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Abstract

In this paper we present a modification of the Benjamini and Hochberg false discovery rate controlling procedure for testing
non-positive dependent test statistics. The new testing procedure makes use of the same series of linearly increasing critical values.
Yet, in the new procedure the set of p-values is divided into subsets of positively dependent p-values, and each subset of p-values is
separately sorted and compared to the series of critical values. In the first part of the paper we introduce the new testing methodology,
discuss the technical issues needed to apply the new approach, and apply it to data from a genetic experiment.

In the second part of the paper we discuss pairwise comparisons. We introduce FDR controlling procedures for testing pairwise
comparisons.We apply these procedures to an example extensively studied in the statistical literature, and to test pairwise comparisons
in gene expression data. We also use the new testing procedure to prove that the Simes procedure can, in some cases, be used to test
all pairwise comparisons.

The control over the FDR has proven to be a successful alternative to control over the family wise error rate in the analysis of
large data sets; the Benjamini and Hochberg procedure has also made the application of the Simes procedure to test the complete
null hypothesis unnecessary. Our main message in this paper is that a more conservative approach may be needed for testing non-
positively dependent test statistics: apply the Simes procedure to test the complete null hypothesis; if the complete null hypothesis is
rejected apply the new testing approach to determine which of the null hypotheses are false. It will probably yield less discoveries,
however it ensures control over the FDR.
© 2007 Published by Elsevier B.V.
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1. Introduction

The Benjamini and Hochberg (1995) false discover rate controlling procedure (BH procedure) is known to control
the FDR for positively dependent test statistics (Benjamini andYekutieli, 2001). In this paper we present a modification
of the BH procedure for controlling the FDR for non-positive dependent test statistics. The new testing procedure
makes use of the series of linearly increasing critical values used in the BH procedure—{iq/m}mi=1. But while in the
BH procedure the entire set of p-values is sorted and compared to the series of critical values, in the new procedure
the set of p-values is divided into subsets of positively dependent p-values, and each subset of p-values is separately
sorted and compared to the series of critical values.
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The idea of applying the BH procedure to separate subsets was first used in Benjamini andYekutieli (2005) for testing
m, non-positively dependent, two-sided test statistics. The authors suggested to separately apply the BH procedure at
level q/2 to the two corresponding sets of m positively dependent one-sided test statistics null hypotheses, and showed
that the FDR is controlled at level q on all 2m one-sided hypotheses. In this paper we will generalize this idea to more
than two, not necessarily disjoint, subsets of positively dependent test statistics.

Throughout the paper the vector of p-values are co-monotone transformations of the corresponding test statistics
(e.g. one-sided p-values), hence posses equivalent positive dependency properties. For the sake of brevity, we will
alternately discuss p-values or test statistics. �P = {P1, . . . , Pm} is the vector of p-values corresponding to the tested
hypotheses; P(1) � · · · �P(m) are the sorted p-values; m0 is the number of true null hypotheses (0�m0 �m) and the
distribution of each true null hypotheses p-value is stochastically larger than U[0, 1]; we will denote the complete null
hypothesis—H0

c (m0 = m).
The series of linearly increasing critical values was originally employed (Simes, 1986; Seeger, 1968) to test whether

any of the null hypotheses are false:

Definition 1.1. Level � Simes test: if ∃ P(i) �� · i/m then reject H0
c .

It was shown that for independent test statistics (Simes, 1979) and later for positively dependent test statistics (Sarkar
and Chang, 1997; Sarkar, 1998) that under H0

c the probability that the Simes procedure rejects H0
c is less than or equal

to �. If, however, H0
c is not true (m0 < m) the series of critical values cannot be used to determine which hypotheses

are false null hypotheses, while controlling the probability of making at least on type I error at level �.
In their seminal paper, Benjamini and Hochberg (1995) introduced a new measure for type I error in multiple

testing—the FDR—employed the series of critical values to test the individual null hypotheses, and showed that the
resulting procedure controls the FDR at level q · m0/m for independently distributed test statistics.

Definition 1.2. The level q BH procedure:

1. Let k = max{i : P(i) � iq/m}.
2. If ∃k > 0 then reject the null hypotheses associated with �RBH = {P(i) : i = 1 · · · k}; otherwise do not reject any of

the null hypotheses.

Benjamini and Yekutieli (2001) proved that if the vector of test statistics, �T , is positive regression dependent on
the subset of true null hypotheses test statistics �T0 then the FDR of the level q BH procedure is less than or equal to
q · m0/m.

Definition 1.3. �T is positive regression dependent on �T0: for any increasing set D, and for each Ti ∈ �T0, Pr( �T ∈
D|Ti = t) is non-decreasing in t.

Benjamini and Yekutieli (2001) also presented a general-dependency FDR controlling procedure: applying the BH
procedure at level q/(

∑m
i=11/i) offers FDR control at level q for all joint test statistic distributions. The shortcoming

of this testing procedure is that it is considerably less powerful than the BH procedure.
In Section 2 we will define the new testing approach, address the problem of constructing positively dependent sub-

vectors, and apply the new testing procedure to data from a genetic experiment. Section 3 is dedicated to the problem of
testing pairwise comparisons.We will present FDR controlling procedures for testing pairwise comparisons.Apply these
testing procedures to an example extensively studied in the statistical literature, and to test the pairwise comparisons
in the expression level of 7129 genes. Following Yekutieli (2001), we also use the FDR controlling property of the
new testing procedure to prove that the Simes procedure can be used to test all pairwise comparisons. In Section 4 we
discuss the suggested use of the new testing approach.

2. The separate subsets BH (ssBH) procedure

To apply the ssBH procedure the vector of m p-values, �P , is divided into S sub-vectors, �P s , for s = 1 · · · S; let ms

denote the number of test statistics in �P s and let �P s
0 denote the p-values corresponding to the true null hypotheses in �P s .
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Definition 2.1. Level q ssBH procedure:

1. For s = 1 · · · S, apply the BH procedure at level q ·ms/m to test �P s , and let �Rs
BH denote the p-values corresponding

to the rejected hypotheses.
2. Reject the null hypotheses corresponding to �RssBH = ⋃S

s=1
�Rs

BH.

By definition, the ssBH procedure is less powerful than the BH procedure, �RssBH ⊆ �RBH. However, its power
increases if there are �P s which include many small p-values, i.e. p-values corresponding to hypotheses rejected by
BH procedure. In particular, if ∃ �P s such that �RBH ⊆ �P s then �RssBH = �RBH. Thus, it turns out that the BH procedure
controls the FDR not only if the set of tested p-values is PRDS, but also if the set of rejected p-values is PRDS.

We are now ready to phrase the main result of this paper.

Proposition 2.2. If Condition 2.3 holds then the level q ssBH procedure controls the FDR at level q · m0/m.

Condition 2.3. For each Pi ∈ �P0, �P(Pi) = ∪{ �P s : Pi ∈ �P s} is PRDS on Pi .

The proof of Proposition 2.2 closely resembles the proof of Theorem 1.2 in Benjamini and Yekutieli (2001) and is
deferred to the Appendix.

2.1. PRDS random vectors

We will now address the problem of determining whether random vectors of commonly used test statistics are PRDS.
In the next section we discuss the verification of Condition 2.3.

2.1.1. Multivariate normal test statistics
�X ∼ N(��, �). The vector of true null hypotheses is �X0 = {Xi : �i = 0}. �X is PRDS on �X0 if and only if �i,j �0 for

each Xi ∈ �X0 and for each Xj ∈ �X (Benjamini and Yekutieli, 2001). The problem is that in many cases the identity of
the true null hypotheses is unknown. Thus, a stronger condition may be needed, �k,j �0 for all Xk and Xj in �X.

2.1.2. Absolute valued multivariate normal
�Y = | �X|, �X ∼ N(��, �). �Y is trivially PRDS if � ≡ I . Otherwise, for 0 < m0 < m, �Y is generally not PRDS.

Example 2.4. (X1, X0) are bivariate normal with unit variance, �0 = 0, �1 = 2 and � = 1 (i.e. X1 = X0 + 2).
Pr(|X1| > 1 |X0| = t) = 1 for t < 1 or 3 < t , but is 1

2 for 1� t �3.

For �� = 0 (i.e. under H0
c) Karlin and Rinott (1981) proved that �Y is multivariate total positivity of order 2 (MTP2)

if and only if there exists a diagonal matrix D with elements ±1 such that the off-diagonal elements of −D�−1D are
all non-negative. MTP2 is a strong form of positive dependency which implies PRDS on any subset. Thus, absolute
valued MVN are PRDS if the sub-vector or true null hypotheses is PRDS on any subset and independently distributed
of the sub-vector of false null hypotheses.

Example 2.5. Search for genetic loci effecting the bronx waltzer mutation. The study, conducted by Karen P. Steel,
consisted of 113 backcross progeny of two inbred mice strains. The data for each mouse included the genotype at 45
genetic loci situated on five chromosomes, and a series of phenotypes—measurements of 16 behavioral traits. A log
odds (LOD) score is computed to test for linkage between each genetic marker and each phenotype—in this case a
total of 720 tests.

At q = 0.05 the BH procedure applied to test all 720 null hypotheses yielded 147 discoveries; while the Benjamini
and Yekutieli (2001) general-dependency FDR controlling procedure yielded 27 discoveries.

LOD score distribution is proportional to absolute valued MVN. The null hypothesis of no linkage is true if there are no
QTL affecting the phenotype on the chromosome; if the chromosome contains at least one QTL affecting the phenotype
then all the null hypotheses on the chromosome are false. LOD score statistics corresponding to different chromosomes
are independent, and Yekutieli (2002) showed that the true null hypotheses on a chromosome corresponding to the
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same phenotype are PRDS on all subsets. However, according to Example 2.4, when there are QTL on a chromosome
affecting some, but not all of the phenotypes, the set of LOD scores corresponding to that chromosome are not PRDS
on the subset of true null LOD scores.

The simplest way to ensure FDR control is to divide the 720 test statistics into the 16 disjoint sub-vectors corre-
sponding to each phenotype and apply the ssBH procedure—at q = 0.05 this yields 28 discoveries. As LOD score
statistics corresponding to markers on separate chromosomes are independent even if they test for linkage with different
phenotypes, it is possible to consider 165 sub-vectors of 45 LOD scores—LOD scores in each of the five chromosomes
can test for linkage with any one of the 16 phenotypes—and still keep Condition 2.3. As testing all 165 LOD score
sub-vectors is not feasible, we only applied the ssBH to a subset of S = 80 sub-vectors. To choose these sub-vectors we
examined the results of the BH procedure applied to test all 720 LOD scores, and for each chromosome, recorded the
identity of the phenotype with the most discoveries; each of the 80 LOD score sub-vectors consist of the LOD scores
for each combination of five chromosomes times 16 phenotypes, and the LOD scores corresponding to the phenotype
yielding the most discoveries for the remaining four chromosomes; testing these 80 sub-vectors at level 0.05 the ssBH
procedure yielded 41 discoveries.

We would like to point out that in this example multiplicity of phenotypes is unfavorable for the ssBH procedure.
The size of PRDS LOD subsets cannot exceed 45 LOD scores, yet the number tests increases with the number of
phenotypes. For comparison, if only Phenotypes 1–8 are considered in the analysis than the BH procedure yields 82
discoveries, the general dependency BH procedure only yields 11 discoveries, while the number of ssBH discoveries
increases to 43.

The following example illustrates that the joint distribution of pairwise comparisons is not PRDS even if �� = 0.

Example 2.6. Xi,j = (Zi − Zj )/
√

2, for i �= j and Z1 · · · Zk are iid N(0, 1). The vector of test statistics is �T =
{|Xi,j | : 1� i �= j �K}. While any pair of test statistics is MTP2, some of the triplets, for example, the triplet
{|X3,2|, |X3,1|, |X2,1|}, are not PRDS. D={(X3,2, X3,1) : |X3,2| > 1, |X3,1| > 1} is an increasing set in |X3,2| and |X3,1|.
Conditioning on X2,1=t , X3,2 is N(−t/2, 3

4 ).As X3,1=X3,2+X2,1, for 0� t < 2 the set D is {X3,2 > 1}∪{X3,2 <−1−t},
and for −2 < t �0 the set D becomes {X3,2 < − 1} ∪ {X3,2 > 1 + t}. Thus, for 0� t < 2,

Pr(D | |X2,1| = t) = 2 · �

(−1 − t/2√
3/4

)
,

a decreasing function in t.

2.1.3. Studentized normal test statistics
Benjamini and Yekutieli (2001) proved PRDS dependency for random vectors which are strictly co-monotone,

continuously differentiable, transformation of a continuous PRDS random vector and an independent continuous latent
variable.

This implies that for �Y absolute valued MVN PRDS on I0 and S2 an independently distributed �2
	 , �T = �Y/S is PRDS

on I0.
If �X is PRDS MVN on I0 and S2 ∼ �2

	 then �T = �X/S is only PRDS on I0 for either positive or negative values of
�T . Nevertheless, Benjamini and Yekutieli (2001) established that this property is sufficient to ensure FDR control of
the BH procedure providing that q < 1

2 .

2.2. Verifying Condition 2.3

Following the discussion in the previous section Condition 2.3 may be verified directly.Yet for random transformations
of MVN test statistics a simpler condition can be used.

Condition 2.7. For s = 1 · · · S, �P s is PRDS on �P s
0.

Lemma 2.8. If �X is MVN then Condition 2.7 implies Condition 2.3.
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Proof. Let �X ∼ N(��, �) and Xi ∈ �X0. All sub-vectors of �X are MVN and share the same covariances. To complete the
proof, note that for any Xj ∈ �X(Xi), ∃s such that Xi and Xj are in �Xs , hence Condition 2.7 implies that cov(Xi, Xj )

�0. �

Applying the argument used in Section 2.1.3 yields the following corollary.

Corollary 2.9. Condition 2.7 also implies Condition 2.3 for continuously differentiable, transformation of an MVN
random vector and an independent continuous latent variable.

Notice, however, that Condition 2.7 does not imply Condition 2.3 for absolute valued MVN (recall Example 2.6).

3. FDR control for pairwise comparisons

The problem of testing all pairwise comparisons was first discussed in Tukey (1953), and is still among the most
challenging multiple comparison problems. Traditionally, the multiplicity problem was addressed by controlling for
the family wise error rate (see Hsu, 1999). Williams et al. (1999) note that the power of the BH procedure seems
to remain stable as the number of comparisons increase, and recommend use of the BH procedure for testing large
pairwise comparison problems.

FDR control of the BH procedure in pairwise comparisons was extensively studied in simulations: Benjamini
et al. (1993), Williams et al. (1999), Kesselman et al. (1999), Blair and Hochberg (1995). In all the studies, for all
configurations of true and false hypotheses simulated, for balanced and for non-balanced designs, normal and non-
normal distributions, the BH procedure controlled the FDR. Furthermore, the configuration of null hypotheses yielding
greatest FDR levels, approaching the nominal level q, was H0

c . There is, however, no theoretical proof for the validity
of the BH procedure for testing pairwise comparisons. In this section we will present an ssBH procedure for testing
pairwise comparisons. Following Yekutieli (2001), we will use the FDR controlling property of the ssBH procedure to
prove FDR control of the BH procedure under H0

c .
The data for testing pairwise comparisons consists of k independent group means: X̄i ∼ N(�i , �

2
i /ni) for i =1 · · · k.

We assume, without loss of generality, that the group means are sorted: X̄1 � · · · �X̄k . The hypotheses tested are H0
ji :

�j ��i vs. the alternative �j < �i , for j �= i. The pairwise comparisons problem is usually expressed as k · (k − 1)/2
two-sided hypotheses; however, as vectors of two-sided test statistics are not generally PRDS, in order to apply the
ssBH procedure we express it as m = k · (k − 1) one-sided hypotheses. In either case, applying the BH procedure
yields equivalent results: the two-sided null hypothesis �j =�i is rejected iff H0

ji or H0
ij is rejected; furthermore, testing

one-sided null hypotheses also offers directional inference (see Benjamini and Yekutieli, 2005). The test statistics can
be equal variance two-sample T statistics, or Welch modified two-sample T statistics for non-equal sample variance:

Tji = X̄i − X̄j

Sji

,

where Sji is an independently distributed standard error estimator. The corresponding p-value is, Pji = 1 − Ft(Tji),
where Ft denotes the corresponding t cdf.

A set of one-sided pairwise comparisons p-value, �P s , is PRDS only if the two sets of indices I+ = {i : Pji ∈ �P s}
and I− = {j : Pji ∈ �P s} are disjoint. As each PRDS subset �P s is subset of {Pji : i ∈ I+, j /∈ I+}, there is no need to
test all PRDS subsets of p-values but only the subsets of the form

�P I+ = {Pji : j /∈ I+, i ∈ I+} for I+ ⊆ {1 · · · k}. (1)

As the test statistics are studentized MVN the validity of the ssBH procedure follows from Corollary 2.9.

Definition 3.1. The level q ssBH procedure for pairwise comparisons: apply the level q ssBH procedure to all of the
pairwise comparison p-value sub-vectors defined in (1).

Example 3.2. To illustrate its use, the ssBH procedure is applied to test the pairwise comparisons in the nitrogen
content, between six groups of red clover plants, each inoculated with cultures of Rhizobium bacteria, presented in
Erdman (1946).
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Table 1
Erdman (1946) pairwise comparison p-values

Group means X̄1 X̄2 X̄3 X̄4 X̄5 X̄6

X̄1 = 13.26 – 0.2655 0.01 0.0025 0 0
X̄2 = 14.64 0.7345 – 0.037 0.0115 0 0
X̄3 = 18.70 0.99 0.7105 – 0.2895 0.0115 0
X̄4 = 19.92 0.963 1 0.963 – 0.037 0
X̄5 = 23.98 0.9975 1 1 1 – 0.0175
X̄6 = 28.82 0.9885 0.9885 1 1 0.9825 –

Table 2
The results of the level 0.05 ssBH procedure applied to the Erdman (1946) data pairwise comparisons

k k·0.05
30 BH I+ = {3 · · · 6} I+ = {4 · · · 6} I+ = {5, 6}

1 0.0017 p15 = 0 p15 = 0 p15 = 0 p15 = 0
2 0.0033 p25 = 0 p25 = 0 p25 = 0 p25 = 0
3 0.0050 p16 = 0 p16 = 0 p16 = 0 p16 = 0
4 0.0067 p26 = 0 p26 = 0 p26 = 0 p26 = 0
5 0.0083 p36 = 0 p14 = 0.0025 p36 = 0 p36 = 0
6 0.0100 p46 = 0 p13 = 0.01 p14 = 0.0025 p46 = 0
7 0.0117 p14 = 0.0025 p24 = 0.0115∗ p24 = 0.0115 p35 = 0.0115∗
8 0.0133 p13 = 0.01 p23 = 0.0370 p35 = 0.0115∗ p45 = 0.0370
9 0.0150 p24 = 0.0115 p34 = 0.2895

10 0.0167 p35 = 0.0115
11 0.0183 p56 = 0.0175∗
12 0.0200 p23 = 0.0370
13 0.0217 p45 = 0.0370
14 0.0233 p12 = 0.2655
15 0.0250 p34 = 0.2895

In Table 1 we list the 30 p-value computed to test the pairwise comparisons. In Table 2 we list the results of the BH and
ssBH procedures: in column 2 we list the series of 15 constants for testing the 15 hypotheses corresponding to p-values
which are less than 1

2 ; in column 3 we list the 15 ordered p-values used in the BH procedure. Comparing the p-values in
column 3 to the critical values in column 2 yields 11 discoveries. In columns 4–6 we present the sorted p-values tested
in the three sub-vectors corresponding to: I+ = {3 · · · 6}; I+ = {4 · · · 6}; I+ = {5, 6}. These three sub-vectors yielded
10 discoveries. The only discovery missed was the comparison of group means 5 and 6.

For k = 5, the ssBH procedure involves testing 59 additional p-value sub-vectors. However, notice that H0
56 is only

rejected if it is the 11th sorted p-value: according to Table 2, its p-value is smaller than the 11th critical value, yet greater
than the 10th critical value; as the 10 p-values smaller than P56 include the negatively correlated P15 and P25–P56
cannot be the 11th sorted p-value in any of the sub-vectors tested in the ssBH procedure. Hence H56 cannot be rejected
by the ssBH procedure.

Procedure 3.1 includes 2k − 2 sub-vectors, many of which are redundant—if I+ = {1 · · · l} then all of the p-values
in �P I+ are greater then 1

2 ; Yekutieli (2001) suggested a shorthand version of the ssBH procedure:

Definition 3.3. The abridged level q ssBH procedure for pairwise comparisons: apply the level q ssBH procedure to
the sub-vectors �P Il = {Pji : j < l, l� i} where l = 2 · · · k.

Procedure 3.1 may, in some cases, yield more discoveries than Procedure 3.3. Yet, as testing all 2k − 2 subsets is
only feasible for small k, for large k we recommend using Procedure 3.3, and only if it produces considerably less
discoveries than the BH procedure testing additional sub-vectors should be considered.
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3.1. The validity of Simes procedure for testing all pairwise comparisons

In this section we assume that the pairwise comparisons test statistics share a common distribution FT . Let cl =
F−1

T (1 − q · l/m), and define wk as the minimal number of pairwise comparisons within 3 disjoint sets of sub-groups:

wk = min
k1+k2+k3=k

(
k1
2

)
+

(
k2
2

)
+

(
k3
2

)
. (2)

Lemma 3.4. For q and k such that: (1) 3 · cm/2 > c1 and (2) 2 · cm/2−wk
> c1, if the level q BH procedure rejects at

least one hypothesis then Procedure 3.3 at level q will also reject at least one hypothesis.

Procedure 3.3 controls the FDR, i.e. under H0
c the probability that Procedure 3.3 at level q rejects at least one

hypotheses is less than or equal to q. Thus, Lemma 3.4 implies that under H0
c the probability that the BH rejects at least

one hypothesis, and thus H0
c , is also less than or equal to q:

Corollary 3.5. Under the conditions of Lemma 3.4, the Simes procedure is valid for testing all pairwise comparisons.

The following table list maximal values of k for which the two conditions in Lemma 3.4, given q and FT , are kept:

q t20 t50 t100 t200 N(0, 1)

0.1 13 19 23 25 27
0.05 22 39 50 58 68
0.01 55 164 285 398 587

Proof. It is assumed that at least one null hypothesis is rejected by the level q BH procedure, i.e. rBH = |RBH| > 0. Let
I+ = {i : Pji ∈ �RBH}, I− = {j : Pji ∈ �RBH}. Now denote I2 = I+ ∩ I−, I3 = I+ − I− and I1 = I− − I+. I1 and I3 are
not empty. If rBH > 0 then the hypothesis corresponding to the minimal p-value, P1k , must be rejected, hence 1 ∈ I−
and k ∈ I+. Furthermore, 1 /∈ I2 and k /∈ I2, thus 1 ∈ I1 and k ∈ I3. We will now show that for each configuration of
I2 at least one hypothesis is rejected in Procedure 3.3.

Case 1: I2 is empty. If I2 is empty then RBH is a subset of {Pji : j ∈ I1}—one of the sub-vectors tested in Procedure
3.3, in which case �RssBH = �RBH.

Case 2: ∃ j, i ∈ I2 such that the Pji ∈ �RBH. As half of the m hypotheses correspond to negative test statistics
(hence cannot be rejected) all of the rejected p-values must be smaller than q/2, and the corresponding test statistics
are all greater than cm/2. Thus, Tji �cm/2, and since j and i are in I2: T1j �cm/2 and Tik �cm/2. According to the first
condition:

T1k = T1i + Tij + Tjk �3 · cm/2 > c1,

therefore P1k �q/m and P1k ∈ �RssBH.
Case 3: ∀ j, i ∈ I2 Pji /∈ �RBH. Per definition, all hypotheses comparing group means within I1 and within I3 are also

not rejected. Therefore, number of hypotheses not rejected by the BH procedure, m− rBH, exceeds the sum of the m/2
negative contrasts plus the number of contrasts comparing group means within I1, I2 and I3. Thus, m−rBH �m/2+wk ,
or equivalently rBH �m/2 − wk . This means that any rejected hypothesis corresponds to a test statistic greater than
cm/2−wk

. Let i belong to I2, then both H0
1i and H0

ik are rejected. According to the second condition:

T1k = T1i + Tik �2 · cm/2−wk
> c1.

Again P1k �q/m and P1k ∈ �RssBH. �

3.2. Analysis of microarray data

In this example we apply the ssBH procedure to data from a gene expression study in breast tumors (West
et al., 2001). Gene expression levels were measured in 49 breast tumor mRNA samples using Affymetrix high-density
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Table 3
The number of pairwise comparison differences discovered in the analysis of the West et al. (2001) gene expression data

p-value BH ssBH BH General
vector q = 0.05 q = 0.05 q = 0.025 dependency

�P12 22 9 11 3
�P13 3 2 2 0
�P14 20 5 11 2
�P23 8 6 2 0
�P24 4 1 2 0
�P34 1 0 0 0
�P21 34 24 17 2
�P31 0 0 0 0
�P41 43 31 24 5
�P32 3 0 0 0
�P42 0 0 0 0
�P43 21 15 8 2

�P 159 93 77 14

oligonucleotide chips containing 7129 human probe sequences (HuGeneFL chips). Two outcomes were measured for
each tumor sample: estrogen receptor status—ER−/ER+; presence of affected lymph nodes—LN−/LN+.

The gene expression data was analyzed in R (R 2.0.1—Copyright, 2004, the R Development Core Team). The data
was transformed—vsn R package (Huber et al., 2002), and then standardized—for each array the mean was set to 0
and the MAD was set to 1.

The 49 arrays were divided into four groups according to the lymph node and estrogen receptor status. Group 1: (LN−,
ER−), n1 = 13 arrays; Group 2: (LN−, ER+), n2 = 12 arrays; Group 3: (LN+, ER−), n3 = 11 arrays; Group 4: (LN+,
ER+), n4 =13 arrays; For i=1 · · · 4, X̄i is the 7129-component vector of mean standardized expression levels in Group
i. It is assumed X̄1 · · · X̄4 are independent MVN random vectors, with marginal distributions: X̄gi ∼ N(�gi, �

2
g/ni),

where g = 1 · · · 7129. In this example, we will consider testing, for each gene, all pairwise comparisons. The test
statistics computed are:

Tgji = X̄gi − X̄gj

Sg

√
1/ni + 1/nj

,

where Sg is the pooled estimator of �g .
The only source of correlation between the expression level of a non-differentially expressed gene and any other

gene is correlated measurement error. Reiner et al. (2003) argue that gene expression measurement errors are positively
correlated. Thus, each vector of t-statistics, �Tji = {Tgji}7129

g=1 , is PRDS on the subset of the components corresponding

to non-differentially expressed genes �T 0
ji = {Tgji : �gj = �gi}. Employing this argument, if j ′ �= i and i′ �= j then the

vector �Tj ′i′ is also PRDS on �T 0
ji . Let Pgji = 1 − Ft(Tgji), where Ft is the 45 degrees of freedom t cdf. Then Condition

2.7 holds for each:

�PI+ = {Pgij : g = 1 · · · 7129, i ∈ I+, j /∈ I+} where I+ ⊆ {1 · · · 4}. (3)

As all �PI+ are MVN studentized normal, Condition 2.3 follows. Thus, the ssBH procedure applied to the p-value
sub-vectors defined in (3) controls the FDR.

In Table 3 we present the results of the statistical analysis. At first we applied the BH procedure at q = 0.05 to test all
85, 548 pairwise comparisons. The results are listed in column 2 of Table 3. The BH procedure yielded 159 discoveries.
The greatest number of differentially expressed genes was discovered in the Group 1 (ER−, LN−) and Group 4 (ER+,
LN+) comparison: 43 genes were found to have higher expression levels in Group 4 than in Group 1 (row 9); 20 genes
were found to have lower expression levels in Group 4 than in Group 1 (row 3).

For the ssBH procedure we constructed the 14 (=24 − 2) p-value vectors �PI+ defined in (3), corresponding to:
I+ = {4}; I+ = {3}; I+ = {3, 4}; I+ = {2}; I+ = {2, 4}; I+ = {2, 3}; I+ = {2, 3, 4}; I+ = {1}; I+ = {1, 4}; I+ = {1, 3};
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I+ = {1, 3, 4}; I+ = {1, 2}; I+ = {1, 2, 4}; I+ = {1, 2, 3}. This yielded a total of 93 discoveries, see column 3 of
Table 3.

The ssBH procedure was less powerful than the BH procedure at level 0.05; but was, generally, more powerful than
the BH procedure at level 0.025 (see column 4). It yielded considerably more discoveries in �P41, �P21, �P43 and �P23
that were tested simultaneously in I+ = {1, 3}; but since �P14 cannot be tested alongside the many pairwise comparison
discoveries in �P41, �P42, and �P21 the ssBH procedure yielded considerably less discoveries than the level 0.025 BH
procedure in �P14.

Finally, in column 5 we present the results of the level 0.05 general-dependency FDR controlling procedure, which
is simply the BH procedure at level 0.05/11.934 = 0.0042. This procedure only yielded 14 discoveries.

4. Discussion

Control over the FDR has proven to be a successful alternative to control over the FWE in the analysis of large data
sets. The use of the BH procedure also filled a gap in the statistical inference. Before its introduction a statistician
would apply the Simes procedure and reject H0

c—thus be able to tell the client that not all the null hypotheses tested
are true null hypotheses, yet, in some cases, he would also have to inform the client that he could not tell him which of
the null hypotheses are false.

Our offering in this paper is a testing procedure which employs the same set of constants used in the BH and Simes
procedures, is more complicated to apply and makes less discoveries than the BH procedure, but controls the FDR for
non-PRDS test statistics and is more powerful than the Benjamini andYekutieli (2001) general-dependency procedure.

We have shown that in many cases even though the p-value distribution is not generally PRDS, it is still PRDS under
H0

c (e.g absolute valued MVN); furthermore, there are cases in which the test statistics are not PRDS even under H0
c ,

yet the Simes procedure is still valid (pairwise comparisons); we have also shown for pairwise comparisons, under
quite general conditions, that if the Simes procedure rejects H0

c then at least one hypothesis is rejected by the ssBH
procedure.

We therefore recommend to first apply the Simes procedure to test H0
c at level q = 0.05; if H0

c is rejected we suggest
using the level 0.05 ssBH procedure to determine which null hypotheses are false; it will yield less discoveries than
the level 0.05 BH procedure, however, it ensures that the FDR will not exceed 0.05.

Appendix

Proof of Proposition 2.2. We will assume that H1 · · · Hm0 is the set of true null hypotheses. For each value of value
of �P and i ∈ {1 · · · m0} we set Pi = 0 and apply the ssBH procedure. Let smax denote the index of the sub-vector �P s

yielding the maximal number of rejections of all the sub-vectors such that Pi ∈ �P s , and denote the number of rejections
rmax = | �Rsmax

BH |.
Leaving the remaining components of �P unchanged we gradually increase Pi . Notice that as long as Pi �q · rmax/m

then rmax hypotheses are rejected in the BH test of �P s among them Hi . However, if Pi > q · rmax/m then Hi is no
longer rejected by the ssBH procedure at all.

Benjamini and Yekutieli (2001) express the FDR of any testing procedure:

FDR =
m0∑
i=1

m∑
k=1

1

k
Pr(k null hypotheses are rejected including Hi ). (4)

Notice that rmax is less than or equal to the total number of hypotheses rejected by the ssBH procedure, rmax � | �RssBH|.
Furthermore, it is only determined by �P (i) = �P(Pi) − {Pi}. Therefore, if we define C

(i)
k = { �P (i) : rmax = k} we get the

following upper bound for the FDR of the ssBH procedure:

FDR�
m0∑
i=1

m∑
k=1

1

k
Pr{Pi �kq/m ∩ C

(i)
k }. (5)
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Define D
(i)
k = ⋃

j �kC
(i)
j for k = 1 · · · m. D

(i)
k is an increasing set in �P (i). To see this, set Pi = 0 and increase any of

the components of �P (i). For each �P s such that Pi ∈ �P s the number of rejections will remain unchanged or decrease,
thus rmax will either remain the same or decrease, leaving us in D

(i)
k .

For brevity, let ql = k · q/m. We now shall make use of the PRDS property, which states that for p�p′

Pr(D |Pi = p)� Pr(D |Pi = p′). (6)

Following Lehmann (1966) it is easy to see that for j � l since qj �ql :

Pr(D |Pi �qj )� Pr(D |Pi �ql), (7)

for any non-decreasing set D, or equivalently,

Pr({Pi �qk} ∩ D
(i)
k )

Pr(Pi �qk)
�

Pr({Pi �qk+1} ∩ D
(i)
k )

Pr(Pi �qk+1)
. (8)

As D
(i)
j+1 = D

(i)
j ∪ C

(i)
j+1 for k = 1 · · · m − 1, expression (8) yields

Pr({Pi �qk} ∩ D
(i)
k )

Pr(Pi �qk)
+ Pr({Pi �qk+1} ∩ C

(i)
k+1)

Pr(Pi �qk+1)

�
Pr({Pi �qk+1} ∩ D

(i)
k )

Pr(Pi �qk+1)
+ Pr({Pi �qk+1} ∩ C

(i)
k+1)

Pr(Pi �qk+1)

= Pr({Pi �qk+1} ∩ D
(i)
k+1)

Pr(Pi �qk+1)
. (9)

Staring with C1 = D1, we repeatedly use the above inequality for k = 1 · · · m − 1, to fold the sum on the left into a
single expression,

m∑
k=1

Pr({Pi �qk} ∩ C
(i)
k )

Pr(Pi �qk)
� Pr({Pi �qm} ∩ D

(i)
m )

Pr(Pi �qm)
= 1, (10)

where the last equality follows because D
(i)
m is the entire space.

Going back to expression (5), as Pr(Pi �qk)�k · q/m,

FDR�
m0∑
i=1

m∑
k=1

1

k
Pr({Pi �qk} ∩ C

(i)
k )

�
m0∑
i=1

m∑
k=1

1

k
· k · q

m
· Pr({Pi �qk} ∩ C

(i)
k )

Pr(Pi �qk)
.

Finally, invoking (10) yields,

FDR� q

m

m0∑
i=1

m∑
k=1

Pr({Pi �qk} ∩ C
(i)
k )

Pr(Pi �qk)
� m0

m
q.
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