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“What’s wrong with my genetically engineered animal?” is a common yet often difficult to answer
question in behavioral phenotyping. We present here a method termed Pattern Array for mining
movement patterns and isolating those that best capture an effect of a genetic manipulation. We
demonstrate the method by searching for early motor symptoms in the open-field behavior of SOD1
mutant rats, an animal model of amyotrophic lateral sclerosis. Pattern Array was able to identify a unique
motor pattern that differentiated the SOD1 mutants from the wild-type controls 2 months before disease
onset. This pattern included heavy braking while moving near the arena wall but turning away from it.
SOD1 mutants performed this pattern significantly less than wild-type controls in 2 independent data sets.
At such early age the SOD1 mutants could not be differentiated from the controls by standard behavioral
measures or by subjective observation. The early discovered symptom may enable investigators to test
therapies aimed for intervention rather than remediation. Our results demonstrate the feasibility and
potential of detecting subtle behavioral effects using data mining strategies.
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Exploratory data analysis and data mining are among the most
useful paradigms in bioinformatics, yet they are rarely employed
for the analysis of behavioral data in laboratory animals. Although
many of the standard behavioral tests (especially spatial tests
employing computerized tracking, see Crawley, 2000) automati-
cally record large amounts of information-rich data, these data are
rarely explored or mined, and are usually used merely for calcu-
lating a small set of hardwired cumulative measures, such as the
total mileage traversed by the animal or the total time it spent in a
certain area. This might limit the ability to detect subtle behavioral
effects in knockouts and transgenics. Genetically engineered ani-
mal models typically require considerable effort and time to pro-
duce, which might prove frustrating if the standard tests then fail

in discovering any behavioral effect (e.g., Grammer, Kuchay,
Ghishti, & Baudry, 2005; Perez & Palmiter, 2005). In this study we
demonstrate an algorithm termed Pattern Array, specifically designed
for mining behavioral data using a large number of measures to isolate
subtle yet consistent effects of genetic manipulation.

As a test case of the above problem we will discuss here the
SOD1G93A (SOD1) rat model of amyotrophic lateral sclerosis
(ALS). ALS is the most common form of motor neuron disease, a
progressive and ultimately fatal degeneration of nerve cells (Rosen
et al., 1993). About 10% of human ALS cases are inherited, of
them 2% are caused by mutations in the superoxide dismutase 1
gene (SOD1, see Rosen et al., 1993). Transgenic rats and mice
expressing any of several mutant human SOD1 alleles show many
attributes of human ALS, including adult-onset muscle weakness
as well as severe motor neuron loss (Bruijn et al., 1997; Bruijn,
Miller, & Cleveland, 2004; Gurney et al., 1994) culminating in
death by 5 months of age. These genetic models are widely used
for developing and testing treatments (Howland et al., 2002; Roth-
stein et al., 2005).

In SOD1 rats the well-described adult onset of the disease
typically occurs around postnatal day (PND) 110 with a stan-
dard deviation of less than 10 days (Matsumoto et al., 2006).
Discovery of putative earlier motor symptoms that could be
measured automatically and reliably in younger animals would
enable investigators to develop and test treatments for delaying
or even preventing the disease. Moreover, such symptoms may
prove useful for contrasting symptomologies with nongenetic
animal models of ALS (Shaw & Wilson, 2006). However, such
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early symptoms have not been found. Matsumoto et al. recently
characterized the behavior of SOD1 mutant rats using several
tests, including righting reflex, inclined plane (for testing grip
strength), home-cage and open-field activity, but did not detect
reliable symptoms before PND 100. Moreover, as we also
confirm in this study, Matsumoto et al. could not detect any
abnormality in these animals before PND 90 even by subjective
observations of their behavior.

This is an example of a common situation in the behavioral
phenotyping of animal models: The most immediate hypotheses
regarding a behavioral effect of the mutation were already
exhausted, and more elaborate hypotheses will have to be tested
one-by-one using dedicated (and likely costly and time-
consuming) setups with an unknown chance of success. A
simple open-field test of these animals, however, would yield a
wealth of dynamical motor patterns that to date have mostly
been ignored. In this study we describe a method designed to
mine these data for reliable premorbid differences between the
SOD1 and normal rats.

The data we use here are path coordinates from the SEE (Strat-
egy for the Exploration of Exploration) open-field test (Drai &
Golani, 2001), although in principle Pattern Array can be applied
to any spatial test, or in fact any kind of behavioral test that records
large amounts of data. SEE is a software-based strategy, embedded
in the programming environment of Mathematica, for the visual-
ization and analysis of free spatial behavior. It was recently shown
to be useful for the behavioral phenotyping of mice (Benjamini,
Drai, Elmer, Kafkafi, & Golani, 2001; Drai, Kafkafi, Benjamini,
Elmer, & Golani, 2001; Horev, Benjamini, Sakov, & Golani, 2007;
Kafkafi, Benjamini, Sakov, Elmer, & Golani, 2005; Kafkafi &
Elmer, 2005; Kafkafi, Lipkind, et al., 2003; Kafkafi, Pagis, et al.,
2003; Lipkind et al., 2004). These studies show that, in contrast
with a common view of open-field behavior as an essentially
stochastic phenomenon, it is structured and consists of intrinsic
behavioral building blocks. The most basic of these building
blocks are “progression segments,” consisting of bouts of locomo-
tor movement, and “lingering episodes” (“stops” in their general-
ized sense, consisting of both arrests and small “nonlocomotor”
movements). SEE employs simple properties of these building
blocks and their syntax as behavioral measures (“endpoints”) for
assessing open-field behavior.

In the above SEE studies, behavioral patterns and measures
were defined using strategies of exploratory data analysis, employ-
ing several types of graphic visualization of the behavior in SEE
(Drai & Golani, 2001) and/or watching the actual behavior. Once
a behavioral pattern is algorithmically defined in SEE it can be
tested over a large database of raw path data (Kafkafi, 2003) to
assess its ability to discriminate reliably between different geno-
types or treatments. The Pattern Array method develops this ex-
ploratory approach further into a data mining strategy, by defining
a whole class of behavioral patterns as multiple simultaneous
combinations of several ethologically relevant SEE endpoints,
such as the distance from the arena wall, the speed and acceleration
of movement, direction of movement, and turning. These combi-
nations are then explicitly mined for those that maximize the
difference between the experimental groups, in our case the dif-
ference between the SOD1 mutants and the wild-type controls.

Method

Animals and Testing

We obtained 12 SOD1 mutant (G93A) and 12 Sprague-Dawley
wild-type control rats, both males at 5 weeks of age, from Taconic
Labs, New York. They were housed 2 to 3 per cage with food and
water ad libitum for 2 weeks on a standard dark–light cycle before
the beginning of the experiment. The animals were tested at two
ages: PND 50 to 55 and PND 75 to 80. Each of these tests included
three 30 min open-field sessions—one session per day for 3
consecutive days—and a grip-strength test on the fourth day. All
animals were weighed before each testing time point. Open-field
tests were conducted using the standard SEE procedure (Drai &
Golani, 2001, Kafkafi, et al., 2005). Briefly, the animal was
allowed to freely explore a 2.50 m diameter circular arena while its
location was tracked using Noldus EthoVision (Wageningen, The
Netherlands) video tracking system at a rate of 30 Hz, and the
{Time, X, Y} coordinates of the path (e.g., Figure 1) were exported
to SEE. The grip force test was conducted separately for the fore
and hind legs using a metal grid connected to an isometric force
transducer (Columbus Instruments, Ohio) in a procedure similar to
that described by Derave et al. (2003): The animal was lifted by its
tail and made to hold the grid with its fore or hind limbs, and then
pulled backward gently until it could no longer hold the grid. The
maximal force in grams was recorded in six consecutive trials and
the animal’s final result was set to their median. The experimental
protocols followed the “Principles of Laboratory Animal Care”
(National Academy of Sciences, 1996). The animals used in this
study were maintained in facilities fully accredited by the Amer-
ican Association for the Accreditation of Laboratory Animal Care
(AAALAC).

SEE Behavioral Procedures

SEE (Drai & Golani, 2001) is a software-based strategy in the
programming environment of Mathematica for the visualization
and analysis of free spatial behavior. The EthoVision path coor-
dinates were imported into SEE (Drai & Golani, 2001), and the
SEE Path Smoother procedure (Hen, Sakov, Kafkafi, Golani, &
Benjamini, 2004) was used to filter out tracking noise. Because the
animals were not very active we pooled data from the three
successive sessions for each animal in each age. It should be
stressed that data was never pooled over different animals or over
different ages. At a tracking rate of 30 Hz the data file of each
animal at each age thus included 30 coordinates per second �
60 s � 30 min � 3 sessions � 162,000 data points. Using the
standard SEE procedure the path was further divided into segments
of progression and lingering (small local movements during stop-
ping, see Drai, Benjamini, & Golani, 2000; Kafkafi, Mayo, Drai,
Golani, & Elmer, 2001). The lingering component of behavior has
too small spatial resolution to be reliably measured by current
tracking technology, therefore our analysis concentrated on pro-
gression segments. Depending on the activity of the animal, the
number of data points within progression segments usually con-
sisted of 10,000 to 50,000 (i.e., about 5 to 25 cumulative minutes)
per pooled three sessions. Mutants and controls did not consis-
tently differ in their general activity (see Results section and
Figure 3, second row, left).
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The Pattern Array algorithm itself, described in the Algorithm
section, was programmed in Mathematica using the SEE package
(Drai & Golani, 2001) and the SEE Experiment Explorer package
(Kafkafi, 2003).

Behavioral Attributes

The Pattern Array method was realized by transforming the path
data into nine variables or “attributes”, and partitioning the range
in each attribute into several bins using cutoff values (see Table 1
and Algorithm section for full explanation). These attributes and
cutoff values are based on previous studies of open-field behavior
and large amount of preliminary data in both mice and rats. In all
attributes the distribution of data was consistently unimodal with
very similar modes between different animals. Following is a
description of these nine attributes and the rationale for using
them.

d: Momentary distance from arena wall. This is a well-
established attribute of rodent open-field behavior (e.g., Ramos,
Berton, Mormede, & Chaouloff, 1997) measuring thigmotaxis

(wall-hugging). Both rats (Broadhurst, 1975) and mice (Leppanen,
Ewalds-Kvist, & Selander, 2005) have been genetically selected
for increased and decreased thigmotaxis. In mice, the distance
from the wall was shown to be a factor in the intrinsic organization
of the behavior (Lipkind et al., 2005), and the wall has a strong
effect on the direction of movement even when the animal is at
distance from it (Horev et al., 2007). Because the animals tend to
stay much more near the wall we used four bins of increasing
distance: 0 to 8 cm from the wall (approximately the range of
maintaining physical contact with the wall), 8 to 20 cm from the
wall (close proximity but not physical contact), 20 to 40 cm
(slightly away from the wall), 40 to 125 cm (very far from the
wall).

v: Momentary speed of movement. Speed was shown to be a
key variable in the intrinsic categorization of behavior to progres-
sion and “lingering” in both mice (Drai et al., 2000) and rats
(Kafkafi et al., 2001). We chose four bins of speed based on this
experience: 0 to 20 cm/s (slow), 20 to 40 cm/s (medium), 40 to 60
cm/s (fast) and above 60 cm/s (very fast). The speed was computed

SOD1 rat Control rat

Figure 1. Example path plots. Representative path plots from one SOD1 rat (left) and one control rat (right)
in the open-field arena. Only progression (movement) segments are shown. Each data point represents 1/30
seconds. The coordinates of these points are the input for the Pattern Array method.

Table 1
Behavioral Attributes Used in Pattern Array

Symbol Attribute definition Units
Number of

bins Bin edges

d Momentary distance from arena wall cm 4 0, 8, 20, 40, 125
v Momentary speed of movement cm/s 4 0, 20, 40, 60, �
a Momentary acceleration of movement cm/s2 5 ��, �30, �5, 5, 30, �
j Momentary jerk (change in acceleration) of movement cm/s3 5 ��, �300, �50, 50, 300, �
h Momentary movement direction relative to wall (heading) degrees 5 �90, �30, �5, 5, 30, 90
c4 Momentary path curvature in a 4 cm scale degrees/cm 5 ��, �10, �2, 2, 10, �
c16 Momentary path curvature in a 16 cm scale degrees/cm 5 ��, �5, �1, 1, 5, �
ts Time from start of progression segment s 3 0, 0.2, 1, �
te Time to end of progression segment s 3 0, 0.2, 1, �

Note. The path data are transformed into the nine attributes shown, and the range in each attribute is partitioned into several bins. Thus each of the path
data points in Figure 1 is classified into cells or “patterns” as shown in Figure 2. See the Method section for more of the rationale and calculation of each
attribute.
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and noise filtered using the LOWESS algorithm as described in
Hen et al. (2004) with a moving window width of 0.4 s.

a: Momentary acceleration of movement. Acceleration was
shown to be a key variable discriminating the behavior of different
genotypes of mice reliably and with high broad-sense heritability
(Kafkafi, Pagis, et al., 2003). We chose five unequal bins of
acceleration that produce approximately similar frequencies: less
than �30 cm/s (strong deceleration, meaning heavy braking), �30
to �5 cm/s (mild deceleration), �5 to 5 cm/s (approximately
uniform speed) 5 cm/s to 30 cm/s (mild acceleration), more than 30
cm/s (high acceleration). The acceleration was computed and noise
filtered using the LOWESS algorithm as described in Hen et al.
(2004) with a moving window width of 0.4 s.

j: Momentary jerk of movement. Jerk (the derivative of accel-
eration according to time, or the second derivative of the speed)
was chosen because speed peaks were shown to be a meaningful
component of rodent behavior (Drai et al., 2000; Kafkafi et al.,
2001), and jerk is required to distinguish between speed peaks
(near-zero acceleration and negative jerk) and local minima of
speed (near-zero acceleration and positive jerk). We chose five
unequal bins of jerk that produce approximately similar frequencies:
less than �300 cm/s (very negative jerk, meaning a strong decrease in
acceleration), �300 to �50 cm/s (mild decrease in acceleration),
�50 to 50 cm/s (approximately uniform acceleration), 50 cm/s to
300 cm/s (mild increase in acceleration), more than 300 cm/s
(strong increase in acceleration). The jerk was computed and noise
filtered using the LOWESS algorithm as described in Hen et al.
(2004) with a moving window width of 0.4 s.

h: Momentary movement direction (“heading”) relative to wall.
Horev at al., (2007) showed the effect of the wall on heading even
from a distance. We computed the heading in degrees relative to
the arena wall, with negative values representing movement to-
ward the wall and positive values away from it. We chose five
unequal bins of heading that produce approximately similar fre-
quencies: �90° to �30° (moving toward the wall), �30° to �5°
(moving slightly toward the wall), �5° to 5° (moving approxi-
mately parallel to the wall), �90° to �30° (moving slightly away
from the wall), 30° to 90° (moving away from the wall). The
direction was computed and noise filtered using the LOWESS
algorithm as described in Hen et al. (2004) with a moving window
width of 0.4 s.

c4: Path curvature in a 4 cm scale. This attribute measures the
momentary turning (change of direction) in a unit of path length.
Kafkafi and Elmer (2005) showed that the curvature of the path
has high heritability in the mouse and can be used to differentiate
inbred strains with high replicability across laboratories. They also
showed that the curvature measured in a 4 cm scale (smaller than
the animal body) is not necessarily correlated with the curvature
measured in a 16 cm scale (approximately body length in rats). For
this reason we use the curvature in both scales as attributes in this
study. The curvature in 64 cm scale, also used in the above study,
was not used here because only a small portion of the segments
were longer than 64 cm. Curvature was computed as detailed in
Kafkafi and Elmer except for one difference: rather than using the
sign to differentiate between left and right turning we used it here
to differentiate between the direction toward the arena wall or
away from it. As in h, negative curvature values indicate turning
toward the wall and positive curvature values indicate turning in
the direction away from the wall. We chose five unequal bins of

curvature that produced approximately similar frequencies: less
than �10 degree/cm (turning sharply toward the wall), �10 to �2
degree/cm (turning slightly toward the wall), �2 to 2 degree/cm
(moving approximately straight ahead), 2 to 10 degree/cm (turning
slightly away of the wall), more than 10 degree/cm (turning
sharply away of the wall). As is Kafkafi and Elmer the curvature
was computed relative to a distance rather than a time unit (be-
cause calculating it over very small distances is very sensitive to
measurement error), meaning it represents different time windows
depending on the speed, for example, in a typical speed of 16 cm/s
using 4 cm scale implies a time window of 4/16 or 0.25 s.

c16: Path curvature in a 16 cm scale. See the previous at-
tribute for properties of path curvature and computing it in differ-
ent distance scales. We chose five unequal bins of curvature that
produced approximately similar frequencies: less than �5 de-
gree/cm (turning sharply toward the wall), �5 to �1 degree/cm
(turning slightly toward the wall), �1 to 1 degree/cm (moving
approximately straight ahead), 1 to 5 degree/cm (turning slightly
away from the wall), more than 5 degree/cm (turning sharply away
from the wall).

ts: Time from start of progression segment. Progression seg-
ments were shown to be a primary natural primitive of rodent
spatial behavior (Drai et al., 2000; Kafkafi et al., 2001). By
definition, a progression movement starts and ends with complete
immobility. Our experience suggests that certain movement pat-
terns may be affected if they take place immediately after the
beginning of the segment, immediately before it ends, or anywhere
in the middle. We therefore chose three unequal bins of time from the
start of the segment: less than 0.2 s (6 data points in our 30 Hz
measurement rate), 0.2 to 1.0 s and more than 1.0 s.

te: Time to end of progression segment. See previous attribute
for the rationale. We chose three unequal intervals: less than 0.2 s,
0.2 to 1.0 s (30 data points) and more than 1.0 s.

Algorithm

Pattern Array is designed to test a very large number of possible
movement patterns in parallel, and isolate only those patterns in
which a significant difference between the experiment groups is
detected (in our case a difference between the SOD1 mutants and
the wild-type controls, see Figure 1). The main question is thus
how to dissect behavior into many possible patterns in a meaning-
ful way. We achieve this by transforming each coordinate of the
path into a vector of several “attributes” (variables of movement)
and dissecting the range of each attribute into several bins by
introducing cutoff values. This strategy may be thought of as a
generalization of many standard measures used in current behav-
ioral tests, such as “center time”. Center time is widely used in
open-field tests to measure the animal’s tendency to venture into
the center of the arena, by defining a rather arbitrary cutoff value
on the distance from the wall and counting the frequency of
staying in a distance larger than this cutoff. Pattern Array gener-
alizes this concept in three ways: by testing several different cutoff
values in the “attribute” of distance from the wall, by testing
several cutoff values in each of several additional attributes, and
finally by testing intersections of several attributes. Only those
cutoff values that manage to show an effect are kept.

The chosen attributes are variables that were shown in previous
studies to be relevant to open-field behavior, such as momentary
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distance from the wall, momentary speed and momentary change
of direction. Using the above cutoff values the range of each
attribute is divided into several bins, thus dividing the attribute
space into many “cells” (e.g., Figure 2), each cell corresponding to
a specific combination of attribute values, or a motor pattern (e.g.,
Figure 4 showing a particular event belonging to the cell high-
lighted in Figure 2). For each of these patterns the difference
between the experiment and control group is then tested in the
relative frequency of performing it.

As with data mining strategies in many other fields, the quan-
dary with such an approach is the multiplicity problem. That is,
when simultaneously screening a large number of possible move-
ment patterns we need to prohibit the occurrence of false positives
and provide valid statistical inference for the selected patterns
(Benjamini & Yekutieli, 2005). We achieve this by using the most
conservative multiple-comparisons criterion—the Bonferroni cri-
terion: using a corrected significance level of �/n, where n is the
number of potential movement patterns, thus ensuring that the
probability of discovering even a single false movement pattern is
less than �. Using the more adaptable false discovery rate (FDR,
see Benjamini et al., 2001) is also an option in Pattern Array, but
for the purpose of the present study it would not represent any
advantage, because it functions almost identically to the Bonfer-
roni in cases where very few zero hypotheses are rejected (i.e.,
very few discoveries). To further ensure the validity of the infer-
ence for the selected movement patterns we divide the animals into
independent “training set” and “test set.” The training set is used
for isolating the best patterns as described above, while the statis-
tical inference for the selected movement patterns only is based on
the independently distributed test set. In the following we detail the
algorithm step-by-step.

Input. The inputs for the algorithm are the (T, X, Y) coordi-
nates of the animal’s path in the arena belonging only to progres-
sion segments (see Method section and Figure 1, more details in
Drai et al., 2000; Kafkafi et al., 2001) measured at a rate of 30 Hz.
Progression segments are typically 6 to 300 data points in length

(i.e., 0.2 to 10 s in duration) and a session typically includes
several hundred of them to a total of 10,000 to 50,000 data points
per animal.

Step 1. Each data point is quantified using m “attributes” of
movement. In this study we used m � 9 attributes, defined in Table
1, that were found in previous studies to be relevant to open-field
behavior. The distance from the wall d was shown to measure
heritable thigmotactic behavior (e.g., Broadhurst, 1975; Leppanen
et al., 2005; Lipkind et al., 2005; Ramos et al., 1997). The
momentary speed v was shown to be a key variable in the intrinsic
categorization of behavior into progression and “lingering” in both
mice (Drai et al., 2000) and rats (Kafkafi et al., 2001). The
acceleration a was shown to have high heritability and reliably in
mouse inbred strains (Kafkafi, Pagis, et al., 2003). The jerk j (the
derivative of acceleration according to time, or the second deriv-
ative of the speed) was chosen because speed peaks were shown to
be a meaningful component of rodent behavior (Drai et al., 2000;
Kafkafi et al., 2001) and the jerk is required to distinguish between
speed peaks (near-zero acceleration and negative jerk) and local
minima of speed (near-zero acceleration and positive jerk). The
momentary heading h (direction of movement relative to the arena
wall) was proposed by Horev at al. (2007) as an important aspect
of open-field behavior in the mouse. The path curvature in a scale
of 4 cm and 16 cm (c4 and c16, respectively) were shown to
discriminate several mouse inbred strains with high heritability
and reliability (Kafkafi & Elmer, 2005). Finally, attributes ts and te
quantify the temporal location of the data point within progression
segments (Drai et al., 2000; Kafkafi et al., 2001), thus making it
possible to mine patterns that always take place in, for example,
the beginning or end of progression segments. Further details
regarding the computation and rationale of the attributes can be
found in the Method section.

The identity of attributes and their number m can be adapted
depending on the objective of the study. For example, in an
ongoing study using Pattern Array for classification of drugs into
psychopharmacological classes in mice (Kafkafi, Yekutieli, &
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Figure 2. Three-dimensional attribute spaces. Attribute spaces for one SOD1 rat (left) and one control rat
(right), corresponding to the same sessions shown in Figure 1. Each point in the attribute space corresponds to
a point in the path plot. The three attributes chosen here are the distance from the arena wall (d), the acceleration
(a) and the curvature of the path (c4). Grid lines show the division of the attribute space into “cells.” Points
falling into one of the cells are highlighted (orange). Dividing their number by the total number of points gives
the relative frequency of performing this pattern. The highlighted cell here is P{1,*,1,*,*,4,*,*,*}, which is the
pattern found to best differentiate the SOD1 mutants from the controls.
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Elmer, in press) the same attributes were used with the addition of
a tenth attribute: the time from injection. This attribute was added
because in drug-induced behavior the development in time during
the session is expected to have an important effect. In the present
study we do not except a motor deficiency to change much during
the session, or even during consecutive sessions within the same
age, and therefore it is preferable to discard this attribute and
decrease m. Further considerations for the choice of m are detailed
in the Discussion section.

The path of the animal in the arena (see Figure 1) can thus be
thought of as a set of trajectories (progression segments), each
typically including several tens of data points, each data point
consisting of a nine-dimensional vector of the form (d, v, a, j, h, c4,
c16, ts, te) in the attribute space. However, in practice using all nine
attributes at once is excessive (see Step 3) so in this study we
consider only subspaces of up to four attribute subsets. Figure 2
illustrates data in one three-attributes subspace.

Step 2. The range of each attribute is partitioned into several
disjointed intervals (bins), thus dividing each attribute subspace
into many “cells” (grid lines in Figure 2). Table 1 shows the
number of bins for each attribute and the cutoff values chosen for
the bin edges. Note that the bins were not necessarily chosen to be
of equal length, but rather to contain data points in approximately
equal frequencies (see below). For example, rats and mice typi-
cally move near the wall much more frequently than in the center
of the arena, therefore the distance from the wall d was divided
using cutoffs of 0, 8, 20, 40, and 125 cm (horizontal axes in Figure
2). The loss of information due to partitioning continuous variables
into discrete levels was probably small because the distributions of
all attributes were unimodal with very constant modes.

Step 3. Dividing the attribute space using all m � 9 dimen-
sions at once would result in a huge number of cells, each corre-
sponding to a very overly specified movement pattern (i.e., spec-
ifying nine different requirements in its definition) mostly
including too few data points for a significant sample size and
highly vulnerable to random variation. In this study we thus limit
ourselves to all attribute subspaces of up to four dimensions out of
the total nine. For example, Figure 2 shows the three-dimensional
subspace including the three attributes d, a, and c4. Each cell is
denoted by an ID of the form P{i1,i2,i3, . . .,im} corresponding to
the m-dimensional attribute vector, were i is the index of the bin in
the corresponding attribute according to Table 1, and an asterisk
denotes a attribute that is not relevant to the definition of the cell.
For example, P{1,*,1,*,*,4,*,*,*} denotes a cell in which values of
the first attribute belong to the first bin in that attribute (i.e.,
distance from the wall 0 � d � 10 cm), values of the third attribute
belong to the first bin in that attribute (i.e., acceleration a � �30
cm/s2), values of the sixth attribute belong to the fourth bin in that
attribute (i.e., path curvature 2 � c4 � 10 degree/cm), and the
other attributes (asterisks) are irrelevant to the definition of the
pattern and can accept any value. Note that for all practical
purposes P{1,*,1,*,*,4,*,*,*} is a three-dimensional vector, not a
nine-dimensional vector. Limiting the algorithm to four relevant
attributes at most means that a total of 50,674 possible patterns
having at least five asterisks are considered.

Step 4. In each cell we consider the relative frequency of data
points falling into this cell, using the Logit transformation:

LogitFrequency(P{i1,i2,i3, . . . ,im}) � log� k � 1/3

l � k � 1/3�
where k is the number of data points falling in this cell and l is the
total number of data points for this animal (see Figure 2). The
Logit transform is routinely used in statistics (e.g., logistic regres-
sion) to transform proportions bounded between 0 and 1 to real
valued variables more amenable to statistical analysis, and adding
1/3 is a standard procedure for correcting the behavior of the
transformation when k � 0.

Step 5. We discarded cells with very small support—attribute
combinations that were hardly exhibited by most or all animals.
Many combinations of attribute values are rarely used due to trivial
physical constraints on movement (e.g., accelerating during a
sharp turn at high speed), and other combinations are simply things
that rats in general prefer to avoid (e.g., running toward the center
of the arena at high speed and near-zero acceleration). Such
physical and behavioral constraints, however, may differ across
the experiment groups, and we attempted to avoid discarding a cell
that generally has a low frequency if it is significantly more
frequent in one of the groups. Therefore we computed the median
LogitFrequency in each group of training set samples and dis-
carded the cell only if the maximal group median (whatever group
it is) is lower than FrequencyCutoff. In this study FrequencyCutoff
was set to �5.5, which in an animal with typical activity of l �
30,000 data points would mean using this pattern for about 120
data points (i.e., 4 cumulative seconds) or 0.4% of total progres-
sion time. After this step we are thus left with Bnonneg – the set of
nonnegliable movement patterns.

Step 6. Discover the movement patterns in Bnonneg differing in
relative frequency between experimental groups. In this study we
apply a simple t-test to compare the training set mean LogitFre-
quency values between the SOD1 animals and the wild-type con-
trols, and screen the subset of potentially significant movement
patterns Bpot-sig � Bnonneg using the Bonferroni criterion. That is,
we test each null hypothesis at level �/n where n is the number
of comparisons (i.e., the number of cells in Bnonneg) at a level of
� � .05.

Step 6a (optional). Within the remaining potentially signifi-
cant patterns Bpot-sig a high level of cross-pattern correlation might
exist, especially because some of these patterns overlap in their
definition. In this case it is possible to use a variety of procedures
to screen these patterns further in a way that reduces cross-
correlation. However, in our case the objective was to find at least
one pattern that discriminates the mutant SOD1 animals from the
control animals, and generally their behavior is so similar that very
few differences, if at all, are likely to be found. We thus simply
picked the most significant pattern out of Bpot-sig.

Step 7. Use test set samples to validate the discrimination
ability of the movement patterns discovered in the training set.
According to Benjamini and Yekutieli (2005) the test set inference
must only be corrected for multiplicity for the Bpot-sig screened
patterns. If no patterns are found significant in the training set it
may be possible to add the data from the test set to the training set
to increase the sample size and hopefully detect a significant
pattern in Step 6, at the cost of leaving no data for cross-validation
in Step 7.
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Results

Applying the Pattern Array algorithm in this study we divided
the animals before the experiment into two batches A (7 mutants
vs. 7 controls) and B (5 mutants vs. 5 controls). Batch A at PND
50 was used as the training set, and the discovered pattern was
cross-validated in batch B at PND 50 and in both batches A and B
at PND 80. One very inactive control animal in batch A had to be
discarded from this Pattern Array analysis, both in PND 50 and 80,
but it was still considered for the analysis of body weight, grip
force, activity, and center time (see Figure 3).

In Step 5 of the algorithm, out of the total 50,674 behavioral
patterns, 11,831 patterns were found common enough in the train-
ing set to pass FrequencyCutoff. The Bonferroni criterion at � �
.05 was thus set to 0.05/11831 � 4.226 � 10�6, and only two
patterns were found to be more significant than this criterion.
The more significant of the two ( p � 2.9 � 10�6) was

P{1,*,1,*,*,4,*,*,*}. This ID vector shows that six out of the nine
attributes were irrelevant to this pattern and may take any value
(asterisks). Of the others, the first attribute refers to the distance
from the arena wall d, and the index of 1 in this place (see Table
1) denotes the lowest level of this attribute, which is less than 8 cm
from the wall. The third attribute refers to the acceleration a, and
1 denotes the most negative acceleration level, actually a strong
deceleration. The sixth attribute c4 refers to path curvature (change
of direction) in a scale of 4 cm (Kafkafi & Elmer, 2005), and the
index 4 denotes a slight turn in the direction away from the arena
wall. Thus P{1,*,1,*,*,4,*,*,*} is defined as braking strongly while
moving very close to the wall but turning slightly away from it. An
actual example of a rat performing this pattern can be seen in
Figure 4, and additional examples out of the data are shown in the
animations (see online supplemental information). At PND 50 the
wild-type controls performed this pattern on average for about 1.8%
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Figure 3. Results using several measures. Results from SOD1 mutants (closed squares) and Sprague–
Dawley controls (open squares) in nine different measures including patterns P{1,*,*,*,*,*,*,*,*},
P{*,*,1,*,*,*,*,*,*}, P{*,*,*,*,*,4,*,*,*} and the discovered pattern P{1,*,1,*,*,4,*,*,*}. Animals were divided
into two batches, batch A (n � 7) and batch B (n � 5). Each batch was tested at two ages: PND 50 and
PND 80. All results show group means and SEs. *p � .05. **p � .01. #p � .0000042 (Bonferroni criterion
at a level of .05 for the training set). Note that in the P{1,*,1,*,*,4,*,*,*} graph (bottom right), batch A in
PND 50 (diamonds instead of squares) was used as the training set for discovering the pattern itself.
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of their progression time (Figure 3, bottom right), whereas the SOD1
animals performed it on average for only 1.2% of their progression
time. This pattern was then tested for significance in the test set.

Our results in the standard behavioral measures agree with the
inability of previous studies to discover any consistent SOD1
effect before PND 100 (Matsumoto et al., 2006). Figure 3 shows
the results in body weight, grip strength of forelimbs and hind
limbs, and the open-field behavior using two standard measures:
general activity (distance traveled) and center time. Body weight
and grip strength of either forelimbs or hind limbs have increased
as expected from PND 50 to PND 80, but there was no significant
difference between mutants and controls. In batch B the mutants
were significantly less active in both ages, PND 50: t � 2.42; p �
.05; PND 80: t � 2.44; p � .05; but this difference was not
replicated in batch A. No significant differences were found in the
center time.

Furthermore, no single attribute in Pattern Array could differ-
entiate the SOD1 mutants by itself. Figure 3 also shows results
in three single-attribute patterns of Pattern Array:
P{1,*,*,*,*,*,*,*,*} (i.e., moving near the wall), P{*,*,1,*,*,*,*,*,*}
(i.e., braking strongly), and P{*,*,*,*,*,4,*,*,*} (i.e., turning slightly
away from the wall). These patterns are shown here because their
intersection is the discovered three-attributes pattern
P{1,*,1,*,*,4,*,*,*}. As Figure 3 shows, P{1,*,*,*,*,*,*,*,*} failed in
significantly differentiating the SOD1 rats from the controls.
P{*,*,*,*,*,4,*,*,*} just barely passed significance in one compari-
son out of four, batch B, PND 50: t � 3.01; p � .05; and so did
P{*,*,1,*,*,*,*,*,*} Batch B, PND 80: t � 2.42; p � .05. Thus each
of these three more general patterns could not, by itself, consis-
tently differentiate the SOD1 animals.

In contrast, the intersection of these three patterns, the screened
pattern P{1,*,1,*,*,4,*,*,*}, consistently differentiated the two
groups (Figure 3, bottom right) with the SOD1 mutants always
performing it significantly less than the wild-type controls. Note
that the small variability in batch A at PND 50 (diamonds instead
of squares) might be misleading because these data were the

“training set” used for the very discovery of this pattern, and by
definition it was the most significant out of the 50,674 tested
patterns. However, this pattern was also significant in the test sets:
batch B at PND 50: t � 4.5; p � .01; n � 5, 5; batch A at PND
80: t � 4.0; p � .01; n � 7, 7; and batch B at PND 80: t � 2.5;
p � .05; n � 5, 5, all using t-test. Because here we only consider
a single pattern there is no need to correct the test set results for
multiplicity. Batch A in PND 50 and PND 80 are the same animals
in different ages, and therefore the second result is not independent
of the first. However, batch B is an independent validation of batch
A in both PND 50 and 80. Note also that batch B not only
replicated the differences discovered in batch A, but also the absolute
frequencies of performing the pattern were similar. There was actually
no overlap at all between the results of the SOD1 animals and the
controls in batch A (both PND 50 and 80) and batch B (in PND 50),
and only very slight overlap in batch B in PND 80. This indicates that
the discovered pattern may be powerful enough to diagnose single
SOD1 animals with high confidence.

Discussion

Implications for the SOD1 Rat Model of ALS

SOD1 mutant animals are generally considered presymptomatic
before PND 80 in mice (Chiu et al., 1995; Derave et al., 2003;
Fischer et al., 2004; Weydt, Hong, Kliot, & Moller, 2003) and
PND 90 in rats (Matsumoto et al., 2006). In full agreement with
these studies we could not detect a consistent and significant effect
of the mutation in our rats at either PND 50 or PND 80 using the
grip strength (the common measure of disease onset in the SOD1
animals) or other standard measures and tests. Furthermore, in
agreement with Matsumoto et al. and our own past experience, no
difference between the SOD1 rats and the wild-type controls could
even be detected by subjective observation of their behavior before
PND 90. In contrast, the Pattern Array method was able to dis-
cover a movement pattern that significantly and consistently dif-
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Figure 4. A rat performing the discovered pattern. Path plot (left) and speed profile (right) of a particular
example out of the data of a Sprague–Dawley rat performing the discovered pattern P{1,*,1,*,*,4,*,*,*}. Each data
point represents 1/30 seconds and the six points belonging to the pattern are highlighted in red. The arc in the
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ferentiated the SOD1 rats at PND 50 and 80 in comparatively
small group sizes (5 to 7 animals). This difference may be related
to the denervation found in hind leg muscles—gastrocnemius,
soleus, and tibialis anterior—found in SOD1 mice, which in-
cluded 40% of end-plates by PND 47 and continued to progress up
to the time of death (Fisher et al., 2004). The discovered premorbid
symptom may enable investigators to test treatments for delaying
or even preventing the disease.

Performance of the isolated pattern slightly decreased in both
mutants and controls as a function of age (Figure 3, bottom right).
This is reasonable because they were heavier by PND 80, which
makes strong braking more difficult. The pattern did not detect any
increase of the difference between mutants and controls from PND
50 to PND 80, which would be expected if early symptoms were
getting worse as the mutants approach the age of disease onset.
However, note that we only used here the simplest application of
Pattern Array, in which patterns are mined based on t-test com-
parison between the experiment and control group in one case (the
PND 50). A more advanced study may test a training set along
several ages using, for example, two-way analysis of variance
(ANOVA) of Genotype � Age with age as a repeated measure. By
mining patterns with both large genotype effect and large Geno-
type � Age interaction effect, Pattern Array can be configured to
discover a pattern that more specifically tracks disease progres-
sion. In principle many kinds of statistical tests can be used in
Pattern Array, depending on the design of the data and the objec-
tive of testing. In any case, additional studies will be needed to
establish the normal range of the effect in additional animals as
well as its replicability in additional laboratories.

Although it is not clear yet why this specific pattern is per-
formed less by the mutants, Pattern Array can be used to explore
the results of similar patterns to gain some insight regarding the
important characteristics, as Figure 3 illustrates with the three
single-attribute patterns. The consistency of results in
P{*,*,1,*,*,*,*,*,*} suggests that the mutants are generally deficient
in strong deceleration, which for physical reasons (Newton’s sec-
ond law) is proportional to the force acting on the feet. This is
consistent with the denervation in 40% of the end-plates of the
hind leg muscles, reported in SOD1 mice by PND 47 (Fisher et al.,
2004). However, the grip force test was not able to discover this
deficiency, perhaps because of the inevitable stress associated with
it or because of some other confounding conditions. It may be that
the other two components of the discovered pattern—moving near
the wall and the slight turn—are important not in themselves (as
suggested by their inconsistency in Figure 3) but because they
happen to provide specific conditions in which the difference in
braking is more pronounced and consistent. It is of course possible
to continue exploring the results in any number of additional
patterns, although multiplicity considerations should to be ad-
dressed in such case. It should be stressed, however, that no single
behavioral component in this study was able to detect the early
symptom in a reliable manner. Such reliable detection was only
achieved by a unique interaction of three components, an interac-
tion that was not likely to have been foreseen from the outset.
Additional studies focused on the discovered pattern will be
needed to explore whether and how it is correlate with a neuro-
physiological endpoint, for example, by any early denervation in
the hind leg muscles (Fisher et al., 2004).

Potential of Pattern Array for Behavioral Phenotyping

A considerable portion of current research in the field of behav-
ioral phenotyping may be described as attempts to answer the
question “what’s wrong with my genetically engineered animal?”
using a battery of behavioral tests (Crawley, 2000). The SOD1
mutant rat is discussed here as one typical case of an animal model
in which the standard tests fail to detect some desirable effect (for
other examples, see Grammer et al., 2005; Perez & Palmiter,
2005). Even when significant behavioral effects are detected they
might prove difficult to reproduce in other laboratories (Crabbe,
Wahlsten, & Dudek, 1999; Kafkafi, et al., 2005) or in slightly
different conditions (Chesler, Wilson, Lariviere, Rodriguez-Zas, &
Mogil, 2002; Valdar et al., 2006; Wahlsten, Rustay, Metten, &
Crabbe, 2003). The discovery of reliable behavioral endpoints with
predictive validity, even before a good understanding of their
etiology is achieved, can significantly improve intervention re-
search (Willner, 1991). However, despite the obvious need and the
large amounts of already existing raw data, simple strategies of
data mining and exploratory data analysis are rarely employed in
the field. The current phenotyping databases (e.g., the Mouse
Phenome Database, see Paigen & Eppig, 2000) only store endpoint
results in standard behavioral measures, not the raw data them-
selves. Data mining strategies like Pattern Array can test tens of
thousands of hypotheses in parallel, thus improving the chances of
discovering an effect by making better use of data from currently
available tests. Although this study utilized data from the open-
field SEE test, the Pattern Array algorithm can in principle be
adapted in a relatively straightforward manner, by choosing ap-
propriate sets of attributes, to other spatial tests employing auto-
mated tracking, and even to other tests that record large amounts
of raw data. In many cases such data may have already been
measured and stored, but used only for computing a small number
of traditional behavioral endpoints.

There are several additional methods that can be adapted for
mining subtle behavioral differences, each likely to have its ad-
vantages and disadvantages. For example, linear discriminant anal-
ysis (LDA) or partial least squares (PLS) can be used without
arbitrarily partitioning the range of continuous measures of behav-
ior into discrete patterns, although it would still be necessary to
specify the series of potential attributes. An important consider-
ation in choosing our approach in this study was the interpretabil-
ity and utility of any finding. In LDA and similar standard dis-
crimination methods a finding would consist of an abstract formula
for computing the posterior probability that an animal has the SOD1
mutation out of its path data. At best this formula would tell us which
are the important attributes and whether they increase or decrease
this probability. In contrast, the approach we take in this study
explicitly specifies the differentiating behavioral pattern, and can
trace it back to particular events in the data (e.g., Figure, 4 and
Animations 1-4 in the online supplemental material) or a video-
taped session. It is thus possible to focus on this pattern, possibly
reproduce it in specialized experimental setups, and explore how it
is affected by the SOD1 mutation. Note that once focusing on a
single pattern as the endpoint of interest the measurement process
becomes technically much simpler because the data-mining algo-
rithm is not required anymore. Another important advantage of our
method is that it tests a broad range of patterns from the very
general (single-attribute “patterns,” each typically occurring for
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about 20% or more of the total movement time) to the very specific
(four-attribute patterns, each typically occurring for less than 1%).

It is important to stress that any data-mining approach would
have to depend on some a priori scheme for dissecting behavior,
for example, the introduction of attributes and cutoff values in
Pattern Array, and in this sense would still require, like any other
standard behavioral test, certain insight into the nature of the
expected behavioral effect. However, by testing a large number of
combinations in parallel, data mining methods may considerably
enhance the power of human insight to detect behaviors that are
affected by the genetic manipulation of interest, especially com-
plex combinations that are not easy to guess from the outset. The
use of a strict multiple-comparisons criterion in the training set and
cross-validation in a test set can ensure that the parameters were
not selected to discover circumstantial differences in the particular
data set.

Like most data mining approaches, Pattern Array is constrained
by statistical considerations of multiple comparisons, in this case
the total number of patterns to be tested, which is determined by
the number of attributes and the number of bins in each attribute.
Too few patterns will decrease the chance to isolate one that is
affected by the genetic manipulation, although too many patterns
will result in an overly restrictive multiple-comparisons criterion,
which might result in failing to identify an affected pattern as
significant even if it was tested. Increasing the number of animals
and the number of data points per animal will generally increase
the level of significance of true positives, thus increasing the
number of patterns that can be tested and the chance to pinpoint on
the most appropriate pattern. Using density functions instead of
arbitrary cutoffs may eliminate artifacts and enable more precise
framing of the looked-for difference, but this again will increase
the number of hypotheses to be tested. Thus density functions may
prove effective in later experiments, after the nature of the differ-
ence was already established and irrelevant attributes can be
dropped from the analysis.

Pattern array does not treat path data as a time series because
this again would necessitate a huge number of comparisons. In-
stead it captures patterns of movement by employing dynamical
attributes such as momentary speed, momentary acceleration, and
momentary change of direction. Note, however, that the dynamical
attributes in this study all have a short time scale (mostly estimated
with a window size of half a second or less) and are therefore
appropriate for detecting brief behavior patterns of the kind that is
usually associated with motor symptoms. Such attributes are un-
likely to detect more prolonged behaviors that last several seconds
or even minutes, and are usually associated with more cognitive
functions. In principal it is possible to use Pattern Array with
attributes designed for longer time scales, but for a given session
duration this will decrease the number of data points and conse-
quently the power to detect an effect. In this study we focused on
attributes of short time scale because the symptoms of the SOD1
mutation were expected to be motor in nature.

Data mining strategies can be used to search for behaviors
related to any experimental manipulation of interest, and therefore
have potential in fields such as psychopharmacology and toxicol-
ogy. For example, in an ongoing study the same Pattern Array
algorithm and attributes are employed in drug-injected mice,
screening patterns that best classify psychomotors, opioids, and
NMDA antagonists (Kafkafi et al., in press). The Pattern Array

method fits well into the approach proposed by Kafkafi et al.
(2005) of keeping databases of raw behavioral data from many
experiments, treatments, and laboratories. Once a new pattern is
detected in one experiment, using Pattern Array or any other
method, it can be immediately tested over the whole database, thus
gaining insight into its meaning, consistency, and generality. In
such a strategy the data from each experiment may be useful
beyond merely confirming or rejecting the original hypothesis.
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