
This article was downloaded by: [Tel Aviv University]
On: 15 July 2012, At: 03:19
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of the American Statistical Association
Publication details, including instructions for authors and subscription information:
http://amstat.tandfonline.com/loi/uasa20

Hierarchical False Discovery Rate–Controlling
Methodology
Daniel Yekutieli
Daniel Yekutieli is Lecturer, Department of Statistics and Operations Research, School of
Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv,
Israel . This work was supported by a grant from the Israeli Science Foundation and by
NIH grant DA15087. The author thanks two anonymous referees, the associate editor,
and joint editors for comments and suggestions that greatly improved the quality of the
article.

Version of record first published: 01 Jan 2012

To cite this article: Daniel Yekutieli (2008): Hierarchical False Discovery Rate–Controlling Methodology, Journal of the
American Statistical Association, 103:481, 309-316

To link to this article:  http://dx.doi.org/10.1198/016214507000001373

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://amstat.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss, actions,
claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://amstat.tandfonline.com/loi/uasa20
http://dx.doi.org/10.1198/016214507000001373
http://amstat.tandfonline.com/page/terms-and-conditions


Hierarchical False Discovery
Rate–Controlling Methodology

Daniel YEKUTIELI

We discuss methodology for controlling the false discovery rate (FDR) in complex large-scale studies that involve testing multiple families
of hypotheses; the tested hypotheses are arranged in a tree of disjoint subfamilies, and the subfamilies of hypotheses are hierarchically
tested by the Benjamini and Hochberg FDR-controlling (BH) procedure. We derive an approximation for the multiple family FDR for
independently distributed test statistics: q, the level at which the BH procedure is applied, times the number of families tested plus the
number of discoveries, divided by the number of discoveries plus 1. We provide a universal bound for the FDR of the discoveries in the new
hierarchical testing approach, 2 × 1.44 × q, and demonstrate in simulations that when the data has an hierarchical structure the new testing
approach can be considerably more powerful than the BH procedure.

KEY WORDS: False-discovery rate; Hierarchical testing.

1. INTRODUCTION

The Benjamini and Hochberg (1995) false discovery rate
(FDR)-controlling procedure (hereinafter the BH procedure)
has been successfully applied in overcoming the multiplicity
problem in many applications, but the task performed was lim-
ited: test a family of hypotheses, determined in advance, while
controlling the FDR. Yekutieli et al. (2006) introduced a hier-
archical testing methodology for controlling the FDR in multi-
ple families of hypotheses and developed a general framework,
based on the hierarchical approach, for controlling the FDR in
complex experiments. This article formally defines the hierar-
chical FDR testing approach, studies its performance in sim-
ulations, and derives bounds and approximations for the FDR
of the various types of discoveries produced by the hierarchical
testing methodology. The exposition begins with a demonstra-
tion of use of this new testing approach in three different types
of applications.

1.1 Analysis of Microarray Data

Yekutieli et al. (2006) applied hierarchical testing to a mi-
croarray experiment that included expression levels of 25,600
genes in 5 mice brain regions of 10 inbred mice strains. A 2-
way ANOVA, with strain and brain region main effects, was
fitted for each gene to identify genes with strain expression dif-
ferences. The researchers also were interested in testing the in-
teraction terms to locate areas in the brains and strains with
abnormal expression levels. In the standard FDR approach, the
two questions are addressed separately; when applied at level
.05 to test the strain effect for the 25,600 genes, the BH pro-
cedure yielded 957 discoveries, but when applied to test the
1.2 million interaction terms, it yielded no discoveries. In the
hierarchical approach, the discovery of genes with significant
strain effects is considered the initial question for each gene,
and localizing the effect to specific strains and brain regions are
considered follow-up questions for genes with significant strain
effects. Separately applying the .05 BH procedure in each of
the 957 families of interactions corresponding to a strain ef-
fect discovery yielded a total of 170 discoveries. In this case
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the researcher may be interested in four types of discoveries:
the entire set of 1,127 discoveries, the 957 strain effect dis-
coveries, the 170 interaction discoveries, and the most detailed
information for each gene—either interaction discoveries, or
strain effect discoveries—for which no interaction discoveries
are found. Reiner et al. (2007) applied hierarchical testing to
the same data, but in that study the expression of each gene
with significant strain effect was tested for association with a
series of 17 behavioral traits.

1.2 Quantitative Trait Loci Analysis

Quantitative trait loci (QTL) are genetic loci affecting quan-
titative traits. Weller, Song, Heyen, Lewin, and Ron (1998) sug-
gested searching for QTL by applying the BH procedure to p

values testing for linkage between a quantitative trait and a se-
ries of genetic markers. But because linkage is not specific to
a genetic marker, FDR control over marker discoveries does
not imply control over the proportion of false QTL discoveries
(see the supplemental report available at http://www.amstat.org/
publications/jasa/supplemental_materials). To control for the
occurrence of false QTL discoveries, it is necessary to directly
test for the existence of a QTL within a specified genomic
region (Zheng 1994), preferably pinpointing the QTL to the
smallest possible interval on the chromosome; however, due to
a decreased power to discover QTLs and the increase in the
number of hypotheses considered, searching at too high a reso-
lution may result in failure to discover QTL.

The suggested solution is a hierarchical multiresolution
search for QTL. In the first level, apply the BH procedure to test
all chromosome-level hypotheses. On chromosomes in which a
discovery has been made, search for QTL by testing the two
half-chromosome–level hypotheses. If a half-chromosome dis-
covery is made, then proceed to the quarter-chromosome level.
As long as a discovery is made, continue searching at a higher
resolution level. Adopting this testing strategy allows one to
adaptively test hypotheses at the highest resolution possible.
Because the discovery of high-resolution discoveries makes the
initial low-resolution discoveries irrelevant, in this case, the re-
searcher may be interested only in the highest-resolution dis-
covery in each genomic region.
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1.3 Log-Linear Analysis of Mouse Behavior Data

Kafkafi, Yekutieli, Yarowsky, and Elmer (2006) presented
an algorithm for discovering behavior patterns that differenti-
ate between mutant and wild-type rats. A filmed session of ex-
ploratory behavior is divided into a series of 54,000 frames.
Nine behavioral relevant endpoints are computed for each
time frame, transformed into three five-level ordinal scales and
summarized in a nine-way contingency table. The algorithm
then scans these immense, sparse contingency tables for pat-
terns with significant frequency differences between mutant and
wild-type rats. The main challenge is to work at the highest
resolution level and still avoid overfitting; thus Kafkafi et al.
(2006) scanned only the 50,675 subsets of cells determined by
combinations of up to 4 ordinal scales.

In the hierarchical approach, log-linear models are fitted for
the mutant rat and wild-type rat contingency tables. The log-
linear models are constructed hierarchically. At the first stage,
the .05 BH procedure is applied to test the terms in the main-
effects model; at the second stage, the .05 BH procedure is ap-
plied separately to test two-way interactions with each of the
significant main effects from the first stage; in the third stage,
the .05 BH procedure is applied separately to test three-way in-
teractions with each of the significant two-way interaction; and
so on. The tables are then scanned for the behavior patterns
with the largest differences between the fitted values of the two
log-linear models. In this case, the researcher is interested in
controlling the FDR for all the terms in the models; however,
the fact that hierarchical FDR model selection produces parsi-
monious models with small mean squared error may be a more
relevant property.

1.4 Background

In their seminal article, Benjamini and Hochberg introduced
the BH procedure and the FDR, a new measure for type I error
in multiple testing. Since then, FDR methodology has become
a very active field of research, but essentially, all of the methods
apply only to a single family of hypotheses. Yekutieli and Ben-
jamini (1999) expressed control of the FDR as an estimation
problem; instead of comparing the sorted p values to a series
of critical values determined by the FDR level q , estimate the
FDR of a fixed rejection region test. Storey (2002, 2003) dis-
cussed a Bayesian setting for the fixed rejection region FDR
and introduced the positive FDR and the q value with the fol-
lowing very appealing Bayesian interpretation: The conditional
probability that a discovery is a false discovery given that its
test statistic is in the rejection region. Efron, Tibshirani, Storey,
and Tusher (2001) suggested empirical Bayes estimation of the
FDR and even considered conditioning locally on the value of
the test statistic, not just on the rejection region. Another es-
timation effort is the estimation of the proportion of true null
hypotheses (Benjamini and Hochberg 2000; Storey, Taylor, and
Siegmund 2004) to derive more powerful testing procedures.
Genovese and Wasserman (2004) developed a framework in
which the false discovery proportion (the number of false re-
jections divided by the number of rejections in a continuum of
fixed rejection regions) is treated as a stochastic process. Ben-
jamini and Yekutieli (2005a) generalized the FDR criterion to a
measure for the validity of confidence intervals for parameters

after selection. This article presents a general framework for
applying the BH procedure and controlling the FDR in a wide
variety of settings not considered before.

Hierarchical modeling is widely used in the construction of
complex statistical models, including the node-splitting deci-
sions in CART (Brieman, Friedman, Olshen, and Stone 1984),
and in the treatment of interaction terms in linear models. Sepa-
rately correcting for multiplicity in several families of hypothe-
ses also is not new. When the family-wise error rate (FWE)
is separately controlled in several families of hypotheses, the
FWE for the entire set of tested hypotheses is essentially the
sum of the individual FWE levels; the usual solution is split-
ting the nominal FWE level, α, between the families of hy-
potheses (see Simonson and McIntyre 2004 for a QTL mapping
example). In the FDR literature, applying the BH procedure,
at level q , in each family of hypotheses has been suggested.
Abramovich, Benjamini, Donoho, and Johnstone (1998) dis-
cussed the asymptotic theoretical properties of this practice. In
the context of QTL mapping, Lee et al. (2002) suggested a sepa-
rate FDR-controlled search for each quantitative trait. Yekutieli
et al. (2006) suggested dividing the statistical analysis in com-
plex studies into several main research directions and control-
ling the FDR separately in each research direction. In general,
FDR control applied separately in several families does not nec-
essarily imply FDR control for the entire study (Benjamini and
Yekutieli 2005b). In this article, a bound for the FDR is com-
puted when the BH is applied at level q to several families of
hypotheses. The article’s main message is that hierarchical ap-
plication of the BH procedure inherently implies global FDR
control for the entire set of discoveries.

Screening the null hypotheses before testing is a related
method of alleviating the multiplicity practiced in recent mi-
croarray analyses (Pavlidis 2003; Letwin et al. 2006; Yekutieli
et al. 2006; Reiner et al. 2007). Unlike hierarchical testing, any
screening criterion can be applied to select the tested hypothe-
ses, and all of the screened hypotheses are tested simultaneous;
similar to hierarchical testing, screening must be independent
of the hypotheses testing. Reiner et al. (2007) showed that the
FDR is not controlled when the BH procedure is applied to test
pairwise strain expression differences of genes screened by a
1-way ANOVA F test; they also showed in simulations that
screening before testing offers less power than hierarchical test-
ing.

Section 2 formally defines the hierarchical testing approach
and summarizes the theoretical results. Section 3 describes the
microarray analysis and signal denoising simulation studies.
Section 4 is devoted to a discussion of the results. The Ap-
pendix presents the derived FDR bounds. The technical issues
needed to derive the theoretical results and detailed accounts of
the simulations are deferred to a supplemental report.

2. TESTING TREES OF HYPOTHESES

In the hierarchical approach, the set of tested hypotheses,
H1, . . . ,Hm, is arranged in a tree with L levels. With the ex-
ception of hypotheses on the first level of the tree, which have
no parent hypotheses, each hypothesis, Hi , on level L(i) =
2, . . . ,L is associated with a single-parent hypothesis, indexed
by Par(i), on level L(i) − 1. Let H1, . . . ,HT denote the parent
hypotheses; then we can divide the m hypotheses into T + 1
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families: T0 = {Hi :L(i) = 1} and Tt = {Hi : Par(i) = t} for
t = 1, . . . , T . Here mt and m0

t are the total number of hypothe-
ses and the number of true null hypotheses in Tt .

The hierarchical test of the tree of hypotheses has two ele-
ments: (a) Hypotheses in the same family are tested simultane-
ously, and (b) testing begins with T0, and a family of hypotheses
on higher levels of the tree is tested only if its parent hypothesis
is rejected. Our concern in this work is with trees in which each
family of hypotheses, Tt , is tested by the BH procedure.

Definition 1. Level q BH procedure on Tt :

1. Let P t
(1) ≤ · · · ≤ P t

(mt )
denote the set of ordered p values

corresponding to the hypotheses in Tt .
2. Let rt = max{i :P t

(i) ≤ i · q/mt }.
3. If rt > 0, then reject the rt hypotheses corresponding to

P t
(1), . . . ,P

t
(rt )

.

We assume that the p values are independently distributed; if
Hj is a true null hypothesis, then Pj ∼ U[0,1]. For a false null
hypothesis Hj , Pj satisfies the following condition.

Condition 1. For all 0 < α1 ≤ α2 ≤ 1,

α1/α2 ≤ Pr(Pj ≤ α1|Pj ≤ α2).

Condition 1 states that the conditional marginal distribution
of all of the p values is uniform, or stochastically smaller than
uniform. It is satisfied if the cumutative distribution function
of Pj is concave (as, e.g., under the monotone likelihood ratio
condition), yet it is a somewhat stronger condition than stochas-
tically smaller than U[0,1].

The final component of FDR trees is the specification of the
set of discoveries that are of interest to the investigator. The
FDR is then defined as the expected proportion of false “in-
teresting” discoveries out of the total number of “interesting”
discoveries made. (This proportion is set to 0 if no discoveries
are made.) In this article, three types of FDR are discussed:

1. Full-tree FDR. Interest lies in the entire set of FDR tree
discoveries.

2. Level-restricted FDR. The investigator is interested only
in the discoveries on a specific level of the tree. The level-
restricted FDR is also a model for the FDR of the entire
study when the BH procedure is applied separately to sev-
eral families of hypotheses (see Example A.2).

3. Outer-nodes FDR. Interest lies in discoveries that are not
parents to other discoveries, for example, in QTL analysis,
the highest-resolution discovery in each genomic region.

Figure 1 presents a schematic drawing of a tree of hypothe-
ses, and the results of the hierarchical test. The tree includes 12
hypotheses in 6 families: T0 = {H1,H2}, T1 = {H3,H4}, T2 =
{H5,H6}, T3 = {H7}, T4 = {H8,H9}, and T5 = {H10,H11,

H12}. Six discoveries are considered in the full-tree FDR. H1

and H2 are level-1 discoveries, H3 and H5 are level-2 discover-
ies, and H10 and H12 are level-3 discoveries. H3, H10, and H12

are the outer-nodes discoveries. T4 was not tested because H4

was not rejected. Note that outer-node discoveries are not nec-
essarily in the leaves of the tree; for instance, H3 is an outer-
node discovery, because none of its children (only H7 in this
example) were rejected in the procedure.

Figure 1. FDR tree schematic. Diamonds indicate null hypotheses
rejected in the hierarchical testing scheme; circles are null hypothe-
ses not rejected in the hierarchical testing scheme; and ovals are null
hypotheses in families not tested in the hierarchical testing scheme.

2.1 Summary of the Results

The theoretical results in this article are derived under the as-
sumption that the p value are independently distributed, true
null hypotheses p values have U[0,1] distributions, and the
false null hypotheses p values satisfy Condition 1. The FDR
bounds are sums over t = 0, . . . , T of FDRt ,

FDRt = E

{
I (Tt is tested, R > 0) · Vt

R

}
,

where Vt is the number of false discoveries in Tt and R is the
total number of FDR tree discoveries.

To derive the bounds, FDRt is expressed in terms of R
Pi=0
t

and RPi=0, the number of discoveries in Tt and the total num-
ber of FDR tree discoveries given that a p value corresponding
to Hi , a true null hypothesis in Tt , is set to 0. (Setting Pi = 0
produces the conditional number of discoveries given that Hi is
rejected.) Using this approach, Benjamini and Yekutieli (2001)
proved that the FDR of the level-q BH procedure applied to a
single family of independently distributed p values is q ·m0/m.
Because it is not possible to aggregate the expression for FDRt

over multiple families of hypotheses, we substitute R
Pi=0
t and

RPi=0 with Rt + 1 and R + 1, the unconditional number of dis-
coveries in Tt and total number of FDR tree discoveries, plus
1. (Because true null hypotheses are rarely rejected in multiple-
testing procedures, the conditional number of discoveries given
that Hi is rejected can be approximated by the unconditional
number of discoveries plus 1.) The main technical issue ad-
dressed is this article is finding a multiplicative factor, δ∗, as
small as possible, yielding

E
R

Pi=0
t

RPi=0

/
E

Rt + 1

R + 1
≤ δ∗. (1)

2.1.1 Assessment of δ∗. We assess δ∗ analytically and in
simulations. At first, we consider the conditional distribution of
R

Pi=1
t , the number of discoveries in Tt for Pi = 1, given R

Pi=0
t .

For R
Pi=0
t = 1, . . . ,mt , we examine the ratio in

R
Pi=0
t /E(R

Pi=1
t + 1|RPi=0

t ) ≤ δ∗. (2)

We prove that for each value of R
Pi=0
t , the ratio is maximized

when all of the p values have U[0,1] distributions, compute
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the ratio for each value of R
Pi=0
t under this assumption, and

verify that under Condition 1, the maximal value of the ratio is
slightly below 1.44 for R

Pi=0
t = 4. We then prove that (2) is a

stronger condition than (1). Thus we prove that if the p values
are independently distributed and Condition 1 holds, then δ∗ =
1.44 satisfies inequality (1).

In the first set of simulations assessing δ∗, we study the dis-
tribution of R

Pi=0
t and the ratio in (2) for various p value distri-

butions; in the second set of simulations, we directly assess the
ratio in (1). The simulations reveal that for q = .05, the cases for
which the ratio in (2) approaches its maximum, 1.44, are rare,
and that in most cases δ∗ ≈ 1 is sufficient to satisfy (1), whereas
higher values of δ∗ are needed only for testing several hundreds
of hypotheses with a nearly uniform p value distribution.

2.1.2 False Discovery Rate Bounds and Approximations.
With δ∗, we can phrase the main result of the article.

Proposition 1. For the three types of tree discoveries and δ∗
satisfying inequality (1),

FDRt ≤ δ∗ · q · m0
t

m
· E

{
I (Tt is tested ) · Rt + 1

R + 1

}
. (3)

The proof of this proposition, the lemmas leading to this re-
sult, and the assessment of δ∗ are deferred to the supplemental
report. The results given in the next paragraph are derived in the
Appendix.

Summing (3) over t = 0, . . . , T yields a bound for the FDR,

FDR ≤ q · δ∗ · E{
(no. of discoveries + no. of families tested)

/(no. of discoveries + 1) · π̃0
}
, (4)

where π̃0 is mean of m0
t /mt , weighted proportionally to Rt +1.

Imposing the restriction of hierarchical testing yields the fol-
lowing universal bounds for the FDR:

1. The full tree FDR of any FDR tree is <q · δ∗ · 2.
2. The outer nodes FDR of any L-level FDR tree is <L · q ·

δ∗ · 2.

Expression (4) also implies that if the number of discoveries
greatly exceeds the number of families tested, then the three
types of hierarchical FDR are approximately q · δ∗ · π̃0. We
suggest using the observed number of families tested and the
observed number of discoveries to approximate the FDR:

FDR = q · δ∗ · (observed no. of discoveries

+ observed no. of families tested)

/(observed no. of discoveries + 1). (5)

Although the theoretical properties of the term on the right side
of (5)—the FDR multiplier—are not clear, the simulations in
Section 3.1 reveal that it can be used to approximate the FDR,
especially for the level-restricted FDR, which has no universal
bound. Thus, in the analysis of microarray data example dis-
cussed in the Introduction, the full-tree FDR for the entire set
of 1,127 discoveries is approximately .092 [= .05 · (1,127 +
957 + 1)/(1,127 + 1)], and the FDR for the 170 interaction dis-
coveries is approximately .330 [= .05 · (170+957)/(170+1)].

3. SIMULATION STUDIES

3.1 Hierarchical False Discovery Rate Analysis
of Microarray Data

The simulations were run to model a 10,000-gene microarray
experiment that compared a treatment and a control on 8 mouse
strains. The first research question is to find genes whose ex-
pression level is affected by the treatment; the follow-up ques-
tions are comparisons of the treatment effect between the 28
pairs of mice strains. Gene expression levels are modeled as
treatment effect, plus strain-specific treatment effect, plus cor-
related normal noise. In the direct approach, the 280,000 pair-
wise comparisons are tested simultaneously using the BH pro-
cedure. In the hierarchical approach, the data were analyzed
with a two-level FDR tree tested by the .05 BH procedure. T0
includes the null hypotheses, for each gene, that the mean treat-
ment effect (across all strains) is zero, and each hypothesis in T0
is parent to the 28 corresponding pairwise comparison hypothe-
ses. In the hierarchical approach, four types of discoveries are
considered: (a) Treatment-effect discoveries, the level-1 discov-
eries; (b) pairwise discoveries, the level-2 discoveries; (c) full-
tree discoveries, the entire set of discoveries; and (d) outer-node
discoveries, the pairwise differences plus the treatment-effect
discoveries for genes for which no pairwise differences were
found. Note that the addition of correlated noise and the use of
pairwise comparisons induces dependence across the tree, yet
each pairwise comparison is independent of the initial treatment
effect test.

The results of the simulations are presented in Table 1. The
mean number of discoveries is listed in column 5, and the FDR
is listed in column 6, with standard errors in parentheses. The
mean observed value of the FDR multiplier (the mean of the
number of discoveries plus number of families tested divided
by the number of discoveries plus 1) is given in column 7, with
its mean absolute deviation (MAD) in parentheses.

Applied at level .05, the BH procedure yields 21–23 discov-
eries for sparse strain effect and dense strain effect configu-
rations. In the sparse and small configuration, the BH proce-
dure loses its power; at level .05, the mean number of dis-
coveries drops to .1, and even for q = .50, the mean number
of discoveries is only 10. For zero treatment effect and sparse
strain effect, the power of the hierarchical approach was com-
parable to that of the direct approach, but for the dense strain-
specific effect, the number of pairwise discoveries rose to 508.
The performance of the hierarchical approach improved sub-
stantially for small and medium treatment effects. In the sparse
and small strain–specific configuration with medium treatment
effect, the hierarchical procedure yielded approximately 627
treatment discoveries and 128 pairwise discoveries—more than
12 times more discoveries than the level .50 BH procedure dis-
coveries.

The level-1 restricted FDR was .05 × m0
0/m0. The full-tree

and outer-nodes FDRs were less than the corresponding univer-
sal bounds, and even less than .05 · δ∗ times the FDR multiplier
(δ∗ ≤ 1.1 in the simulations). In the first four parameter con-
figurations, the level-2 restricted FDR (which has no universal
bound) also was <.05 · δ∗ times the FDR multiplier; but in the
last configuration, the level-2 FDR was .358 and exceeded its
approximation .329 = .05 · 1.1 · 5.98. These findings indicate
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Table 1. Results of hierarchical analysis of microarray data simulation study

Treat. Strain Analysis Discovery Number of discoveries FDR FDR multiplier
effect effect method type (standard error) (standard error) (MAD)

Zero Sparse BH .05 Pairwise 21.1(.6) .044(.002) 1

Hierarchical Treatment 9.6(.4) .044(.004) 1
Pairwise 22.8(.9) .045(.004) 1.38(.21)

Full tree 32.5(1.3) .048(.003) 1.31(.11)

Outer node 27.6(1.1) .055(.004) 1.36(.13)

Dense BH .05 Pairwise 21.7(.7) .044(.002) 1

Hierarchical Treatment 404.5(4.7) .039(.001) 1
Pairwise 508.4(5.7) .053(.001) 1.80(.08)

Full tree 912.9(10.2) .047(0) 1.44(.03)

Outer node 777.2(8.7) .055(0) 1.52(.03)

Small Sparse BH .05 Pairwise 22.1(.6) .048(.003) 1

Hierarchical Treatment 157.0(2.9) .04(.001) 1
Pairwise 269.3(4.4) .063(.001) 1.57(.09)

Full tree 426.3(7.2) .055(.001) 1.36(.03)

Outer node 362.3(6.2) .064(.001) 1.43(.04)

Dense BH .05 Pairwise 22.9(.6) .044(.002) 1

Hierarchical Treatment 1,070(5) .04(0) 1
Pairwise 1,159(6) .063(0) 1.92(.07)

Full tree 2,229(11) .052(0) 1.48(.02)

Outer node 1,910(10) .06(0) 1.56(.02)

Medium Sparse BH .05 Pairwise .11(.02) .029(.007) 1
and small BH .35 Pairwise 2.73(.2) .314(.017) 1

BH .50 Pairwise 10.1(.8) .463(.016) 1

Hierarchical Treatment 626.8(7.2) .039(0) 1
Pairwise 128.3(1.7) .358(.003) 5.98(.91)

Full tree 755.2(8.6) .093(.001) 1.83(.02)

Outer node 702.9(8.0) .099(.001) 1.89(.02)

that hierarchical FDRs may increase in response to dependence
across the tree. Examining the MAD of the FDR multiplier re-
veals that in many of the configurations, the dispersion of the
FDR multiplier was relatively small. This suggests that the ob-
served FDR multiplier values (rather than the simulation mean
FDR multiplier) can be used to approximate the FDR.

3.2 Hierarchical False Discovery Rate Signal Denoising

This section compares signal denoising through hard thresh-
olding based on two-level hierarchical testing schemes with the
FDR wavelet thresholding approach introduced by Abramovich
and Benjamini (1996), and demonstrates the effectiveness of in-
corporating prior knowledge in the design of hierarchical test-
ing procedures. The signal consisted of K segments of 128 ob-
servations: a segment of 128 observation de-meaned Doppler
signal, followed by K − 1 segments of 128 0’s. In each run
of the simulation, independent N(0,1) noise was added to the
signal.

Abramovich and Benjamini (1996) FDR wavelet threshold-
ing was performed by applying the BH procedure at level .05
to the p values corresponding to the 128 × K − 1 wavelet co-
efficient. For the hierarchical FDR approach, a wavelet trans-
form was applied separately to each of the K segments. For

k = 1, . . . ,K , T0 included a specific wavelet coefficient null hy-
pothesis, Hk , to test the null hypothesis that segment k is pure
noise; Hk was parent to the family of 126 remaining wavelet
coefficient null hypotheses corresponding to segment k. We ex-
perimented with two choices of wavelet coefficients in T0. The
default choice, based on the assumption that in a nonnull sig-
nal, the effect size of the lowest-resolution wavelet coefficient
is large, was the lowest resolution wavelet coefficient. The op-
timal choice, based on prior information on the type of signal
used, was the largest wavelet coefficient in the wavelet trans-
form of the Doppler signal.

The simulation study included 27 signal configurations: 3
levels of signal-to-noise ratio times 9 values of K ranging from
1 to 256. Each configuration was run 3,000 times. For each run,
we recorded the observed proportions of false discoveries for
single-stage FDR thresholding at q = .05 and for hierarchical
FDR thresholding also at q = .05 were recorded, then the in-
verse wavelet transform was applied, and the SSE in relation to
the true signal was computed.

The simulation FDR levels for the two hierarchical pro-
cedures was approximately .05 · π̃0. The SSE values of the
three FDR denoising schemes are displayed in Figure 2. The
optimal hierarchical procedure had the smallest SSE in all
configurations—almost constant for all values of K . The SSE
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(a)

(b)

(c)

Figure 2. Simulation-based mean SSE level from the signal denoising simulation study (a) SNR = 1; (b) SNR = 2; (c) SNR = 4. The
solid line represents BH level .05 FDR wavelet thresholding; the dashed line, default hierarchical level .05 FDR wavelet thresholding; the
dot-and-dashed line, optimal hierarchical level .05 FDR wavelet thresholding.

of the BH procedure was the same for K = 1, but increased with
K . For high SNR, the SSE of the default hierarchical procedure
was almost as small as the SSE of the optimal procedure; for
small signal-to-noise ratio, the poor choice of test statistic for
H1 made it difficult to recover the signal, resulting in high SSE.

4. DISCUSSION

Hierarchical FDR methodology can be used to control the
FDR in complex large-scale studies with multiple families of
hypotheses. It also is considerably more powerful than the BH
procedure in sparse testing problems, providing that the data
have a hierarchical structure. In the examples considered in this
article, the tested hypotheses were arranged in trees of homoge-
neous families: either families consisting of true null hypothe-
ses with a true null hypothesis parent or families with a large
proportion of false null hypotheses and a false null hypothesis
parent. Thus hierarchical testing passed over the families of true
null hypotheses and adaptively applied the BH procedure to the
families with a high signal-to-noise ratio. Because many of the
statistical methods are hierarchical, these testing schemes are
intuitive and easily to set up. The p values tested in the exam-
ples discussed in the Introduction and in the simulation studies
were computed through a series of nested linear models.

Throughout the article, the assumption is made that the p val-
ues are independently distributed. But it is important to make
the distinction between dependence across the tree and depen-
dence between a test statistic and its ancestors. In general, the
validity of hypotheses testing is based on the assumption that
the distribution of p values corresponding to true null hypothe-
ses is U[0,1] (or stochastically larger than U[0,1]). In the hier-
archical FDR approach, this further implies that dependence be-
tween a p value and any of its ancestors should not be allowed.

Thus, when tested (i.e., given that all of its ancestor hypothe-
ses were rejected), the distribution of a p value corresponding
to a true null hypotheses is still U[0,1]. (Recall that this prop-
erty also was needed for screening before testing.) On the other
hand, dependence across the tree can be allowed; it occurred
in the examples presented in the Introduction, and its effect on
the FDR was evaluated in the microarray analysis simulation
study. The simulations indicate that whereas the universal FDR
bounds apply for the dependent test statistics studied, depen-
dence within the families of tested hypotheses and across the
tree seemed to result in higher FDR values than expected for
independent test statistics. Future work is planned to study the
effect of dependence across the tree on the hierarchical FDR.

APPENDIX: FALSE DISCOVERY
RATE COMPUTATIONS

Let Dj denote the event where Hj is rejected in the BH procedure

on TPar(j), and let DPar
j

denote the event where Hj and all of its an-
cestors are rejected in the BH procedure on their respective family,
where DPar

0 = �. We can now formally define the discovery of a null
hypothesis, Hj , in the three tree testing schemes.

Definition A.1.

a. Hj is a full-tree discovery, DPar
j

.

b. Hj is an outer-nodes discovery, DPar
j

∩ (
⋂

k∈Tj
Dk).

c. Hj is a level-l–restricted discovery, DPar
j

∩ L(j) = l.

Let Rt and Vt denote the total number of full-tree discoveries and
the number of false full-tree discoveries in Tt . R is the total number of
discoveries in any of the three tree testing schemes. Proposition 1 can
be expressed as

FDRt ≤ δ∗ · q · m0
t

mt
· E

{
I (DPar

t ) · Rt + 1

R + 1

}
. (A.1)
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We partition the sample space into disjoint events indexed by subtrees
of hypotheses K ,

DPar
K =

( ⋂
t∈K

Dt

)
∩

( ⋂
t /∈K

Dt

)
,

and, for a given realization of the vector of m p values, denote the
realized subtree by J . As the hypotheses are tested hierarchically, for
t = 0, . . . , T ,

t /∈ J ⇒ DPar
J ∩ DPar

t = ∅, whereas t ∈ J ⇒ DPar
J ⊆ DPar

t . (A.2)

A.1 Full-Tree FDR

Let RFull = ∑
t∈J Rt denote the total number of full tree discover-

ies. Then full tree FDR can be expressed as

FDRFull

= E

{
T∑

t=0

I (DPar
t ,R0 > 0) · Vt

RFull

}

=
T∑

t=0

E

{
I (DPar

t ,R0 > 0) · Vt

RFull

}

≤
T∑

t=0

δ∗ · q · m0
t

mt
· E

{
I (DPar

t ) · Rt + 1

RFull + 1

}
(A.3)

= δ∗ · q · E
{

T∑
t=0

I (DPar
t ) · m0

t

mt
· Rt + 1

RFull + 1

}

= δ∗ · q · E
{∑

J

I (DPar
J ) ·

T∑
t=0

I (DPar
t ,DPar

J ) · m0
t

mt
· Rt + 1

RFull + 1

}

= δ∗ · q · E
{∑

J

I (DPar
J ) ·

∑
t∈J (Rt + 1) · m0

t /mt

RFull + 1

}
(A.4)

= δ∗ · q · E
{∑

J

I (DPar
J ) · RFull + |J |

RFull + 1

×
∑

t∈J (Rt + 1)m0
t /mt∑

t∈J (Rt + 1)

}
, (A.5)

where the inequality in (A.3) is due to (A.1) and the equality in (A.4)
is due to (A.2).

Corollary A.1. The full-tree FDR is δ∗ · q · 2.

Proof. With the exception of T0, each t ∈ J corresponds to the full-
tree discovery of Ht ; thus RFull ≥ |J | − 1 ≥ 0, and, as m0

t /mt ≤ 1,

FDRFull ≤ δ∗ · q · E
{∑

J

I (DPar
J ) · RFull + |J |

RFull + 1

}

≤ δ∗ · q · E
{∑

J

I (DPar
J ) · |J | − 1 + |J |

|J | − 1 + 1

}

< δ∗ · q · 2.

Note that RFull equals |J | − 1 plus the number of leaf discoveries.
Therefore, the universal bound in Corollary A.1 can be approached
only if there is a very small proportion of leaf discoveries and if m0

t /mt

in the families of tested hypotheses is close to 1. On the other hand, if
RFull � |J |, then the expression in (A.5) is approximately δ∗ · q · π̃0,
where

π̃0 = E

{∑
J

I (DPar
J )

∑
t∈J (Rt + 1) · m0

t /mt∑
t∈J (Rt + 1)

}
.

A.2 Outer-Nodes FDR

Let FDROuter , ROuter , and V Outer
t denote the outer-nodes FDR, the

total number of outer-node discoveries, and the number of false outer-
node discoveries in Tt . Per definition, ROuter ≤ RFull and V Outer

t ≤
Vt . In the simulations presented in this article, true null hypotheses are
parents to families of true null hypotheses, because families of true
null hypotheses rarely yield discoveries V Outer

t ≈ Vt , whereas ROuter

usually is less than RFull; thus FDROuter > FDRFull. The bounds for
FDROuter are also greater than the bound for FDRFull. But in general,
FDROuter also can be smaller than or equal to FDRFull. To derive the
bound for FDROutr , we substitute V Outer

t with Vt and apply Proposi-
tion 1:

FDROuter

= E

{
T∑

t=0

I (DPar
t ,R0 > 0) · V Outer

t

ROuter

}

≤ E

{
T∑

t=0

I (DPar
t ,R0 > 0) · Vt

ROuter

}

≤ δ∗ · q · E
{∑

J

I (DPar
J ) ·

∑
t∈J (Rt + 1) · m0

t /mt

ROuter + 1

}

= δ∗ · q · E
{∑

J

I (DPar
J ) · RFull + |J |

ROuter + 1

×
∑

t∈J (Rt + 1) · m0
t /mt∑

t∈J (Rt + 1)

}
. (A.6)

Because J includes all indices of full-tree discoveries that are not
outer-node discoveries, RFull ≤ ROuter +|J |; thus if RFull � |J |, then
bound in (A.6) is approximately δ∗ · q · π̃0.

For the universal bound, note that ROuter is always greater than or
equal to the number of full-tree discoveries at each level of the tree,

RFull + |J | ≤ 2 · RFull ≤ 2 · L · ROuter. (A.7)

As m0
t /mt ≤ 1, combining (A.7) and (A.6) yields the following result.

Corollary A.2. The outer-nodes FDR is <δ∗ · q · 2 · L.

In the following example, we consider a very tall and narrow tree
in which most discoveries are parent hypotheses. Thus we see that for
large L, FDRFull is close to δ∗qπ̃02, whereas FDROuter is less than
half of δ∗qπ̃02L.

Example A.1. 2 · L null hypotheses are tested in a L-level tree.
For l = 1, . . . ,L, Hl are false null hypotheses with Pl = 0; for l =
L + 1, . . . ,2L, Hl are true null hypotheses with iid U[0,1] p val-
ues; and for l = 0, . . . ,L − 1, Tl includes Hl+1 and HL+l+1. The
tree of hypotheses is tested at level .05. Thus J ≡ {0, . . . ,L − 1}; in
each family m0

t /mt = 1/2, and δ∗ = 2/2.05. In both testing schemes,
V ∼ Binom(L, .05), whereas RFull = L + V and ROuter = 1 + V .
For L = 2, 3, 6, and 10, FDRFull is .033, .036, .042, and .044, and
FDROuter is .049, .073, .138, and .216. As L → ∞, FDRFull → .0476
and FDROuter → 1 .

A.3 Level-Restricted False Discovery Rate

For 1 ≤ l ≤ L, let Jl = {t : t ∈ J,L(t) = l − 1}, and denote Rl =∑
t∈Jl

Rt the number of level-l discoveries. The level-l restricted FDR
is

FDRLevel=l

= E

{
T∑

t=0

I (DPar
t ,L(t) = l − 1,Rl > 0) · Vt

Rl

}
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≤ δ∗ · q · E
{∑

J

I (DPar
J ) ·

∑
t∈Jl

(Rt + 1) · m0
t /mt∑

t∈Jl
Rj + 1

}

= δ∗ · q · E
{∑

J

I (DPar
J ) · Rl + |Jl |

Rl + 1

×
∑

t∈Jl
(Rt + 1) · m0

t /mt∑
t∈Jl

(Rt + 1)

}
. (A.8)

There is no universal bound for FDRLevel=l , but if Rl � |Jl |, then
the bound in (A.8) is approximately δ∗ · q · π̃0 (in this case π̃0 is the
expected mean of m0

t /mt over Jl ).

Example A.2. A two level tree is tested. The level-1 hypotheses—
H1, . . . ,HT , are false null hypotheses with 0 p values. Each false null
hypothesis Ht is a parent to a single true null hypothesis HT +t . The
number of false outer-node discoveries and false full-tree discoveries is
V ∼ Binom(T , q); RFull = V +T , and thus FDRFull ≈ q/(1+q), and
ROuter = T , and thus FDROuter = q . FDRLevel=1 is, by definition, 0.
FDRLevel=2 = 1 − (1 − q)T approaches 1 as T → ∞.

[Received November 2005. Revised September 2007.]
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