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Abstract We present a methodology for constructing significance tests for “diffi-
cult” composite alternative hypotheses that have no natural test statistic. We apply
our methodology to construct exact tests for cross-tabulated data, and our motivat-
ing example is constructing a test for discovering Simpson’s Paradox. Our tests are
Bayesian extensions of the likelihood ratio test; they are optimal with respect to the
prior distribution and are also closely related to Bayes factors and Bayesian FDR
controlling testing procedures.
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Mathematics Subject Classification 62C10 · 62G10

1 Introduction

We present a methodology for constructing significance tests for composite alternative
hypotheses. To apply our tests, it is necessary to elicit a prior distribution on the
parameters and to specify the subset of the parameter space that corresponds to the
composite alternative hypothesis, which we call the discovery event. Our tests are
frequentist significance tests that use a Bayesian machinery to induce an order to the
data sample space. The significance level for our test is the probability under the null
hypothesis of observing a data set whose posterior probability of the discovery event
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is larger than the posterior probability of the discovery event for the observed data.
Our level α tests reject the null hypothesis if this significance level is ≤ α.

As our tests are complicated and computationally intensive, we suggest apply-
ing our methodology for testing difficult alternative hypotheses that have no natural
scalar test statistic for ordering the data sample space. In this paper, we apply our
methodology to construct exact tests for cross-tabulated data, in which use of exact
tests is well established and for which applying the Bayesian machinery is relatively
straightforward.

In the job satisfaction example (Agresti 2002), we test the association between two
ordinal variables in a 4-by-4 contingency table. This is an instructive example in which
there are natural scalar statistics for the composite alternative hypotheses. We use this
to illustrate the difference between our statistics and the commonly used statistics, and
we show, that in this case, even though the statistics are derived very differently the
order they induce to the data sample space is very similar.

In the death penalty example (also taken from Agresti 2002), the composite alter-
native hypothesis is the Simpson’s Paradox that conditional on victim’s race, black
defendants are more likely to receive death sentence than white defendants, while mar-
ginally black defendants are less likely to receive death sentence than white defendants.
In this case (the data is a 2-by-2-by-2 contingency table) the sample odds ratio is the
natural statistic for comparing the conditional and marginal risks that black and white
defendants receive death sentence. However, since tables with larger conditional odds
ratio also have larger marginal odds ratio, it is not clear how to construct a scalar
statistic that orders all the 2-by-2-by-2 tables according to the property that the condi-
tional and marginal odds ratios have opposite signs. In contrast, the discovery event for
this example is that the conditional parameter odds ratio is positive and the marginal
parameter odds ratio is negative, and our statistic for ordering the data sample space
is the posterior probability that this event occurs.

In Sect. 2, we present our general testing methodology and its conditional variant
we use for constructing exact tests for cross-tabulated data, phrase and prove their
optimality property, and explain the relation between our tests and Bayesian FDR
methodology, Bayes factors, and likelihood ratio tests. The job satisfaction example
is given in Sect. 3, the death penalty example is given in Sect. 4 and we end the paper
with a discussion.

2 Mean most powerful tests

We denote the parameter by p ∈ P , π(p) is the prior distribution, the data are N ∈
#, and the likelihood is Pr(n|p). The alternative hypothesis is H1 : p ∈ P1, for
P1 ⊆ P . Following Benjamini and Hochberg (1995) who referred to rejecting the
null hypothesis as making a statistical discovery, we call P1 the discovery event.
For constructing our test, we need to specify another subset of the parameter space,
P0 ⊆ P − P1, which we call the non-discovery event. The role of P0 is to determine
the optimality property of the test, given in Definition 2.1. We explain how to set P0 in
Remark 2.3. The null hypothesis H0 does not have to correspond to an explicit subset of
P0; all we will need is that the null hypothesis specifies a null distribution PrH0(N = n)
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on #. Tests are mappings T : # → {0, 1}. For S ⊆ #, let T (S) := I (n ∈ S), where
T (S) = 1 corresponds to declaring that p ∈ P1. Thus, the significance level of T (S)

is PrH0(N ∈ S).
Our tests are Bayes rules for discriminating between P0 and P1 that minimize the

average risk for the following loss function:

L(S; λ1, λ2) = λ1 · I (N ∈ S, P ∈ P0) + λ2 · I (N /∈ S, P ∈ P1), (1)

where 0 < λ1 is the loss incurred by a type I error and 0 < λ2 is the loss incurred by
a type II error. As the marginal distribution of N is

Pr(N = n) =
∫

p
π(p) · Pr(N = n| p) dp,

and the conditional distribution of p given N = n is

π(p| n) = Pr(N = n| p) · π(p)/ Pr(N = n),

the average risk can be expressed as

∑

n∈#

Pr(n) ·
∫

p
π(p| n) · [λ1 · I (n ∈ S, P ∈ P0) + λ2 · I (n /∈ S, P ∈ P1)] dp

=
∑

n∈S

Pr(n) · λ1 · Pr(P ∈ P0| n) +
∑

n/∈S

Pr(n) · λ2 · Pr(P ∈ P1| n). (2)

Thus for δ = λ1/λ2, S that minimizes the average risk in (2) is

SBayes(δ) =
{

n : δ ≤ Pr(P ∈ P1| n)

Pr(P ∈ P0| n)

}
. (3)

Similarly, the Bayes rule can be specified according to its significance level. For
α ∈ [0, 1], let SBayes(α) := SBayes(δα) for

δα = min{δ : PrH0(N ∈ SBayes(δ)) ≤ α}.

Definition 2.1 1. The mean significance level of T (S) is Pr(N ∈ S| p ∈ P0).
2. The mean power of T (S) is Pr(N ∈ S| p ∈ P1).
3. T (S) is a mean most powerful test if all tests with less or equal mean significance

level have less or equal mean power.

Proposition 2.2 ∀δ, T (SBayes(δ)) is a mean most powerful test.

Proof Let T (S̃) be a test with less or equal mean significance than T (SBayes),

Pr(N ∈ S̃| P ∈ P0) ≤ Pr(N ∈ SBayes | P ∈ P0). (4)
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We begin by expressing

Pr(N ∈ S̃| p ∈ P0) =
∑

n∈S̃

Pr(P0| n) · Pr(n)/ Pr(P0) (5)

and

Pr(N ∈ SBayes | p ∈ P0) =
∑

n∈SBayes

Pr(P0| n) · Pr(n)/ Pr(P0). (6)

Subtracting the summands in SBayes ∩ S̃ from the sums in (5) and (6) and multiplying
by Pr(P0), Inequality (4) implies that

∑

n∈S̃−(SBayes∩S̃)

Pr(P0| n) · Pr(n) ≤
∑

n∈SBayes−(SBayes∩S̃)

Pr(P0| n) · Pr(n). (7)

According to the construction of SBayes , ∀n1 ∈ S̃ − (SBayes ∩ S̃) and ∀n2 ∈ SBayes −
(SBayes ∩ S̃)

Pr(P1| n1)/ Pr(P0| n1) ≤ Pr(P1| n2)/ Pr(P0| n2). (8)

Next, we express

Pr(N ∈ S̃| p ∈ P1) =
∑

n∈SBayes∩S̃

Pr(P1| n) · Pr(n)/ Pr(P1) (9)

+
∑

n∈S̃−(SBayes∩S̃)

(
Pr(P0| n) · Pr(P1| n)

Pr(P0| n)

)
· Pr(n)

Pr(P1)
(10)

and

Pr(N ∈ S̃| p ∈ P1) =
∑

n∈SBayes∩S̃

Pr(P1| n) · Pr(n)/ Pr(P1) (11)

+
∑

n∈SBayes−(SBayes∩S̃)

(
Pr(P0| n) · Pr(P1| n)

Pr(P0| n)

)
· Pr(n)

Pr(P1)
. (12)

Note that Expression (10) is the left hand side of (7) and Expression (12) is the right
hand side of (7), divided by Pr(P1) and multiplied by a factor, which according to (8)
is larger in each summand of (12) than in all of the summands of (10). Therefore, the
sum in (12) is larger than the sum in (10), and as the sums in the right hand side of (9)
and (11) are the same,

Pr(N ∈ S̃| p ∈ P1) ≤ Pr(N ∈ SBayes | p ∈ P1).

⊓)

Remark 2.3 Determining P1, P0, and π(p) produces a family of mean most powerful
tests. Per construction, T (SBayes(α)) has significance level α and has more mean
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power than all mean most powerful tests with significance level < α. According to
Proposition 2.2, T (SBayes(α)) also has more mean power than all tests with smaller
or equal mean significance level.

Ideally, the prior distribution captures the knowledge regarding the parameters that
is available prior to the study. In the examples of the paper, we use conjugate non-
informative priors that provide easy test statistic computation and yield general optimal
tests for each alternative hypothesis. While the choice of P1 is usually dictated by the
application, P0 can be any subset of P −P1. If P0 = {p0}, then the mean significance
level would equal the significance level; thus T (SBayes(α)) would have more mean
power than all tests with significance level ≤ α. In the case that the choice of priors
assigns zero probability to {p0}, we suggest setting P0 to be a “small” set containing p0
that would produce a very similar family of mean most powerful tests. In the examples
of the paper, in which constructing a non-discovery event P0 that is disjoint from P1 is
impossible because p0 is on the boundary P1, we set P0 = P − P1. Note that setting
P0 = P − P1 yields

Pr(P ∈ P1| n)

Pr(P ∈ P0| n)
= Pr(P ∈ P1| n)

1 − Pr(P ∈ P1| n)
,

which means that sorting the data points according to Pr(P1| n) is equivalent to
sorting the data points according to Pr(P1| n)/ Pr(P0| n). Thus to construct our test,
for each data point, we only need to assess the posterior probability of P1. In Sect.
2.2, we will connect the choice of P0 to the relation between our tests and likelihood
ratio tests.

2.1 Conditional mean most powerful tests

In this section, we present the mean most powerful tests for the conditional analysis
of contingency tables, in which the sample space is partitioned according to the row
and column sums and a separate level α test is conducted in each partition.

Let a be the statistic that partitions the sample space # = ∪a∈A#a , for A =
{a(N ) : N ∈ #} the set of statistic values.

Definition 2.4 A conditional level α test is T (SA(α)), such that ∀a ∈ A, PrH0(N ∈
SA(α)|N ∈ #a) ≤ α.

To construct S Bayes
A (α), the rejection region of the conditional mean most powerful

test, we repeat the following for each a ∈ A : sort the data points N ∈ #a according
to Pr(P ∈ P1|N)/ Pr(P ∈ P0|N) and, then following that order, as long as PrH0(N ∈
S Bayes

A (α)| N ∈ #a) ≤ α, sequentially add data points into S Bayes
A (α).

Remark 2.5 Per construction, T (SBayes
A (α)) is a conditional level α test and, for all

a, T (SBayes
A (α) ∩ #a) is a mean most powerful test on #a . Conditional level α tests

are also level α tests:
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Pr
H0

(N ∈ SA(α)) =
∑

a∈A
Pr
H0

(N ∈ SA(α), N ∈ #a)

=
∑

a∈A
Pr
H0

(N ∈ SA(α)|N ∈ #a) · Pr
H0

(N ∈ #a) ≤
∑

a∈A
α · Pr

H0
( N ∈ #a) = α.

when a assumes a single value, then S Bayes
A (α) = S Bayes(α). But in general,

T (SBayes
A (α)) is not a mean most powerful test and there may even be other con-

ditional level α tests with smaller mean significance level and larger mean power.
However, if P0 = {p0} and PrH0(N ∈ S Bayes

A (α)| N ∈ #a) = α for all a, then

as T (SBayes
A (α) ∩ #a) is a mean most powerful test on #a and the mean signifi-

cance level identifies with the significance level, any other conditional level α test,
T (SA(α)), would have smaller mean significance level than T (SBayes

A (α)) on #a and
thus it would also have smaller mean power on #a . Summing over all #a , T (SA(α))

would have smaller mean power than T (SBayes
A (α)).

2.2 Relation between our tests and Bayesian FDR controlling tests, Bayes factors,
and likelihood ratio tests

Our methodology is closely related to the Bayesian FDR multiple hypotheses test-
ing methodology. Bayesian FDR methodology assumes a two group mixture model,
in which the parameter vector θ = (θ1 · · · θm) consists of iid dichotomous com-
ponents θi ∈ {0, 1}, with corresponding null hypotheses Hi : θi = 0. The data
X = (X1 · · · Xm) consists of independent components: for θi = 0, Xi has null cdf
G0; for θi = 1, Xi has non-null CDF for G1. Storey (2007) and Sun and Cai (2007)
show that the most powerful tests in the two group model are of the form: reject the
null hypothesis if Pr(θi = 0|Xi = xi ), the local FDR Efron et al. (2001), is smaller
than some suitably selected threshold δ. Heller and Yekutieli (2014) extend this result
to the case that θi are iid samples from a non-dichotomous distribution π(θi ) and the
null hypothesis is Hi : θi ∈ P0, for P0 an arbitrary subset of the parameter space.

In Proposition 2.2, we further extend this result to the case that P0 is a subset
P − P1. For P0 = P − P1, our statistic Pr(θi = 1|Xi = xi ) is equal to one minus
the local FDR. However, unlike the Bayesian FDR approach in which the marginal
distribution of θi is used to determine a threshold δ that ensures Bayes FDR control,
in our tests the parameter p is a single dependent multivariate realization, we do not
assume that π(p) is its marginal distribution, and we determine a threshold δ that
ensures significance level ≤ α.

Expressing the statistic in (3)

Pr(P ∈ P1| N = n)

Pr(P ∈ P0| N = n)
=

Pr(N=n| P∈P1)·Pr(P∈P1)
Pr(N=n)

Pr(N=n| P∈P0)·Pr(P∈P0)
Pr(N=n)

∝ Pr(N = n| P ∈ P1)

Pr(N = n| P ∈ P0)
(13)

reveals that we actually order the data points according to the Bayes factor between
“model” P1 and “model” P0. However, note that in our tests the cutoff threshold
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of the rejection region is not a nominal Bayes factor value (cf. Kass and Raftery
1995).

Our tests are also closely related to likelihood ratio tests. For simple hypotheses,
H0 : p = p0 for p0 ∈ P0 versus H1 : p = p1 for p1 ∈ P1, our test reduces to the
likelihood ratio test if P0 = {p0} and P1 = {p1}, or if the prior distribution assigns
all its probabilities to the two hypotheses: π(p0) = π0 and π(p1) = 1 − π0, for
0 < π0 < 1. The likelihood ratio statistic (Casella and Berger 2001) for testing the
composite hypotheses H0 : p ∈ Pnull versus H1 : p /∈ Pnull is

'(n) =
supp∈Pnull

Pr(N = n|p)

supp∈P Pr(N = n|p)
.

For P1 = P − Pnull , setting P0 = P − P1 yields P0 = Pnull and thus '(n) orders
the data points similarly to one minus our statistic, except that in our statistic we
consider the average rather than the supremum of the likelihood, which according to
our theoretical results yield tests with more power with respect to the prior distribution.
However for P1 ⊂ P−Pnull and setting P0 = P−P1, our statistic that orders the data
points according to P1 yields considerably more powerful tests than '(n) that orders
the data points according to the null hypothesis, especially for the case that P1 is a
“small” subset of P − Pnull . We illustrate this in the following example and it occurs
in the job satisfaction example where our tests yield considerably smaller p values
than the χ2 statistic, which is the likelihood ratio statistic for testing independence for
cross-tabulated data.

Example 2.6 The parameter is µ = (µ1 · · · µK ). The data are Y = (Y1 · · · YK ) with
Yk ∼ N (µk, 1) for k = 1 · · · K . The null hypothesis is H0 : µ = 0 and P1 = {µ : 0 ≤
µ1}. The test statistic for the composite hypotheses likelihood ratio test for H0 : µ = 0
versus H1 : µ ̸= 0 is

'(y) = Pr(Y = y|µ = 0)

supµ Pr(Y = y|µ)
= exp{−∑K

i=1
(yi −0)2

1 }
supµ exp{−∑K

i=1
(yi −µi )2

1 }
= exp

(

−
K∑

i=1

y2
i

)

.

Thus in the composite hypotheses likelihood ratio test, the data points are ordered
according to their l2 norm ∥y∥. Setting P0 = P − P1 and using a flat prior for µ, as

Pr(µ ∈ P1|Y = y) = Pr(0 ≤ µ1|Y1 = y1) = )(y1),

our test sorts the data points according to y1.
For K = 100 and µ1 = (3.2, 0 · · · 0), we compare the power of the level 0.05 tests

based on the two statistics. But first of all, note that

Pr(Y = y|µ = µ1)

Pr(Y = y|µ = 0)
= exp{−(y1 − 3.2)2}

exp{−(y1 − 0)2} = exp(−3.22 + 2 · 3.2 · y1).
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In this case, our test is identical to the optimal likelihood ratio test for the simple
null hypotheses H0 : µ = 0 versus H1 : µ = µ1, which also sorts the data points
according to y1.

The level 0.05 composite hypotheses likelihood ratio test rejects the null hypoth-
esis for y with χ2

100,0.95 ≤ ∥y∥2, where χ2
100,0.95 = 124.34 is the 0.95 quantile of

the 100 degree of freedom χ2 distribution. The power of this test is 0.179. For com-
parison, our α = 0.05 test rejects the null hypothesis for y with 1.645 ≤ y1, where
1.645 is the 0.95 quantile of the standard normal distribution. The power of our test
is 0.940.

3 Job satisfaction example

3.1 Analysis of the job satisfaction data

The data in Table 1, taken from Agresti (2002, Table 2.8), correspond to a sam-
ple of 96 black males that were classified by income (“<1,500”, “15,000–25,000”,
“25,000–40,000”, “>40,000”) and job satisfaction (“very dissatisfied”, “little dissat-
isfied”, “moderately satisfied”, “very satisfied”). For i = 1 · · · 4 and j = 1 · · · 4,
πi j is the probability that a respondent has income level i and job satisfaction level
j . We assume that the number of respondents N = (N11 · · · N44) is multinomial
with probabilities π11 · · · π44. ni j is the observed number of respondents recorded in
Table 1. The null hypothesis is H0 : πi j = πi+π+ j , for πi+ = πi1 + · · · + πi4 and
π+ j = π1 j + · · · + π4 j . A pair of respondents is concordant if they have different
income and job satisfaction, and the respondent with higher income has higher job
satisfaction. The probability that a pair of respondents is concordant is

*C = 2
∑

i

∑

j

πi j

⎛

⎝
∑

i<h

∑

j<k

πhk

⎞

⎠ . (14)

A pair of respondents are discordant if they have different incomes and job satisfaction,
and the respondent with a higher income has lower job satisfaction. The probability
that a pair of respondents are discordant is

Table 1 Job satisfaction data

Income (dollars) Job satisfaction

Very dissatisfied Little dissatisfied Moderately satisfied Very satisfied

<15,000 1 3 10 6

15,000–25,000 2 3 10 7

25,000–40,000 1 6 14 12

>40,000 0 1 9 11
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*D = 2
∑

i

∑

j

πi j

⎛

⎝
∑

i<h

∑

k< j

πhk

⎞

⎠ . (15)

The degree of concordance is measured by Kendall’s gamma rank correlation coeffi-
cient, γ = (*C − *D)/(*C + *D), which is the difference between the conditional
probability of concordance and discordance given that the pair of respondents have
different incomes and different job satisfaction.

We begin by testing H0 with tests implemented in R, whose significance levels are
based on parametric approximations of the test statistics’ distribution under the null
hypothesis. The first test is Pearson’s Chi-squared test for count data implemented in
the chisq.test function. The test statistic value for the observed data was 5.97 with 9
degrees of freedom and p value 0.743. The second test is a test for positive correlation
between two ordinal variables implemented in the cor.test function. The statistic for
this test is Kendall’s tau. This is a sample value of γ , defined τ = (*̂C −*̂D)/*̂C+D ,
for *̂C and *̂D computed by replacing πi j with π̂i j = Ni j/96 in (14) and (15) and
an estimator of *C + *D , *̂C+D . The statistic value for the observed data was
τ = 0.1524 with p value 0.0430.

To construct the exact tests, we condition on ni+ and n+ j the row and column
sums of Table 1. There are 90,208,550 possible 4-by-4 tables with the same row
and columns sums as in Table 1. Under the null hypothesis, the distribution of these
tables is multivariate hypergeometric. The first exact test is based on Kendall’s tau.
In 21,101,151 tables, τ was greater than the value of τ in Table 1. The sum of the
probabilities under H0 of these tables was 0.0415.

For our Bayesian statistics, we use a Dirichlet prior distribution with concentration
parameters (0.5 · · · 0.5) for (π11 · · · π44), for which the posterior probability is a
Dirichlet distribution with concentration parameters (N11 + 0.5 · · · N44 + 0.5). For
the two statistics, we set P0 = P − P1. To compute the posterior probability of P1
for a given table, we sample (π11, · · · π44) from the posterior probability and record
the proportion of times P1 occurred.

Our first Bayesian statistic is the posterior probability of the concordance event,
PCncrd

1 = {(π11 · · · π44) : 0 ≤ γ }. The probability of concordance for Ni j = ni j ,
based on a sample of 107 draws from the posterior, was 0.9564 (s.e. < 0.0001).
Computing this statistic for all 4-by-4 tables is too time consuming. Thus to assess the
significance level for this statistic, we generated a sample of 50,000 4-by-4 contingency
tables from the multivariate hypergeometric null distribution, and for each contingency
table we sampled 10,000 (π11, · · · π44) from the posterior probability and recorded
the proportion of times the concordance event occurred. The estimated significance
level was 0.036 (s.e. < 0.001), which is the proportion of contingency tables with
estimated probability of concordance ≥ 0.9564.

Our second Bayesian statistic is the posterior probability that income and job sat-
isfaction are positively dependent. This is a stronger property than concordance that
corresponds to the event

P Pos
1 = {(π11, . . . , π44) : Pr(π j |i ≤ t) ≥ Pr(π j |i+1 ≤ t) ∀t,∀ j,∀i}, (16)
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for π j |i = πi j/πi+. Based on a sample of 107 draws, the posterior probability of
positive dependence for the observed table is 0.0118 (s.e. < 0.0001). And again, to
assess the significance level for this statistic, we sampled 50,000 4-by-4 contingency
tables from the multivariate hypergeometric null distribution and for each contingency
table we sampled 10,000 (π11, · · · π44) from the posterior probability. The estimated
significance level was 0.0093 (s.e. < 0.001), which is the proportion of contingency
tables with posterior probability of positive dependence ≥ 0.0118.

3.2 Comparison between the different test statistics

To apply the exact tests in the previous section, we computed the test statistic values
on a null sample of 4-by-4 contingency tables. The similar significance levels of the
tests suggest that the statistics induce similar orderings on the data sample space. To
verify this, we generated a null sample of 2,000 of 4-by-4 contingency tables. For each
contingency table, we compute Kendall’s tau statistic, the posterior probability of the
positive dependence event P Pos

1 for a Dirichlet prior with concentration parameter
(0.5 · · · 0.5), and the posterior probability of the concordance event PCncrd

1 for a
Dirichlet prior with concentration parameter (0.5 · · · 0.5) and for a Dirichlet prior
with concentration parameter (5 · · · 5).

Figure 1 is a scatter plot of the posterior probability of concordance and Kendall’s
tau statistic. The plot reveals that the two statistics that measure the degree of concor-
dance induce almost identical ordering to the data sample space. Figure 2 is a scatter
plot of the posterior probability of concordance and the posterior probability of depen-
dence. Notice that positive dependence is a relatively rare event—in more than 90 %
of the null contingency tables the estimated probability of positive dependence was 0
(recall: we assess this probability by counting the number of occurrences of P Pos

1 in
10,000 posterior samples of (π11 · · ·π44)). Nonetheless, the plot is consistent with the
fact that P Pos

1 ⊂ PCncrd
1 : the tables with small posterior probability of concordance

also have small posterior probability of positive dependence, tables with large posterior
probability of positive dependence have large posterior probability of concordance, but
there are also tables with small posterior probability of positive dependence and large
posterior probability of concordance. Figure 3 compares the posterior probability of
concordance for a Dirichlet prior with concentration parameter (0.5 · · · 0.5) and for a
Dirichlet prior with concentration parameter (5 · · · 5). Interestingly, the median poste-
rior probability of concordance is greater than 0.5: 0.515 for concentration parameter
0.5 and 0.553 for concentration parameter 5. The plot also reveals that even though the
concordance probabilities for the two priors are very different (the shrinkage toward
the median is much stronger for concentration parameter 5), the two statistics induce
very similar ordering on the data sample space. Lastly, for the observed data the poste-
rior of concordance for concentration parameter 5 is 0.8844 corresponding to an exact
p value of 0.0412, which is a slightly less significant result than the concentration
parameter 0.5 result: posterior probability 0.9564 for the observed data corresponding
to a p value of 0.036.
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Bayesian tests for composite alternative hypotheses
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Fig. 1 Comparison between Kendall’s tau statistic and the posterior probability of concordance. The plot
displays Kendall’s tau statistic (Y -axis) and the posterior probability of concordance for Dirichlet prior
distribution with concentration parameter 0.5 (X-axis) for 2,000 contingency tables sampled under the null
hypothesis. The horizontal and vertical solid blue lines are drawn at the median of Kendall’s tau statistic
values and the median posterior probability of concordance. The horizontal and vertical dotted-dashed blue
lines are drawn at the Kendall’s tau statistic value and posterior probability of concordance for the observed
data (color figure online)

3.3 Job satisfaction simulation

The simulation compares the power of the conditional exact test based on Kendall’s tau
statistic with the conditional exact test whose test statistic is the posterior probability
of concordance on

#a = {(N11 · · · N44) : N1+ = n1+, N2+ = n2+, . . . , N+4 = n+4}, (17)

for which the null distribution of N is the multivariate hypergeometric considered in the
previous sections. The alternative distribution is that N is multinomial (π̂11 · · · π̂44),
with π̂i j = ni j/96 truncated to #a in (17).

We use the following importance sampling scheme to generate samples of N from
the alternative distribution. We sample 106 proposal realizations of N from the mul-
tivariate hypergeometric null distribution; for each proposal realization, we compute
a sampling weight that is the probability of observing this realization under the alter-
native multinomial distribution divided by the probability of observing this realiza-
tion under the multivariate hypergeometric null distribution. We use weighted with-
replacement sampling of the 106 proposal values to generate a sample of 105 realiza-
tions from the alternative distribution.
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Fig. 2 Comparison between the posterior probability of positive dependence and the posterior probabil-
ity of concordance. The plot displays the posterior probability of positive dependence (Y -axis) and the
posterior probability of concordance (X-axis) for the same Dirichlet prior distribution with concentration
parameter 0.5 for 2,000 contingency tables sampled under the null hypothesis. The vertical solid blue line
is drawn at the median posterior probability of concordance. The horizontal and vertical dotted-dashed
blue lines are drawn at the posterior probabilities of positive dependence and concordance for the observed
data (color figure online)

We compute the two test statistic values for each of the 105 realizations of N from the
alternative distribution. To assess the significance level of each alternative distribution
realization for the two test statistics, we generate another sample of 105 realizations
of (N11 · · · N44) from the null distribution and compute the two test statistic value for
each null realization. The p values assigned to each alternative distribution realization
is the proportion of null realizations for which the statistic values were larger than the
alternative realization’s statistic values.

Recall that for the Table 1 data, the p value for the exact test based on Kendall’s
tau statistic was 0.0415 and the p value for the exact test for the probability of con-
cordance was 0.036. In the 105 simulated alternative distribution realizations, the p
values computed for the probability of concordance statistic were also slightly smaller
than the p values computed for Kendall’s tau statistic. For Kendall’s tau statistic, the
mean p value was 0.0988 and the median p value was 0.0399; 0.679 (s.e. < 0.005)
of the p values were smaller than 0.10, and 0.537 (s.e. < 0.005) of were smaller than
0.05. However, for the p values computed based on the probability of concordance
statistics, the mean p value was 0.0947 and the median p value was 0.0370; 0.701 (s.e.
< 0.005) of the p-values were smaller than 0.10 and 0.550 (s.e. < 0.005) were smaller
than 0.05.
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Bayesian tests for composite alternative hypotheses
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Fig. 3 The effect of the prior distribution on the posterior probability concordance. The plot displays the
posterior probability of concordance for Dirichlet prior distribution with concentration parameter 5 (Y -axis)
and the posterior probability of concordance for Dirichlet prior distribution with concentration parameter
0.5 (X-axis), for 2,000 contingency tables sampled under the null hypothesis. The horizontal and vertical
solid blue lines are drawn at the median posterior probabilities. The horizontal and vertical dotted-dashed
blue lines are the posterior probabilities for the observed data. The red diagonal is X = Y (color figure
online)

Table 2 Death penalty data Victim Defendant Death penalty No death penalty

White White 19 132

Black 11 52

Black White 0 9

Black 6 97

4 Death penalty example

Table 2 displays data from a study on death penalty in Florida (Agresti 2002, Table
2.13). The 326 subjects classified in Table 2 were the defendants in indictments involv-
ing cases with multiple murders in Florida. The goal of the analysis is to determine
whether the probability of receiving death sentence depends on the defendant’s race.

The variables are X—race of victim (“white”, “black”); Y —race of defendant
(“white”, “black”)’), and z—death penalty verdict (“yes”, “no”). πi jk is the probability
that X takes on its i th value, Y takes on its j th value, and Z takes on its kth value.
The conditional odds ratio between the defendant’s race and death penalty for white
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victims is θY Z |X=1 = (π111 ·π122)/(π112 ·π121) and for black victims it is θY Z |X=2 =
(π211 ·π222)/(π212 ·π221). The marginal odds ratio between defendant’s race and death
penalty is θY Z = (π+11 · π+22)/(π+12 · π+21), for π+ jk = π1 jk + π2 jk . Similarly,
θX Z is the marginal odds ratio between the victim’s race and death penalty and θXY
is the marginal odds ratio between the defendant’s race and death penalty.

We used the R fisher.test function to test dependency between the pairs of variables.
Defendant race and victim race are highly dependent, θ̂XY = 27.1 with 0.95 CI
[12.7, 64.8]; and risk of receiving death penalty is higher for white victims than for
black victims, θ̂X Z = 2.87 with 0.95 CI [1.13, 8.73]. Thus the victim’s race is a
confounder: white defendants have higher probability of receiving death penalty just
because they are more likely to kill a white victim. Indeed, we see that θ̂Y Z = 1.18
with 0.95 CI [0.56, 2.52]. The null hypothesis we consider is that conditional on
victim’s race, defendant’s race and death penalty are independent, H0 : θY Z |X=1 =
1, θY Z |X=2 = 1. The alternative hypothesis is that the following Simpson’s Paradox
occurs, H1 : θY Z |X=1 < 1, θY Z |X=2 < 1, 1 < θY Z .

To test the null hypothesis, for white victims we further condition on the observed
values N11+ = 151, N12+ = 63, N1+1 = 30, N1+2 = 184, and for black victims on
the observed values N21+ = 9, N22+ = 103, N2+1 = 6, N2+2 = 106. We form a
conditional sample space with 217 points that can be expressed as

#a = {(N111, N211) : N111 ∈ (0, 1, . . . , 30), N211 ∈ (0, 1, . . . , 6)}.

The observed data point is (N111 = 19, N211 = 0). Under H0, N111 and N211 are
independent hypergeometric random variables. Applying the R fisher.test function to
the observed 2-by-2 tables corresponding to white and black victims yields θ̂Y Z |X=1 =
0.68 with 0.95 CI [0.28, 1.70] and θ̂Y Z |X=2 = 0 with 0.95 CI [0, 10.72]. To construct
an exact test, the 217 data sample points are ordered according to a statistic that
quantifies their strength of evidence in favor of Simpson’s Paradox, and then the
exact significance level of the observed table is the sum of the probabilities of the
data points with greater or equal test statistic values. However, as Simpson’s Paradox
involves effects having conflicting signs, determining the strength of evidence in favor
of Simpson’s Paradox is difficult. For example, does data point (20, 0) with larger or
equal conditional associations ( θ̂Y Z |X=1 = 0.810, θ̂Y Z |X=2 = 0) and larger marginal
(θ̂Y Z = 1.34) association offer more evidence in favor of Simpson’s Paradox than the
observed data point?

The statistic we propose for ordering the points in the data sample space is the
posterior probability of the event corresponding to H1

P1 = {(π111 · · · π222) : θY Z |X=1 < 1, θY Z |X=2 < 1, 1 < θY Z }.

For our analysis we use a Dirichlet prior with concentration parameters (0.5 · · · 0.5).
Thus for data point (N111 · · · N222), the posterior distribution of (π111 · · · π222) is
Dirichlet with concentration parameters (N111 + 0.5 · · · N222 + 0.5). To compute the
probability of P1 for a given data point, we sample (π111, · · · π222) from the posterior
probability and count the proportion of samples that either events occurred.
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Based on 2 × 106 samples from the posterior distribution, data point (20, 0) with
PrH0(20, 0) = 0.087 has the largest posterior probability of P1, 0.085954 (s.e. <

0.0001); the observed table with PrH0(19, 0) = 0.064 has the second largest posterior
probability, 0.0797 (s.e. < 0.0001); data point (21, 0) with PrH0(21, 0) = 0.101 has
the third largest posterior probability, 0.0795 (s.e. < 0.0001). Thus the significance
level of the observed table is 0.151 = 0.087 + 0.064.

5 Discussion

We applied our methodology to construct exact tests for cross-tabulated data in which
the Bayesian machinery is relatively straightforward and the computational burden
was not too heavy. In the job satisfaction example, computing the test statistic value
by sampling 100,000 posterior realizations takes 2–3 s. Determining whether the test
rejects the null hypothesis at level 0.05 requires a few hundred null samples and takes
several minutes.

Our main message in this paper is that in cases where it is not clear how to construct
a test statistic for a composite alternative hypothesis, instead of using the likelihood
ratio test for composite hypotheses, try implementing our methodology even though it
will require setting up new Bayesian machinery and may be computationally difficult.

An aspect of our methodology that we had not explored that may be relevant in
other cases is experimenting with different choices of P0. Our suggestion is to begin
with setting P0 = P − P1 and, similarly to what we did in Example 26, specify a
non-null parameter value p1 ∈ P1 and compare our mean most powerful test to the
simple hypotheses likelihood ratio test. Consider a different choice of P0 only if the
mean most powerful test is very different from the likelihood ratio test.
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