelihood. For fixed, random or mixed θ
it is the truncated conditional distribution of θ|Y . Thus πS.θ|y/∝fS.θ, y/. But note that only for
random θ, for which fS.θ, y/∝f.θ, y/, is the selection-adjusted posterior distribution unaffected
by selection.

Remark 2. Dawid (1994) argued that selection has no effect on posterior distributions since
conditioning on the selection event is made redundant by conditioning on Y =y. Note that this
applies only to the case of random θ, for which selection can be expressed as conditioning on
an event S in the sample space of .θ, Y/. Hence, as Dawid argued, for .θ, y/ ∈ S the truncated
posterior distribution is the same as the untruncated posterior distribution:

πS.θ|y/=π.θ|S, Y =y/= f.θ, S, Y =y/

f.S, Y =y/
= f.θ, Y =y/

f.Y =y/
=π.θ|Y =y/=π.θ|y/,

whereas for fixed and mixed θ, for which selection cannot generally be expressed as conditioning
on an event in the sample space of .θ, Y/, πS.θ|y/ is generally different from π.θ|y/ as demon-
strated in example 1 and in example 4. We illustrate how this point applies to our simulated data
in example 5 later.

2.3. Example 4
Senn (2008) concluded that selection has no effect on the Bayesian inference because in his
analysis θ is a random parameter. In remark 1 we suggest that in this kind of analysis θ will
most probably be a fixed or a mixed parameter. We therefore compute the selection-adjusted
posterior mean of h2.θ/=θ2 for m=2 and y = .0, 2/, for mixed and fixed θ.
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However, as S2
Ω = {.θ, y/ : y2 � y1}, then Pr.S2

Ω|λ/ ≡ Pr.S2
Ω/ = 0:5, and the mixed parameter

model truncated joint density that is defined in equation (16) reduces to the random-parameter
joint density in equation (10). Thus in this case, also for mixed θ, the conditional distribution of
θ2 is unaffected by selection. We use expression (4) in Senn (2008) to compute the conditional
mean of θ2. For γ2 =1 it equals 0:4 and for γ2 =0:5 it equals 0:384.

The selection-adjusted joint density of θ for fixed θ is given by

πS{θ1, θ2|y = .0, 2/}∝ exp
(

− λ2

2γ2

)
exp

{
− .θ1 −λ/2

2.1−γ2/

}
exp

{
− .θ2 −λ/2

2.1−γ2/

}

× exp
{

− .0−θ1/2

2×4

}
exp

{
− .2−θ2/2

2×4

}/
Pr.Y2 �Y1|θ1, θ2/:

In this case the selection adjustment increases the posterior distribution of θ-values with θ2 <θ1,
thereby stochastically decreasing the marginal posterior distribution of θ2. For γ2 =1 the con-
ditional mean of θ2 is 0:164 and for γ2 =0:5 it is 0:257.

2.4. Modelling Bayesian selective inference in the random-effect model
Using the terminology that was suggested by Box and Tiao, we call the model for θ= .θ1. . .θm/

and Y ={Y1. . .Ym}, where θi are IID π.θi/ and Yi|θi are independent f.yi|θi/, a random-effect
model.

In the random-effect model θ can be a random parameter, a fixed parameter and even a mixed
parameter when there are IID fixed λi for which θi|λi are independent random parameters. In
any case the joint distribution of .θ, Y/ is

f.θ, y/=π.θ/f.y|θ/=
m∏

i=1
π.θi/

m∏
i=1

f.yi|θi/: .19/

In selective inference for hi.θ/= θi with Si
Ω = {y : yi ∈Smarg}, incorporating equation (19) into

equation (6) yields the fixed θ selection-adjusted joint distribution of .θ, Y/

fS.θ, y/= ISi
Ω
.y/

m∏
j=1

π.θj/f.yj|θj/=Pr.Si
Ω|θ/

= ∏
j �=i

{π.θj/f.yj|θj/} ISmarg .yi/π.θi/ f.yi|θi/=Pr.Yi ∈Smarg|θi/: .20/

Integrating out θ.i/ and y.i/ in equation (20) yields the selection-adjusted distribution of .θi, Yi/

for fixed θ

fS.θi, yi/= ISmarg .yi/π.θi/ f.yi|θi/=Pr.Yi ∈Smarg|θi/: .21/

Similarly, incorporating equation (19) into equation (10) and integrating out θ.i/ and y.i/ yields
the selection-adjusted joint distribution of .θi, Yi/ for random θ

fS.θi, yi/= ISmarg .yi/π.θi/ f.yi|θi/=Pr.Yi ∈Smarg/: .22/

Incorporating equation (19) into equation (16) and integrating out θ.i/ and y.i/ yields the mixed
θ selection-adjusted distribution of .θi, Yi/

fS.θi, yi/= ISmarg .yi/f.yi|θi/

∫
π2.λi/π1.θi|λi/

Pr.Yi ∈Smarg|λi/
dλi: .23/

2.4.1. Non-exchangeable random-effect model
The non-exchangeable random-effect model is a generalization of the random-effect model for
situations in which θi are distinct values that are expected to bear no strong relationship one to
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each other, i.e. situations for which Box and Tiao would suggest the fixed effect model. In the
non-exchangeable random-effect model θi are independent but have distinct prior distributions
πi.θi/, whereas Yi|θi are still independent f.yi|θi/. Thus the joint distribution of .θ, Y/ is

f.θ, y/=π.θ/f.y|θ/=
m∏

i=1
πi.θi/

m∏
i=1

f.yi|θi/: .24/

The marginal distribution of .θi, Yi/ is

f.θi, yi/=πi.θi/ f.yi|θi/:

But, in selective inference for hi.θ/ = θi with Si
Ω = {y : yi ∈ Smarg}, the selection-adjusted joint

distribution of .θi, Yi/ for fixed θ is

fS.θi, yi/= ISmarg .yi/πi.θi/ f.yi|θi/=Pr.Yi ∈Smarg|θi/: .25/

2.5. Example 5
Note that .θ, Y/ in example 2 are generated by the random-effect model, that the components of
θ= .θ1. . . θ100000/ are independently drawn from π.θi/ in equation (3) and that Yi|θi are indepen-
dent f.yi|θi/=φ.yi −θi/. Fig. 1 is a scatter plot of 932 .θi, yi/ with |yi|> 3:111; Fig. 2. displays
the 470 components with yi > 3:111. For comparison, in the comparable non-exchangeable
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Fig. 2. Simulated example—scatter plot of Y1 >3.111 components: , , CIs from Fig. 1; ,
random-parameter model selection-adjusted Bayes 0.95 credible intervals; , non-informative prior
selection-adjusted Bayes 0.95 credible intervals
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random-effect model: for i = 1, . . . , 90000, θi ∼ π1.θi|λi = 10/ and, for i = 90001, . . . , 100000,
θi ∼π1.θi|λi =1/.

It is important to note that in example 2 we draw a single realization from the joint untruncated
distribution of .θ, Y/. To observe the difference between random, fixed and mixed θ we conduct
another set of simulations, in which we sample 1000 realizations of .θ, Y/ from its truncated
distributions for h1.θ/ = θ1 with S1

Ω = {y : |y1| > 3:111} for random, fixed and mixed θ. Each
realization from the random θ truncated distribution is generated by repeatedly sampling .θ, Y/

from its untruncated distribution, keeping the first .θ, y/ for which |y1|>3:111. To generate each
realization from the fixed θ truncated distribution, we sample θ from π.θ/ and then repeatedly
sample Y , keeping the first y with |y1| > 3:111. As the components of .θ, Y/ are independent
the distribution of .θ2, . . . , θ100000, Y2, . . . , Y100000/ is the same in the three truncation models.
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Fig. 3. Simulated example—scatter plot of Y1 > 3.111 realizations of (θ1,Y1) in (a) the random-parameter
truncated sampling model (466 observations), (b) the mixed parameter truncated sampling model (498 obser-
vations) and (c) the fixed parameter truncated sampling model (501 observations): , selection-adjusted
0.95 posterior credible intervals for θ1; , selection-adjusted posterior means
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Fig. 3 displays the scatter plots of the Y1 > 3:111 realizations of .θ1, Y1/ for each truncation
model. Fig. 3(a) is the scatter plot for the random-θ model. In this case the joint density of
.θ1, Y1/, which is given in equation (22), is

π.θ1/φ.y1 −θ1/,

and it is identical to the joint density of .θi, Yi/ that is displayed in Fig. 2 and the distribution
of .θi, Yi/ for Yi > 3:111 in Fig. 1. Fig. 3(c) is the scatter plot for the fixed θ model. In this case
the joint density of .θ1, Y1/, which is given in equation (21), is

π.θ1/φ.y1 −θ1/=Pr.|Y1|> 3:111 |θ1/:

Comparing Figs 3(a) and 3(c) reveals that in this model, for each value of Y1, the conditional
distribution θ1 is shrunk towards 0. To generate each realization from the mixed θ truncated
distribution, for i= 1, . . . , 100000 we independently sample λi from {10, 1}, with probabilities
0:90 and 0:10, and then we repeatedly sample .θ, Y/, θi ∼π1.θi|λi/ and Yi ∼φ.θi/, keeping the
first .θ, y/ for which |y1|> 3:111. The joint density of .θ1, Y1/ that is given in equation (23) is{

0:9π1.θ1|λ1 =10/

Pr.|Y1|> 3:111|λ1 =10/
+ 0:1π1.θ1|λ1 =1/

Pr.|Y1|> 3:111|λ1 =1/

}
φ.y1 −θ1/:

Comparing Figs 3(a)–3(c) reveals that in this model the shrinking of the distribution of θ1|Y1 =y1
towards 0 is weaker than in the fixed θ model.

3. Selection-adjusted Bayesian inference

To define selection-adjusted Bayes inference, we express the average risk that is incurred by
providing selective inference for h.θ/

rS.δ/=
∫

θ

∫
y∈SΩ

L{h.θ/, δ.y/}πS.θ/fS.y|θ/dy dθ

=
∫

y∈SΩ

[∫
θ

L{h.θ/, δ.y/}πS.θ|y/dθ

]
mS.y/dy: .26/

Thus the Bayes rules in selective inference are the actions minimizing the selection-adjusted
posterior expected loss

ρS.δ, y/=
∫

L{h.θ/, δ.y/}πS.θ|y/dθ,

and in general Bayesian selective inference should be based on the selection-adjusted posterior
distribution of h.θ/, πS{h.θ/|y}. Selection-adjusted 1−α credible intervals for h.θ/ are subsets
A for which PrπS{h.θ/|y}{h.θ/∈A}=1−α, and the posterior mean or mode of πS{h.θ/|y} can
serve as selection-adjusted point estimators for h.θ/.

3.1. Example 6
We provide selection-adjusted Bayes inference for the data that were simulated in example 2
for two selected parameters: h12647.θ/= θ12647 with S12647

Ω ={y : |y12647|> 3:111} and h90543.θ/

=θ90543 with S90543
Ω ={y : |y90543|>3:111}. Since selection is applied to (θ, Y ) then θ is a random

parameter. Recall that we use two prior models for θ in our analysis. In the first model we assume
that .θ, Y/ was generated by a random-effect model with π.θi/ in equation (3). In this model
the selection-adjusted Bayes posterior distribution of θi is proportional to the distribution of
.θi, Yi/ in equation (22):

πS.θi|yi/∝π.θi/φ.yi −θi/: .27/
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In the second model .θ, Y/ is generated by a non-exchangeable random-effect model with un-
known πi.θi/ (note that if it were assumed that θ was generated by a random-effect model then
empirical Bayes methods could be used to estimate π.θi/). Thus, following Box and Tiao, we
use the flat non-informative prior πi.θi/=1 in our analysis. The flat prior unadjusted posterior
distribution of θi is

π.θi|yi/∝φ.yi −θi/: .28/

The non-informative prior selection-adjusted Bayes posterior distribution of θi is proportional
to the distribution of .θi, Yi/ for fixed θ in equation (21)

πS.θi|yi/∝φ.yi −θi/=Pr.Smarg|θi/, .29/

with Pr.Smarg|θi/=Φ.−3:111−θi/+1−Φ.3:111−θi/.
Fig. 4 displays the posterior distributions of θ12647 (Fig. 4(a)) and θ90543 (Fig. 4(b)). The flat

prior unadjusted posterior mean and mode of θ12647 equal Y12647 =3:40, and the 0:95 credible
interval is [1:44, 5:36]. The selection-adjusted Bayes posterior distribution of θ12647 is shrunk
towards 0. The random-θ selection-adjusted Bayes posterior distribution of θ12647 is bimodal
with a spike at 0 and a mode at 2:40, the posterior mean is 1:68 and the 0:95 credible interval
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Fig. 4. Simulated example—selection-adjusted Bayes posterior distributions for (a) θ12647 and (b) θ90543:
, unadjusted posteriors; , random-parameter model selection-adjusted Bayes posteriors; ,

non-informative-prior selection-adjusted Bayes posteriors
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is [−0:11, 4:20]. The flat prior selection-adjusted Bayes posterior mode of θ12647 is 0:74, the
posterior mean is 1:88 and the 0:95 credible interval is [−0:04, 4:64].

The flat prior unadjusted posterior mean and mode of θ90543 equal Y90543 =5:59, and the 0:95
credible interval is [3:63, 7:55]. The much larger Y90543 produces a non-negligible likelihood only
for θi-values that correspond to almost certain selection. Thus in this case the selection adjust-
ment is small: the flat prior selection-adjusted Bayes posterior mode is 5:57, the posterior mean
is 5:48 and the 0:95 credible interval is [3:26, 7:52]. The shrinking towards 0 in the random-θ
model posterior is stronger: the posterior mean and mode are 4:59 and the 0:95 credible interval
is [2:62, 6:55].

Remark 3. It is important to note that, as extremely unlikely values of θ with an extremely
small selection probability can have a large selection-adjusted likelihood, the selection adjust-
ment posterior distribution can be very different from the unadjusted posterior distribution.
The selection-adjusted likelihood can even be non-informative and improper—if the selection
rule includes only the observed value Y = y then the selection-adjusted likelihood is constant
for all parameter values. Example 7 illustrates this and shows how it is affected by the choice
of the selection rule and that it is not unique to Bayesian selective inference. In this paper we
employ selection rules whose selection probability is minimized at θ = 0 and approaches 1 for
large |θ|; thus the selection adjustments shrink the likelihood towards 0.

3.2. Example 7
We derive the non-informative prior selection-adjusted Bayes posterior distribution of θ12647,
which is given in equation (29), for an alternative one-sided selection rule S12647

Ω ={y : y12647 >

3:111}. In this case the selection-adjusted posterior is stochastically smaller and much more
diffuse. The selection-adjusted posterior mode is 0:19 and the selection-adjusted posterior
mean is −2:87; the 0:95 selection-adjusted credible interval is [−15:41, 3:91]. An unlikely value
θ12647 =−5:87, with unadjusted likelihood φ.−5:87−3:40/=8:73×10−20 and selection prob-
ability Φ.−5:87 − 3:111/ = 1:34 × 10−19, has the same selection-adjusted posterior density as
the unadjusted posterior mode θ12647 =3:40, i.e. πS.θ12647 =−5:87|Y12647 =3:40/=πS.θ12647 =
3:40|Y12647 =3:40/.

We now show that frequentist selection-adjusted inference can also be very different from
the unadjusted frequentist inference and highly dependent on the type of selection rule that
is used. The flat prior unadjusted 0:95 credible interval for θ12647, [1:44, 5:36], is also a 0:95
frequentist CI for θ12647. To construct selection-adjusted frequentist 0:95 CIs for θ12647 we
begin by testing, at level 0:05 and for each value of θ0, the null hypothesis that θ12647 = θ0. The
sampling distribution of Y12647|θ12647 = θ0 is fS.y12647|θ12647/ in equation (8) with θ12647 = θ0.
Thus we reject the null hypothesis that θ12647 = θ0 if y12647 is smaller than the 0:025-quantile
or larger than the 0:975-quantile of fS.y12647|θ0/, and the 0:95 CI for θ12647 is the set of θ0-
values for which the null hypothesis that θ12647 = θ0 is not rejected for y12647 = 3:40. For the
selection rule S12647

Ω = {y : |y12647| > 3:111} the 0:95 CI for θ12647 is [−0:37, 5:03], whereas for
S12647

Ω ={y : y12647 > 3:111} the 0:95 CI for θ12647 is [−9:44, 5:03].

3.3. False coverage statement proportion control in the random-effect model
We define FCR for .θ, Y/ generated by the random-effect model. The initial set of param-
eters is θ1. . . θm. The subset of selected parameters is {θi : yi ∈ Smarg}, and a marginal CI
Amarg.yi/ is constructed for each selected θi. For i = 1, . . . , m, let Ri = I.Yi ∈ Smarg/ and Vi =
I{Yi ∈ Smarg, θi =∈ Amarg.Yi/}. R = ΣRi is the number of selected parameters, V = ΣVi is the
number of non-covering CIs and FCP = V= max.1, R/ is the false coverage statement
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proportion. In Benjamini and Yekutieli (2005) FCR refers to a frequentist FCR that corres-
ponds to EY |θ.FCP/ for .θ, Y/ generated by a random-effect model. In this paper FCR is a
Bayesian FCR, which is defined by Eθ, Y .FCP/. We also consider the positive FCR, pFCR =
Eθ, Y .FCP|R> 0/.

3.3.1. Relationship between false coverage statment proportion control and Bayesian selective
inference
Note that, for i=1, . . . , m, the indicators Ri and Vi are defined for the joint (untruncated) dis-
tribution of .θ, Y/. The event Ri =1 is given by {.θ, y/ : yi ∈Smarg}. The conditional distribution
of .θ, Y/ given Ri =1 is

f.θ, y|Ri =1/= ISmarg .yi/
m∏

j=1
π.θj/f.yj|θj/=Pr.Yi ∈Smarg/, .30/

and integrating out θ.i/ and y.i/ yields the conditional distribution of .θi, Yi/ given Ri =1 to be

f.θi, yi|Ri =1/= ISmarg .yi/π.θi/ f.yi|θi/=Pr.Yi ∈Smarg/: .31/

This is the same as the random-parameter selection-adjusted distribution of .θi, Yi/ that is given
in equation (22). This implies that the conditional probability that the CI constructed for θi

fails to cover θi, given that θi is selected, can be expressed as the average risk that is incurred in
selective inference for hi.θ/=θi with Si

Ω ={y :yi ∈Smarg} and with θ being a random parameter,
for the loss function L{θi, Ai.y/}= I{θi =∈Amarg.yi/}:

Pr.Vi =1|Ri =1/=
∫

θi

∫
yi∈Smarg

π.θi/ f.yi|θi/ I{θi =∈Amarg.yi/}
Pr.Yi ∈Smarg/

dyi dθi = rS: .32/

Pr.Vi =1|Ri =1, Yi =yi/ is equal to the random-θ selection-adjusted posterior expected loss

ρ.yi/=
∫

I{θi =∈Amarg.yi/}πS.θi|yi/dθi, .33/

for πS.θi|yi/∝π.θi/ f.yi|θi/ the random-θ selection-adjusted posterior distribution.

Proposition 1. pFCR and E(V ) or E(R) are equal to the random-θ average risk in equation
(32). If Amarg.yi/ are 1 −α credible intervals for θi based on the random-θ selection-adjusted
posterior distribution then pFCR=α.

Proof. In the random-effect model {Vi : Ri = 1} are mutually independent with Pr.Vi =
1|Ri =1/= rS. Thus for each value of R=k, V ∼Binom.k, rS/, and conditioning on R>0 yields
pFCR= rS. Note that the numerator and denominator in equation (32) equal E.Vi/ and E.Ri/.
Thus E.V/=E.R/=E.Vi/=E.Ri/ is also rS. Lastly, for 1−α selection-adjusted credible intervals
based on πS.θi|yi/, rS =ρ.yi/≡α.

Remark 4. We have shown that in the random-effect model, regardless of whether θ is ran-
dom fixed or mixed, pFCR equals the random-θ selection-adjusted average risk. As pFCR �
Bayesian-FCR the random θ average risk can serve as a conservative estimate for Bayesian-
FCR. In particular, for large R the sampling dispersion of FCP and of V=E.R/ is small; thus
FCP, Bayesian-FCR, frequentist-FCR and pFCR that equals E.V/=E.R/, which we discuss
in the context of specifying selection rules in the non-exchangeable random-effect model, are
almost the same.

Remark 5. Recall that if π.θi/ is a non-informative prior then the selection-adjusted posterior
distribution for random θ is defined as
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πS.θi|yi/∝π.θi/ f.yi|θi/=Pr.Smarg|θi/: .34/

As credible intervals based on non-informative priors are expected to provide approximate
coverage probability, when π.θi/ is a non-informative prior then 1 − α credible intervals
based on πS.θi|yi/ in expression (34) yield ρ.yi/≈α. Thus proposition 1 implies that for non-
informative priors the fixed θ marginal 1 − α credible intervals yield approximate level α
FCR-control.

3.4. Example 8
Fig. 2 displays .θi, yi/ generated in example 2 with yi > 3:111. The full and broken curves are
the 0:95 CIs from Fig. 1. The full curves also correspond to the 0:95 credible intervals for θi

for the flat prior unadjusted posterior (28). The chain curves are the 0:95 selection-adjusted
Bayes credible intervals for the flat prior selection-adjusted posterior in equation (29), and the
dotted curves are the 0:95 selection-adjusted Bayes credible intervals for the random-θ selec-
tion-adjusted posterior in equation (27).

According to proposition 1 pFCR for random-θ 0:95 selection-adjusted Bayes credible inter-
vals constructed for selected .θi, yi/ is 0:05. In example 2 we have seen that FCP for these
credible intervals for the 932 selected θi was 0:047. As the flat prior unadjusted credible inter-
vals are 0:95 frequentist CIs, we expect the coverage proportion for all 100000 θi to be close
to 0:95. We have seen that these CIs cover 95089 of the 100000 θi, but that FCP for the 932
selected parameters is 0:346. Benjamini and Yekutieli (2005) explained this phenomenon from
a frequentist perspective. Remark 5 offers a Bayesian explanation: to provide approximate
FCR-control for non-informative priors the credible intervals should be based on the fixed θ
selection-adjusted posterior in equation (29), rather than the random-θ selection-adjusted pos-
terior in equation (28). And indeed, FCP of the credible intervals based on equation (29) is
0:040.

4. Specifying false discovery rate controlling selection rules in the random-effect
model

We shall now present Bayesian methodology for specifying selection rules in the random-effect
model and the non-exchangeable random-effect model for cases in which selection is applied
for making statistical discoveries. Similarly to the BH false discovery rate controlling approach,
we seek to control the proportion of false discoveries committed. Unlike Benjamini and Hoch-
berg (1995) in which discoveries refer to rejection of null hypotheses and the statistics that
were used for specifying the selection rule are p-values testing these null hypotheses, in our
approach any event in the parameter space can be considered a discovery and any statistic may
be used for specifying the selection rule. But, as suggested in Storey (2007), we shall show that
for any given discovery the optimal statistic is the posterior probability that the discovery is
false.

As in Section 3.1, we assume that .θ, Y/ are generated by the random-effect model; θi is
selected if yi ∈ Smarg; and the inference that is provided for θi if it is selected is declaring that
θi ∈ Amarg.yi/. However, now Amarg.yi/ is an event that corresponds to making a statistical
discovery regarding θi. For example, in the microarray analysis in Section 6, in which the dis-
covery is declaring a gene either overexpressed or underexpressed, for yi >0 the discovery event
is Amarg.yi/={θi :θi > 0}.

Once declaring θi ∈ Amarg.yi/ corresponds to making a statistical discovery, R becomes the
number of discoveries, V becomes the number of false discoveries, V= max.1, R/= FDP is the
false discovery proportion and FCR=FDR. Thus proposition 1 yields the following result.
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Corollary 1. In the random-effect model pFDR equals rS in equation (32), which is the con-
ditional probability given that θi is selected that the discovery regarding θi is false, and ρ.yi/ in
equation (33) is the conditional probability given selection and given Yi =yi that the discovery
is false.

Thus to ensure level q FDR-control, when considering selection rules of the form Smarg =
{yi : T.yi/ � s}, we suggest choosing s for which rS in equation (32) is less than or equal to q.
Furthermore, re-expressing rS,

rS =

∫
yi∈Smarg

m.yi/

∫
θi

πS.θi|yi/ I{θi =∈Amarg.yi/}dθi dyi

Pr.Yi ∈Smarg/

=

∫
yi∈Smarg

m.yi/ρ.yi/dyi

∫
yi∈Smarg

m.yi/dyi

, .35/

where m.yi/= ∫
π.θi/ f.yi|θi/dθi, yields the following Neyman–Pearson lemma type of result,

presented in Storey (2007).

Corollary 2. The selection rule of the form Smarg = {yi : ρ.yi/ � s} has the largest selection
probability of all selection rules with the same pFDR.

Another option is to use ρ.yi/ to specify the selection rule directly, by defining

Smarg ={yi :ρ.yi/�q}: .36/

Unlike the continuum of possible credible intervals that can be constructed for θi, the number
of possible discoveries that can be made regarding θi is usually finite, e.g. discovering that θi

is either negative or positive or discovering that θi is the largest component in θ. In particular,
when there is only a single possible discovery for all selected values of yi, i.e. Amarg.yi/≡Amarg,
then, expressing the random-θ average risk corresponding to this discovery

rS =
∫ ∫

yi∈Smarg

I.θi =∈Amarg/
π.θi/ f.yi|θi/

Pr.Yi ∈Smarg/
dyi dθi

=
∫

I.θi =∈Amarg/
π.θi/Pr.Yi ∈Smarg|θi/

Pr.Yi ∈Smarg/
dθi

=
∫

I.θi =∈Amarg/πS.θi/dθi, .37/

for πS.θi/=π.θi/Pr.Smarg|θi/=Pr.Smarg/ the random-θ selection-adjusted prior density derived
in equation (11), yields the following result.

Corollary 3. If Amarg.yi/ ≡ Amarg then pFDR is equal to the random-θ selection-adjusted
prior probability that θi =∈Amarg.

4.1. Specifying false discovery rate controlling selection rules in the non-exchangeable
random-effect model
In this subsection, .θ, Y/ is generated by the non-exchangeable random-effect model, θi is selected
if yi ∈Smarg and the inference that is provided for selected θi is the discovery that θi ∈Amarg.yi/.
Let A1

marg. . .AD
marg denote the D possible discoveries that can be made on θi. For d =1, . . . , D, let



534 D.Yekutieli

Rd denote the number of discoveries of Ad
marg and let V d denote the number of false discoveries

of Ad
marg. The results in this section are derived under the assumption that Amarg.yi/≡Amarg.

However, as E.R/=E.R1/+ . . .+E.RD/ and E.V/=E.V 1/+ . . .+E.V D/, they can be easily
extended for the case of D> 1.

To derive the results in this section, we assume that there also exists .θ̃, Ỹ /, generated by
the random-parameter model that θ̃i are IID π̃.θi/=Σm

i=1 πi.θi/=m, and Ỹi|θ̃i are independent
f.ỹi|θ̃i/.

Lemma 1. For any subset B, Wi = I.yi ∈Smarg, θi =∈B/, and W̃i = I.ỹi ∈Smarg, θ̃i =∈B/

E

(
m∑

i=1
Wi

)
=E

(
m∑

i=1
W̃i

)
:

Proof.

E

(
m∑

i=1
Wi

)
=

m∑
i=1

Pr.Yi ∈Smarg, θi =∈B/

=
m∑

i=1

∫
θi =∈B

∫
yi∈Smarg

πi.θi/ f.yi|θi/dyi dθi

=
m∑

i=1

∫
θ1 =∈B

∫
y1∈Smarg

πi.θ1/f.y1|θ1/dy1 dθ1

=m

∫
θ1 =∈B

∫
y1∈Smarg

m∑
i=1

πi.θ1/=mf.y1|θ1/dy1 dθ1

=m

∫
θ1 =∈B

∫
y1∈Smarg

π̃.θ1/f.y1|θ1/dy1 dθ1 =E

(
m∑

i=1
W̃i

)
:

For B=∅,Σm
i=1Wi is the number of discoveries R, whereas, for B=Amarg,Σm

i=1Wi is the number of
false discoveries. Therefore lemma 1 implies that E.V/, E.R/, and thus also pFDR=E.V/=E.R/,
for .θ, Y/ and for .θ̃, Ỹ / are the same. According to corollary 1 pFDR for .θ̃, Ỹ / is the corres-
ponding random-θ average risk, which we denote r̃S. Thus since FDR � pFDR, and pFDR is
the same for .θ, Y/ and for .θ̃, Ỹ /, we obtain the following result.

Corollary 4. In the non-exchangeable random-parameter model selecting θi if yi ∈Smarg yields
level r̃S FDR-control.

To define a general method for specifying false discovery rate controlling selection rules
for .θ, Y/ generated by the non-exchangeable random-effect model with unknown marginal
priors, applying empirical Bayes methods to y1. . .ym actually estimates π̃.θi/, the mixture of the
(unknown) marginal densities of θ1. . .θm. Combining this with corollary 4 implies that FDR
of any selection rule can be approximated by r̃S computed by treating .θ, Y/ as if it was gener-
ated by the random-effect model and using the empirical Bayes estimate of π̃.θi/. Furthermore,
as E.R/=E.R̃/ and E.R̃/=mPr.Ỹi ∈Smarg/, then also in the non-exchangeable random-effect
model the selection rule Smarg = {yi : ρ̃.yi/ � s}, where ρ̃.yi/ is the posterior expected loss in
equation (33) computed for .Ỹ , θ̃/, yields the maximal E.R/ among all Smarg with the same r̃S.

Definition 2. An algorithm for specifying level q FDR controlling selection rules in the
non-exchangeable random-effect model is as follows.

Step 1: apply empirical Bayes methods to y1. . .ym to produce π̃.θi/.
Step 2: use π̃.θi/ to compute r̃S for any given selection rule.
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Step 3:

(a) to specify a level q false discovery rate controlling selection rule of the form Smarg ={y :
T.yi/� s}, for a given statistic T.yi/, find s for which r̃S =q;

(b) the level q false discovery rate controlling selection rule yielding the maximal expected
number of discoveries is Smarg ={y : ρ̃.yi/� s} with s, for which r̃S =q.

4.2. Example 9
In example 2 selection is associated with D = 2 directional discoveries. According to corollary
1 pFDR for the selection rule |yi|� s is equal to the random-θ average risk for the loss function
I{sgn.θi/ �= sgn.yi/}

EmS.y/{I.y<−a/PrπS.θ|y/.θ > 0/+ I.y>a/PrπS.θ|y/.θ < 0/}: .38/

Recall that |yi| > 3:111 was used to ensure that the directional FDR is less than 0:1. For
s = 3:111 the average risk (38) is 0:070, whereas setting s = 2:915 yields the selection criterion
for which the average risk is 0:10. The posterior expected loss corresponding to the directional
FDR is

ρ.yi/=Prπ.θ|y/{sgn.θi/ �= sgn.yi/}:

Note that in this example ρ.yi/ increases in |yi|; thus |yi|� 2:915 is the rS = 0:10 selection rule
yielding the maximal expected number of discoveries. For yi �0, ρ.yi/ is the conditional prob-
ability given yi that θi < 0. ρ.0/=0:5, ρ.3:111/=0:176 and ρ.3:472/=0:10. Thus |yi|�3:472 is
the selection criterion that is suggested in equation (36) for q=0:10.

The random-effect model generated in example 2 is the .θ̃, Ỹ / that corresponds to the non-
exchangeable random-effect model .θ, Y/ in example 5. To illustrate our results on the non-
exchangeable random-effect model, we evaluated E.V/, E.R/ and the directional FDR for n=
105 samples of .θ̃, Ỹ / and of .θ, Y/. In both cases the mean number of discoveries was 919:9
(standard error se < 0:07), the mean number of false discoveries was 64:4 (se < 0:03) and the
mean directional FDP was 0:070 (se < 0:00003).

5. Relationship between selection-adjusted Bayes inference and Bayesian false
discovery rate methods

The term Bayesian false discovery rate methods refers to the multiple-testing procedures that
were presented in Efron et al. (2001) and Storey (2002, 2003) for the following two-group mix-
ture model. Hi, i=1, . . . , m, are IID Bernoulli.1−π0/ random variables. Hi =0 corresponds to
a true null hypothesis, whereas Hi =1 corresponds to a false null hypothesis. Given Hi = j, Yi is
independently drawn from fj, for j =0, 1.

pFDR corresponds to a rejection region Γ. It is defined by E.V=R|R > 0/ where R is the
number of yi ∈Γ, and V is the number of yi ∈Γ with Hi =0. Storey (2002) proved that

pFDR.Γ/=Pr.Hi =0|Yi ∈Γ/ .39/

= π0 Pr.Yi ∈Γ|Hi =0/

π0 Pr.Yi ∈Γ|Yi =0/+ .1−π0/Pr.Yi ∈Γ|Hi =1/
, .40/

with Pr.Yi ∈Γ|Hi = j/=∫
yi∈Γ fj.yi/dyi. For the multiple-testing procedure each null hypothesis

is associated with a rejection region Γi, determined by yi; pFDR corresponding to Γi, which
is called the q-value, is computed; and the null hypothesis Hi = 0 is rejected if the q-value is
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less than or equal to q. The local false discovery rate is defined in Efron et al. (2001) as the
conditional probability given Yi =yi that Hi =0

fdr.yi/= π0 f0.yi/

π0 f0.yi/+ .1−π0/f1.yi/
:

The multiple-testing procedure based on the local false discovery rate is to reject Hi = 0 if
fdr.yi/�q.

Note that Bayesian false discovery rate methods can be expressed as a special case of the false
discovery rate controlling selection rules that were presented in the previous section, in which
the components of the parameter vector are dichotomous. The parameter is H = .H1. . . Hm/,
and .H , Y/ are generated by a random-effect model: the marginal distribution of Hi is π.Hi =
j/ = .1 −π0/j π

1−j
0 , fj is the likelihood, Hi is selected if yi ∈Γ and selection is associated with

the discovery that Hi = 1. Note also that expression (40) is a special case of expression (37): it
is the random-parameter average risk for the loss function I.Hi =0/, expressed as the selection-
adjusted prior distribution of making a false discovery

πΓ.Hi =0/∝π.Hi =0/Pr.Yi ∈Γ|Hi =0/:

Thus the equality in expression (39) that was proved by Storey is a special case of corollary 3.
The local false discovery rate is the random-θ selection-adjusted posterior expected loss; thus
the multiple-testing procedure based on the local false discovery rate is a special case, of the
selection rule in expression (36). Lastly, the relationship between the local false discovery rate
and pFDR, pFDR = Ey∈Γ{fdr.y/}, follows from the definition of the average risk in equa-
tion (26).

Bayesian false discovery rate methods are valid regardless of whether H is a random or fixed
parameter. However, in selective inference for hi.H/=Hi, the selection-adjusted posterior prob-
ability that Hi =0 for a random H is equal to the local fdr, whereas if H is a fixed parameter, or
if π0 is the non-informative prior probability that Hi =0, then the selection-adjusted posterior
distribution that Hi =0 is

π0 fΓ.yi|Hi =0/

π0 fΓ.yi|Hi =0/+ .1−π0/fΓ.yi|Hi =1/
,

for fΓ.yi|Hi = j/=fj.yi/=Pr.yi ∈Γ|Hi = j/ the selection-adjusted likelihood.

6. Analysis of microarray data

We analyse the Dudoit and Yang (2003) swirl data set. The data include four arrays with 8448
genes, comparing ribonucleic acid from zebra fish with the swirl mutation with ribonucleic acid
from wild-type fish. For gene g, g =1, . . . , 8448, the parameters are μg, the expected base 2 log-
fold change in expression due to the swirl mutation, and σ2

g , the variance of the base 2 log-fold
change in expression.

In our analysis we assume that .θ, Y/ are generated by a non-exchangeable random-effect
model. Since the measurement error variances are expected to vary from experiment to experi-
ment, σ2

g are IID random parameters with scaled inverse χ2 marginal prior density π.σ2
g/, whose

hyperparameters s2
0 = 0:052 and ν0 = 4:02 were derived by applying the R LIMMA package

(Smyth, 2005) eBayes function to the sample variances, whereas μg are distinct independent
fixed parameters that are elicited flat non-informative priors, πni.μg/∝1. However, for assessing
FDR of the BH procedure and for specifying the Bayesian selection rules we use the emiprical
Bayes prior
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π̃.μg/=8:5 exp.−8:5 |μg|/=2,

that provided a good fit to the empirical distribution of ȳ1. . .ȳ8448. Given μg and σg, s2
g, the sam-

ple variances, are independent σ2
gχ

2
3=3, and ȳg, the observed mean base 2 log-expression-ratios,

are independent N.μg, σ2
g=4/. Thus the marginal likelihood is given by

f.ȳg, s2
g|μg, σ2

g/∝σ−4
g exp

[
− 1

2σ2
g

{3s2
g +4.μg − ȳg/2}

]
: .41/

Our goal in the analysis is to specify a selection rule for which the mean directional error
in declaring selected genes with ȳg > 0 overexpressed and declaring selected genes with ȳg < 0
underexpressed is less than 0:05, and to provide inference for the change in expression of selected
genes.

6.1. Specifying the selection rules
In the first part of our analysis we apply the level q=0:10 BH procedure to moderated t-statistic
p-values to discover differentially expressed genes; assess the directional false discovery rate of
the selection rule specified by the BH procedure, and compare its performance with the perfor-
mance of the level q = 0:05 directional false discovery rate controlling selection rules based on
moderated t-statistics and on the posterior expected loss.

LIMMA implements a hybrid classical–Bayes approach in which μg are assumed to be un-
known constants whereas σ2

g are IID π.σ2
g/. The moderated t-statistics are defined as t̃g =

ȳg=.s̃g=2/, for s̃2
g = .ν0s2

0 +3s2
g/=.ν0 +3/ the posterior mean of σ2

g |s2
g. As s̃2

g=σ2
g ∼χ2

ν0+3=.ν0 +3/,
.ȳg −μg/=.s̃g=2/ are ν0 +3 degrees of freedom t random variables. Thus the p-values that LIM-
MA provides to test a null hypothesis of non-differential expression are p̃g =2{1−Fν0+3.|t̃g|/},
where Fν is the ν degrees of freedom t cumulative density function. Applied at level q=0:10 to the
8448 p-values the BH procedure yielded 245 discoveries, corresponding to the rejection region
|t̃g|>4:479. The observed mean base 2 log-expression-ratios and sample standard deviations of
the 8448 genes are drawn in Fig. 5. The BH discoveries are the 245 observations beneath the chain
curve |t̃g|=4:479. To see why this rejection region corresponds to 0:05 directional FDR-control
note that, for all μg, the probability of a directional error is less than 1 − Fν0+3.4:479/; thus
12:08 = 8448{1 − Fν0+3.4:479/} is a conservative estimate for the number of false directional
discoveries, and 0:049=12:08=245 is a conservative estimate for the directional false discovery
rate.

For comparison, the frequentist treatment of this problem would be to test the null hypotheses
of non-differential expression by 3 degrees of freedom test statistics tg = ȳg=.sg=2/. Since the
3 degrees of freedom t-distribution has heavier tails, F−1

3 {1−0:1=.2 ×8448/}=57:10 whereas
max.|tg|/ is only 27:90. Thus applying the level q = 0:1 BH to p1. . .p8448, with pg = 2{1 −
F3.|tg|/}, yields no discoveries.

To assess the directional false discovery rate we derive the random-θ selection-adjusted Bayes
posterior distribution

π̃S.μg, σ2
g |ȳg, sg/= I{.ȳg, s2

g/∈Smarg} π̃.μg, σ2
g/f.ȳg, sg|μg, σ2

g/

Pr{.ȳg, s2
g/∈Smarg} , .42/

for the empirical Bayes prior distribution π̃.μg, σ2
g/= π̃.μg/π.σ2

g/. We then integrate out σ2
g in

equation (42) to derive π̃S.μg|ȳg, sg/, the marginal random-θ selection-adjusted Bayes posterior
distribution of μg, and the random-θ posterior expected loss corresponding to directional errors

ρ̃.ȳg, s2
g/=

∫
I{μg �= sgn.ȳg/} π̃S.μg|ȳg, s2

g/dμg,
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Fig. 5. Swirl data—scatter plot of sample means and standard deviations (the abscissa of the plot is ȳg; the
ordinates are sg): , jt̃gj D 4.479; , jt̃gj D 2.64; , ρ̃.ȳg,sg/ D 0.05; , ρ̃.ȳg,sg/ D 0.088; ,
.ȳ6239, s6239/

and use it to compute numerically the random-θ average risk corresponding to the false discovery
rate

r̃S.Smarg/=EmS.ȳg , s2
g/{ρ̃.ȳg, s2

g/},

for

mS.ȳg, sg/= I{.ȳg, s2
g/∈Smarg} π̃.μg, σ2

g/f.ȳg, sg|μg, σg/∫
I{.ȳg, s2

g/∈Smarg} π̃.μg, σ2
g/f.ȳg, sg|μg, σg/dμg dσg

:

r̃S for |t̃g| > 4:479 the q = 0:10 BH procedure (the chain curve in Fig. 5) is 0:024, whereas for
|t̃g|> 2:64 (the dotted curve in Fig. 5) is the moderated t selection rule with r̃S =0:05. It yields
1124 discoveries. The full and broken curves in Fig. 5 correspond to the selection rules of the
form ρ̃.ȳg, s2

g/ < s. The full curve corresponds to the selection rule with s = 0:05, that yields
559 discoveries. The broken curve corresponds to the selection rule with s = 0:088, for which
r̃S = 0:05. This is the selection rule that yields the maximal expected number of discoveries
among all selection rules with r̃S =0:05. In this case it yields 1271 discoveries.

6.2. Providing selection-adjusted Bayes inference
In the second part of our analysis we provide selection-adjusted Bayes inference for μ6239, the
expected base 2 log-fold change in expression due to the swirl mutation for gene 6239. The
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Fig. 6. Swirl data—marginal posterior densities of μ6239: , non-informative-prior unadjusted pos-
terior distribution; , empirical Bayes prior posterior distribution; , non-informative-prior selec-
tion-adjusted Bayes posterior distribution for the selection rule jt̃gj > 4.479; , non-informative-prior
selection-adjusted Bayes posterior distribution for the selection rule jt̃gj>2.64

statistics for this gene (which are marked by the plus sign in Fig. 5) are ȳ6239 = −0:435 and
s2

6239 =0:0173; thus t̃6239 =−4:51. Note that a frequentist solution to this problem would be to
construct an FCR-adjusted, 3 degrees of freedom t-distribution, marginal CI for μ6239.

The marginal posterior distributions of μ6239 are drawn in Fig. 6. The full curve corresponds
to the non-informative prior unadjusted posterior

π.μg, σ2
g |ȳg, s2

g/∝πni.μg/π.σ2
g/f.ȳg, sg|μg, σ2

g/,

for which .μ6239 − ȳ6239/=.s̃6239=2/ ∼ t7:02. In this case, the posterior mean and mode equal
ȳ6239 =−0:435, the 0:95 credible interval for μ6239 is [−0:61, −0:21], the posterior probability
that μ6239 > 0 and a directional error is committed is 0:0014. The broken curve corresponds to
π̃S.μ̃6239|ȳ6239, s6239/. Its posterior mode is −0:36, the posterior mean is −0:31, the 0:95 credible
interval is [−0:54, −0:01] and the posterior probability that μ6239 > 0 is 0:020.

As μg is elicited a non-informative prior and σ2
g is a random parameter, then .μg, σ2

g/ is a
mixed parameter, and its selection-adjusted posterior distribution is proportional to the joint
truncated distribution in equation (14), with μg substituting the fixed λ and σ2

g substituting the
random θ,

πS.μg, σ2
g |ȳg, s2

g/∝fS.μg, σ2
g , ȳg, s2

g/=π.σ2
g/πni.μg/f.ȳg, s2

g|μg, σ2
g/=Pr.|t̃g|>a|μg/: .43/
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Selection-adjusted Bayes inference for μ6239 is based on πS.μg|ȳg, sg/, the marginal selection-
adjusted posterior of μ6239, derived by integrating out σ2

g from expression (43). The chain curve
is πS.μg|ȳg, s2

g/ for the selection rule |t̃g| > 4:479. Its posterior mode is −0:278, the posterior
mean is −0:257, the 0:95 credible interval is [−0:54, 0:02] and the posterior probability that
μ6239 > 0, and thus the gene was erroneously declared underexpressed, is 0:038. The dotted
curve corresponds to |t̃g| > 2:64. In this case the shrinking towards 0 is weaker: the posterior
mode is −0:419, the posterior mean is −0:367, the 0:95 credible interval is [−0:63, −0:02] and
the posterior probability that μ6239 > 0 is 0:017.

7. Discussion

The observation that selection affects Bayesian inference carries the important implication that
in Bayesian analysis of large data sets, for each potential parameter, it is necessary to specify
explicitly a selection rule that determines when inference is provided for the parameter and to
provide inference that is based on the selection-adjusted posterior distribution of the parameter.

Even though specifying a selection rule introduces an arbitrary element to Bayesian analysis, it
is important to note that the selection rule is determined before the data have been observed, and
once the selection rule has been determined the entire process of providing selection-adjusted
Bayes inference is fully specified and is carried out the same way as Bayesian inference. The nota-
ble exception is empirical Bayes methods that use the data twice in the analysis: first to elicit
the prior distribution and possibly to specify the selection rule, and then to produce posterior
distributions.

Our method of controlling the Bayesian false discovery rate corresponds to the fixed rejection
region approach that was presented in Yekutieli and Benjamini (1999), that consists of estimat-
ing FDR in a series of nested fixed rejection regions and choosing the largest rejection region
with estimated FDR less than q. However, as pFDR of any selection rule can be expressed as a
selection-adjusted Bayes risk, the problem of controlling the Bayesian false discovery rate in the
random-effect and non-exchangeable random-effect models is reduced to a Bayesian decision
problem of finding the ‘optimal’ selection rule with selection-adjusted Bayes risk less than or
equal to q. Our Bayesian false discovery rate controlling methods can, in principle, provide
tight FDR-control, based on the optimal statistic, for any discovery event, whereas frequentist
false discovery rate controlling methods may provide tight FDR-control when the discovery is
rejecting a simple null hypothesis but, as illustrated by the performance of the BH procedure in
controlling the directional false discovery rate, can only bound the FDR when the discoveries
are rejecting composite null hypotheses.

In general, the price that is paid by using stricter selection rules is reduction in the information
that the data provide for selective inference. Example 3 suggests that, when specifying selection
rules, in addition to the trade-off between allowing too many false (or wasteful) discoveries and
failing to make enough discoveries, it may also be advisable to take into account the quality of
the inference that is provided for selected parameters.
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