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Data mining is a powerful bioinformatics strategy that has been successfully applied in vitro to screen for gene-expression profiles

predicting toxicological or carcinogenic response (‘class predictors’). In this report we used a data mining algorithm named Pattern Array

(PA) in vivo to analyze mouse open-field behavior and characterize the psychopharmacological effects of three drug

classesFpsychomotor stimulant, opioid, and psychotomimetic. PA represents rodent movement with B100 000 complex patterns,

defined as multiple combinations of several ethologically relevant variables, and mines them for those that maximize any effect of interest,

such as the difference between drug classes. We show that PA can discover behavioral predictors of all three drug classes, thus

developing a reliable drug-classification scheme in small group sizes. The discovered predictors showed orderly dose dependency despite

being explicitly mined only for class differences, with the high doses scoring 4–10 standard deviations from the vehicle group.

Furthermore, these predictors correctly classified in a dose-dependent manner four ‘unknown’ drugs (ie that were not used in the

training process), and scored a mixture of a psychomotor stimulant and an opioid as being intermediate between these two classes. The

isolated behaviors were highly heritable (h2450%) and replicable as determined in 10 inbred strains across three laboratories. PA can in

principle be applied for mining behaviors predicting additional properties, such as within-class differences between drugs and within-drug

dose–response, all of which can be measured automatically in a single session per animal in an open-field arena, suggesting a high

potential as a tool in psychotherapeutic drug discovery.
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INTRODUCTION

Behavioral animal models used in psychopharmacology
drug discovery are often times developed strictly for their
predictive validity. The behavioral endpoint may or may not
be developed with specific regard to the model’s face or
construct validity. The main purpose of this type of model is
typically to predict the neuropharmacological properties of
novel compounds with reasonable degree of sensitivity and
specificity (Willner, 1991). Despite the lack of direct face or
construct validity, this type of approach has proved valuable
in terms of its contribution to assessing the potential
pharmacological properties of novel compounds (Creese
et al, 1976; Kuribara and Tadokoro, 1981; Arnt, 1982; Yen-
Koo et al, 1985; Wadenberg and Hicks, 1999). A drawback
of many of these animal models, however, is that they are
severely restricted to the identification of a narrow

pharmacological class, often times to a specific molecular
mechanism. The focus on specific mechanistic interventions
might prove unsatisfactory in psychiatric drug discovery, as
psychiatric illness is not likely constrained to a single
biological entity (Butcher et al, 2004; Hood and Perlmutter,
2004; Agid et al, 2007). Moreover, such models are not
high throughput for initial in vivo screening of novel
compounds, because classifying a compound into one of
n psychopharmacological classes generally requires evalu-
ating it with a battery of n class-specific behavioral assays
(eg locomotor activity for identifying psychomotor stimu-
lants, tail-flick for identifying opioids, etc). An in vivo
psychopharmacological screening paradigm capable of
predicting a wide range of psychopharmacological classes
with sensitivity and specificity, especially using a single
assay, would provide a valuable tool in the armamentarium
of drug discovery (van der Greef and McBurney, 2005). A
predictive high-throughput behavioral screen could identify
novel chemical entities with increased efficacy and
improved therapeutic profile.

When searching for predictive models in vitro, data
mining approaches that screen multiple potential endpoints
in parallel are commonly used to improve sensitivity, speci-
ficity, and generality. For example, large gene-expressionReceived 25 March 2008; revised 29 May 2008; accepted 2 June 2008
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data sets are mined for expression profiles that are
predictive of a toxicological or carcinogenic response (‘class
predictors’; Golub et al, 1999; Clarke et al, 2004; Thomas
et al, 2007). In this instance specific mechanisms do not
need to be invoked, the only criterion is that the gene(s) are
highly predictive of the outcome. This type of data mining
approach was recently utilized in vitro to discover gene-
expression patterns that could be used for the classification
of psychoactive drugs (Gunther et al, 2003, 2005). It has
been proposed that the same approach would also be
advantageous for in vivo analysis of behavioral data
(Brunner et al, 2002; Tecott and Nestler, 2004), but no
such results have been published to date.

Ideally, an animal model designed for in vivo psycho-
pharmacological class prediction would be amenable to
relatively high throughput and focus on behaviors that have
the following properties: (1) algorithmically defined and
automatically measured; (2) common enough in natural
behavior to supply large samples; (3) complex enough to
provide a relatively detailed profile of a drug’s psychoactive
properties, and (4) resistant as possible to interactions with
confounding environmental changes. A behavioral platform
that meets these criteria is locomotor behavior in a novel
arena. The path of a mouse or a rat can be automatically
measured with high precision using commercially available
tracking systems. The test is technically simple to conduct
and does not require previous conditioning of the animal. A
single 1-hour session tracked at a rate of 30 Hz generates a
path consisting of many thousands of coordinatesFan
information-rich data source containing a repertoire of
structured movement patterns amenable to mathematical
description (Drai and Golani, 2001). Certain aspects of these
behaviors are highly heritable and replicable across
laboratories (Kafkafi et al, 2005). The purpose of this report
is to describe a novel application of a data mining algorithm
named Pattern Array (PA; see Kafkafi et al, in press) to
analyze results from this behavioral assay.

The main barrier to realizing a data mining approach in a
behavioral assay is that the natural units of behavior are not
as well understood and defined as the natural units
employed by in vitro assays (eg highly annotated genes in
gene-expression profiling). Thus the key to applying a data
mining approach in behavioral analysis is designing a useful
‘chip’, that is, constructing a proper categorization of the
data into multiple types of behavior that can be mined. To
this end the units employed by PA consist of a large number
(B100 000) of complex movement patterns, algorithmically
defined as simultaneous combinations of several ethologi-
cally relevant ‘attributes’ such as the distance from the
arena wall (Broadhurst, 1975; Leppanen et al, 2005; Lipkind
et al, 2004), the speed and acceleration of movement
(Kafkafi et al, 2003b), direction of movement (Horev et al,
2007), and turning (Kafkafi and Elmer, 2005). For example,
by using the three attributes of acceleration, distance from
the wall and turning, a specific movement pattern in PA
may be defined as the combination ‘heavily braking while
moving near the wall but turning slightly away from it’. PA
then considers how frequently each such pattern is used by
the animals, and mines the B100 000 patterns for those that
best predict any factor of interest. For example, the specific
pattern above was actually found by PA to differentiate SOD1
mutant rats, an animal model of Amyotrophic Lateral
Sclerosis, from the wild-type controls at half the age of the
known disease onset (Kafkafi et al, in press). In the current
application we utilized PA in the mouse to mine for behavioral
patterns that are predictive of three major drug classes:
psychomotor stimulants, opioids and psychotomimetics.

This study thus follows the typical steps of constructing a
classification model in data mining (for comprehensive
introduction see Tan et al, 2006): (1) The data, in our case
consisting of path coordinates of the mice in the arena
(Figure 1, left) under the effect of drugs from the three
classes (Table 1), are first quantified using attributesFre-
levant movement variables (Figure 1, right). (2) a large

Figure 1 Path plot coordinates of a vehicle-injected mouse in the arena (left) and their representation in the attribute space (*,*,v,a,*,*,*,*,*,*) of the
speed v and the acceleration a (right) (see ’Behavioral attributes’ for details). Each point (v, a) in the attribute space corresponds to a data point (x, y) in the
path plot. Dashed lines in the attribute space represent bin boundaries (see Table 2) dividing the space into ‘cells’ (patterns). Box A represents the pattern
named P{*,*,3,*,*,*,*,*,*,*}. Boxes B and C represent patterns P{*,*,1,2,*,*,*,*,*,*} and P{*,*,1,4,*,*,*,*,*,*}, respectively. The relative frequency of using each
pattern is measured as the number of data points in the corresponding ‘cell’ divided by the total number of progression data points in the session (see
Figure 2).
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number of behavior patterns are then defined as different
combinations of attribute values (Table 2, Figure 1, right)
and the frequency of using each pattern by each animal is
measured (Figure 2); (3) a classification model is ‘trained’
by mining for patterns that best predict each psycho-
pharmacological class (Figures 2 and 3); (4) to prevent

overfitting (ie patterns that were actually selected to
fit idiosyncratic peculiarities of our particular data rather
than general class properties) the above is conducted in the
‘training data set’ (Figures 5 and 7, left), and then only the
discovered class predictors are tested in an independent
‘test data set’ measured in different animals (Figures 5 and
7, right); (5) finally, we validate our classification model
by its ability to correctly classify additional drugs that it
did not encounter during the training process (Figure 9)F
a simulation of novel compound classification in drug
discovery. In addition we estimate the heritability and
replicability of the discovered behaviors in naive mice by
measuring them in previously collected data from 10 inbred
strains across three laboratories (Kafkafi et al, 2005; Kafkafi
and Elmer, 2005).

MATERIALS AND METHODS

Drugs, Animals, and Experimental Procedures

Drugs. In total, thirteen drugs representing three drug
classes (opioid, pscyhotomimetic, and psychomotor stimu-
lant) were investigated in this study (Table 1). Metham-
phetamine, cocaine, methylphenidate, mazindol, morphine,
oxycodone, fentanyl, codeine, phencyclidine hydrochloride
(PCP), salvinorin A, and modafinil were purchased from
Sigma-Aldrich (St Louis, MO). SDZ220851 (SDZ) was
purchased from Tocris (Ellisville, MO). Ketamine was
purchased from Henry Schein (Melville, NY). All drugs
except SDZ, mazindol, modafinil, and salvinorin A were
dissolved in 0.9 % saline. SDZ was dissolved in Tween and
ethanol, then brought to the appropriate concentration with
vehicle (Tween (1%)/ethanol (5%)). Mazindol was dissolved
in Tween, ethanol, and acetic acid, then brought to the
appropriate concentration with vehicle (Tween (4%)/
ethanol (3%)/acetic acid (1%)). Salvinorin A was dissolved
in Tween, then brought to the appropriate concentration
with vehicle (Tween (5%)). Modafinil was dissolved in
Tween and ethanol, then brought to the appropriate
concentration with deionized water vehicle (Tween (5%)/
ethanol (5%)). Vehicle solutions were used as control.
Morphine, oxycodone, fentanyl, codeine, and salvinorin A
were given subcutaneously (s.c.); all other drugs were given

Table 1 List of Drugs

Drugs Doses (mg/kg)
Data set

Training Test Validation

Psychomotor stimulants

Cocaine 3.0, 5.6, 10.0, 17.0, 30.0 X X

Methamphetamine 0.3, 1.0, 1.7, 3.0 X X

Methylphenidate 1.7, 5.6, 10.0, 17.0 X X

Mazindol 1.0, 3.0, 5.6, 10.0 X

Modafinil 30, 56, 100, 170 X

Opioids

Morphine 1.0, 3.0, 5.6, 10.0 X X

Oxycodone 1.0, 3.0, 5.6 X X

Fentanyl 0.056, 0.1, 0.17, 0.3 X X

Codeine 5.6, 17.0, 30.0, 56.0 X

Psychotomimetics

PCP 3.0, 5.6 X X

SDZ220851 1.7, 3.0, 5.6 X X

Ketamine 5.6, 10.0, 17.0 X X

Salvinorin A 1.0, 3.0, 10.0 X

Mixture

Cocaine+morphine 10.0+5.6, 17.0+10.0 X

The drugs and doses used in the experiment and their division to classes. The
training set was used to discover the best class predictors in nine drugs 1(third
column). The test set was used for testing the predictors in these same nine
drugs (fourth column). The validation set was used to test the predictors in drugs
or combinations that were not used in predictor development (fifth column).

Table 2 The 10 Attributes of Movement Used in PA

Symbol Attribute definition Units Bin indexes Bin boundaries

s Time from beginning of session Min 1, 2, 3 0, 20, 40, 60

d Distance from arena wall cm 1, 2, 3, 4 0, 5, 15, 30, 125

v Speed of movement cm/s 1, 2, 3, 4 0, 20, 40, 60, N

a Acceleration of movement cm/s2 1, 2, 3, 4, 5 �N, �30, �5, 5, 30, N

j Jerk (change in acceleration) of movement cm/s3 1, 2, 3, 4, 5 �N, �300, �50, 50, 300, N

h Movement direction relative to wall (heading) Degree 1, 2, 3, 4, 5 �90, �30, �5, 5, 30, 90

c4 Path curvature in a 4-cm scale (turning) Degree/cm 1, 2, 3, 4, 5 �N, �5, �1, 1, 5, N

c16 Path curvature in a 16-cm scale (turning) Degree/cm 1, 2, 3, 4, 5 �N, �2.5, �0.5, 0.5, 2.5, N

ts Time from start of progression segment s 1, 2, 3 0, 0.2, 1, N

te Time to end of progression segment s 1, 2, 3 0, 0.2, 1, N

These attributes are computed for each coordinate from the progression segment of the animal. The range of each attribute is divided into several bins, with indices
and boundaries specified in the two rightmost columns.
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intraperitoneally (i.p.). All drugs were given at an injection
volume of 10.0 ml/kg except for salvinorin A (10 mg/kg
dose) and modafinil (100 mg/kg dose); the latter drug doses
were administered at an injection volume of 16.0 ml/kg due
to solubility concerns.

Animals. Animals used in these experiments were all 60- to
80-day-old C57BL/6J male mice (Jackson Laboratories)
allowed to acclimate to the animal facility at least 7 days
before testing. They were housed five per cage in standard
conditions of 12:12 light cycle, 221C room temperature,
water and food ad libitum. The experimental protocols
followed the ‘Principles of Laboratory Animal Care’ (NIH
publication no. 86–23, 1996). The animals used in this study
were maintained in facilities fully accredited by the
American Association for the Accreditation of Laboratory
Animal Care.

For statistical reasons (see ‘Multiple comparisons correc-
tion’) animals in each dose group of nine drugs were
approximately equally divided into a ‘training set’ and a
‘test set’ (Table 1) mostly including n¼ 4 animals each with
a range of 3–7 except for the saline groups (n¼ 8 and 12 in
the training and test set respectively; see ‘Pattern mining’
for the reason to enlarge the saline group). The SDZ vehicle
(n¼ 5 and 4, respectively) did not produce statistically
different significant results from the saline in any part of the
analysis. Four additional drugs (Table 1) were used to
validate the classification with n of 3–7 per dose group
including their vehicle groups. The person running the
animals and performing the analysis (NK) was blind to the
identity of mazindol and codeine, whereas modafinil and
salvinorin A were suggested by an anonymous reviewer. In
the training and test sets, drugs and doses were assigned so
that in the same cage drugs from all three classes or two
classes and vehicle were used, and no two animals received
the same drug. Overall a total of 347 animals were used in
this study.

Testing procedures. Open-field tests were conducted
during the light phase of the cycle using the standard
procedure in SEE (Software for the Exploration of Explora-
tion; see Drai and Golani, 2001; Kafkafi et al, 2003a;
Kafkafi et al, 2005; Kafkafi and Elmer, 2005). Briefly,
each animal was injected once and immediately introduced
to a 2.50 m diameter circular open-field arena for 60 min
while its location was tracked using Noldus EthoVision
video-tracking system at a rate of 30 Hz and the highest
video resolution (480� 640 pixel). The {Time, X, Y}
coordinates of the path (eg Figure 1, left) were exported
to SEE, and the SEE Path Smoother procedure (Hen et al,
2004) was used to filter out tracking noise. Each session file
thus included 30 coordinates � 60 s� 60 min¼ 108 000 data
points. Using the standard SEE procedure the path was
further divided into segments of progression and lingering
(small local movements during stopping; see Drai and
Golani, 2001; Kafkafi et al, 2001). Current PA analysis
utilizes only the progression component of the behavior, as
the spatial resolution of the lingering component is too low
to be reliably measured by current tracking technology.
Progression segments included on average 76 400 data
points per session with an SD of 15 500. Four inactive
animals with less than 29 250 data points each (three

standard deviations below the mean) were discarded from
the analysis.

Previously collected data. To estimate the broad-sense
heritability and replicability of the discovered behaviors we
measured them in the open-field behavior of naive mice
from 10 inbred strains across three laboratories, recorded in
a previous study. The test protocol of that study, detailed in
Kafkafi et al (2005) and Kafkafi and Elmer (2005), differed
from the protocol of the present study in two principal
ways: the mice were not injected, and the session duration
was 30 min rather than 60 min. Inbred strains included the
common A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/2J,
FVB/NJ, SJL/J, and 129S1/SvImJ, as well as the wild-derived
CAST/EiJ and CZECHII/EiJ. The three laboratories replicat-
ing the experiment were the National Institute of
Drug AbuseFIRP in Baltimore, the Maryland Psychiatric
Research Center (MPRC) in the University of Maryland, and
the Department of Zoology in Tel Aviv University. The
present study was also conducted in the MPRC, but using
new animal facilities and arena in a new building, so for
most practical purposes it can be considered a different
laboratory.

Pattern Array Analysis

PA is a method developed for analyzing rodent path data
and mining it for patterns that best predict any experi-
mental factor of interest (ie genotype, drug etc). The PA
algorithm was described in detail in Kafkafi et al (in press)
where it was used to discover early symptoms in an animal
model of Amyotrophic Lateral Sclerosis (SOD1 transgenic
rats) at approximately half the age it is diagnosed by the
standard behavioral tests. Here we describe it again while
focusing on the application of PA to psychopharmacological
drug prediction and the few adjustments needed for its
adaptation from rats to mice. As in other data mining
strategies, PA tests many different hypotheses in parallel, in
this case testing the difference between the classes in each of
B105 different behavioral patterns. Hence, the main
problem it faces is how to dissect the behavior into multiple
relevant categories.

Behavioral attributes. The first step of PA analysis is
representing each path coordinate out of the progression of
the animal using several attributes (using data mining
terminology, see Tan et al, 2006), which in our case are
dynamical variables of movement such as the momentary
distance from the wall, the momentary speed of movement,
the momentary acceleration, the momentary direction of
movement, and the momentary change in direction (turn-
ing). The 10 attributes chosen for this study (Table 2)
consist of the variables found most useful for the analysis of
open-field behavior throughout many previous studies. The
distance from the wall d was shown to measure heritable
thigmotactic behavior (Broadhurst, 1975; Leppanen et al,
2005; Lipkind et al, 2004) highly replicable across labora-
tories (Kafkafi et al, 2005). The momentary speed v was
shown to be a key variable in the intrinsic categorization
of behavior into progression and ‘lingering’ in both mice
(Drai and Golani, 2001) and rats (Kafkafi et al, 2001). The
acceleration a was shown to have high heritability and
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replicability in inbred mouse strains (Kafkafi et al, 2003b).
The jerk j (the derivative of acceleration according to time,
or the second derivative of the speed) was chosen because
speed peaks were shown to be a meaningful component of
rodent behavior (Drai and Golani, 2001; Kafkafi et al, 2001)
and j is required to distinguish between speed peaks
(near-zero acceleration and negative jerk) and local minima
of speed (near-zero acceleration and positive jerk). The
momentary heading h (direction of movement relative to
the arena wall) was proposed by Horev et al (2007) as an
important aspect of open-field behavior in the mouse. The
path curvature in a scale of 4 and 16 cm (c4 and c16, respec-
tively) were shown to discriminate several mouse inbred
strains with high heritability and replicability (Kafkafi and
Elmer, 2005). In this study h, c4, and c16 are all defined as
positive in a direction away from the arena wall and
negative toward the wall. The time from the beginning and
to the end (ts and ts respectively) of progression segments
(Drai and Golani, 2001; Kafkafi et al, 2001) make it possible
to mine patterns that always occur, eg when initiating a
movement or when stopping. To these nine attributes that
were also used in rats (Kafkafi et al, in press) we add a tenth
attribute in this study: the time s from the beginning of the
session. This attribute was added because some of the drugs
in this study may differ from others in their rate of onset.

Every path coordinate from the progression of the animal
can thus be represented using a list of 10 attributes of the
form (s, d, v, a, j, h, c4, c16, ts, te). However, in practice we
only consider up to any four attributes at any given time
(see below), and mark the irrelevant attributes with
asterisks (standing for ‘wildcards’, ie attributes that can
accept any value). For example, using only the speed v and
acceleration a is represented by a partial list of the form
(*,*,v,a,*,*,*,*,*,*). Any partial list of attributes can be
graphically represented as constructing an ‘attribute space’,
in which each path coordinate is represented by a point. For
example, Figure 1 (right) shows the path of the animal in
the space (in this case a two-dimensional plane) defined by
the two attributes a and v.

Attribute partition. The range of each attribute is parti-
tioned into several bins indexed 1, 2, 3, y (Table 2), eg the
attribute of distance from the wall d is partitioned into bin
1: 0–5 cm (approximately maintaining physical contact with
the wall), bin 2: 5–15 cm (close but not touching), bin 3: 15–
30 cm (moderately away from the wall), and bin 4: 430 cm
(far into the center). The number of bins and their
boundary values are chosen to reasonably fit the typical
range and achieve an approximately equal distribution; eg
we use bins of increasing width for d because rodents spend
a much larger portion of the session near the wall. Figure 1
(right) depicts equal partition into bins (dashed lines) in the
speed attribute v (vertical axis) and unequal division in the
acceleration attribute a (horizontal axis). The number of
bins in this study is the same as was used in Kafkafi et al (in
press) for rats, but the boundary values in some of the
attributes were slightly modified to fit the typical attribute
range and distribution in mice.

Definition of patterns. PA can now define multiple patterns
of movement as combinations of bins from one or more
attributes. We code these patterns using the same order as

in the list of attributes (s, d, v, a, j, h, c4, c16, ts, te) by
denoting the bin index in each attribute (see Table 2) and
using asterisks to denote attributes that can accept any
value and are therefore irrelevant to the definition of this
pattern. For example, the single-attribute pattern coded
P{*,*,3,*,*,*,*,*,*,*} is defined only by the third bin
(40ovo60 cm/s) of the third attribute (speed), ie the
animal is moving moderately fast. This pattern can be
graphically described as the ‘cell’ marked A in the attribute
space in Figure 1 (right). The two-attribute pattern-coded
P{*,*,1,2,*,*,*,*,*,*} is defined as the first bin in the third
attribute and the second bin in the forth attribute, ie that
the animal is moving very slowly (0ovo20 cm/s) and is
also slightly decelerating (�30oao�5 cm/s2). This pattern
can be graphically represented by cell B in Figure 1. As more
attributes are added to the definition of a pattern it becomes
more and more specific, eg the four-attribute pattern
P{*,*,1,2,*,1,5,*,*,*} means moving very slowly while slightly
decelerating in the direction of the arena wall but turning
sharply away from it. However, as in Kafkafi et al (in press)
we do not use patterns of more than four attributes because
this would amount to an astronomical number of combina-
tions, most of them so overspecified that they rarely occur
in normal behavior. Using all possible bin combinations in
up to any 4 out of the 10 attributes amounts to a total of
73 042 different behavior patterns tested in this study, which
is more than the 50 674 patterns tested in Kafkafi et al
(in press) due to the addition of attribute s.

Pattern mining. The difference between the experimental
groups is then tested using the relative frequency of
performing each of the 73 042 patterns as the dependent
variable. The relative frequency of a pattern is computed as
the time the animal spent in this pattern divided by the total
progression time of the animal during the session. For
example, the relative frequency of using each of the patterns
in Figure 1 (right) is the number of points in the
corresponding cell divided by the total number of points,
and is expressed in percent as the heights of columns in
Figure 2. For the needs of the statistical analysis this
frequency is expressed using the logit transformation,
commonly used to transform ratios. The test used in this
study is simply a t-test of all the animals in each class of
drugs vs all the animals in the other classes and vehicle
groups, pooled over drug and dose. This is illustrated in
Figure 2 for three animals injected with psychomotors (top
row) vs three animals injected with other drugs (bottom
row). The vehicle group was larger than the other dose
groups in order to increase the power to discover class
predictors that identify difference from vehicle as well as
from other classes. PA is equally amenable to more
elaborate tests appropriate for detecting the effect of drug
and dose, but this is outside the scope of the present paper.

Multiple comparisons correction. As with similar parallel
data mining strategies, the quandary with such an approach
is the multiplicity problem. That is, when using a
significance level of 0.05 we expect 1 out of 20 patterns to
be ‘significant’ just by pure chance. When simultaneously
screening a large number of possible patterns we thus
need to prohibit the occurrence of false positives and
provide valid statistical inference for the selected patterns
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(Benjamini and Yekutieli, 2005). As in Kafkafi et al (in
press) we protect ourselves in two ways: first by applying
the strictest multiple comparisons criterion, the Bonferroni
criterion, which uses a corrected significance level of a/n,
where n is the number of comparisons, thus ensuring that
the probability of discovering even a single false pattern is
less than a. The comparison of 73 042 different patterns
using a¼ 0.05 yields a Bonferroni criterion as po0.05/73 042¼
6.8� 10�7. Second, as is recommended for data mining
studies (Tan et al, 2006) we divide our data into
two independent setsFthe training set and the test set
(see ‘Drugs, Animals, and Experimental Procedures’ and
Table 2). The mining process described above is performed
in the training set, and only those patterns found significant
using the Bonferroni are then tested in the test set. In
addition to these two steps we evaluate the discovered
patterns by their ability to classify several additional drugs
(Table 1, last column) that were not used at all in the
process of isolating these patterns.

Heritability and Replicability Analysis

We used previously collected data in naive mice from 10
inbred strains across three laboratories (see ‘Previously
collected data’) to statistically estimate the broad-sense
heritability and the replicability of the discovered class

predictors. This analysis was conducted using mixed-model
ANOVA of Genotype (fixed variable)� Laboratory (random
variable), calculated in S-PLUS 2000 statistical software
(Insightful, Seattle) with the linear mixed effects function
for significance estimation and the REML (restricted
maximum likelihood) method for percentage of variance
estimation. This is the same procedure utilized in Kafkafi
et al (2005) and Kafkafi and Elmer (2005) with previous SEE
endpoints in these same animals. In this procedure the
broad-sense heritability is calculated as the percentage of
total variance attributed to the genotype by the mixed
ANOVA. This is in fact a conservative estimation of
heritability, because it completely excludes variance due
to interaction with the laboratory (interaction that is likely
to include some genetic component), and because it
employs the conservative mixed model and REML methods.
For extensive discussion of the mixed model approach to
replicability as well as detailed explanation of these
procedures see Kafkafi et al (2005).

RESULTS

Mining for Opioid Predictors

First we use PA with t-test to test all opioid treated animals
(morphine, oxycodone, and fentanyl) vs all the other

Figure 2 Pattern arrays of six animals out of the data. All graphs are three-dimensional histograms showing the frequency (horizontal axis) of the 20
patterns in the (*,*,v,a,*,*,*,*,*,*) attribute combination of speed v and acceleration a, with bin indices (1–4 for a, 1–5 for v) as shown in Table 2. The
patterns P{*,*,1,2,*,*,*,*,*,*} and P{*,*,1,4,*,*,*,*,*,*}(B and C in Figure 1) are marked by the left and right arrows respectively in each animal. The relative
frequency of these two patterns was found by Pattern Array (PA) to significantly decrease under the effect of psychomotor stimulants, (top row) but not
under the effect of other drugs (bottom row). See Figure 8 for actual instances of these two patterns.
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animals in the training set, pooled over drug and dose. In
19 260 out of the total 73 042 patterns this difference was
found more significant than p¼ 6.8� 10�7 (the Bonferroni
criterion at a level of a¼ 0.05). Such a high percentage
(more than 26%) of significant patterns is an indication that
the overall effect of the opioids was very strong. Figure 3
(left) shows only those patterns more frequent than 1% in
behavior. In fact, as Figure 3 (left) shows, many of those
patterns were more significant than the Bonferroni criterion
by several orders of magnitude (points high above the
dashed line). Out of the most significant patterns we prefer
to use those that are also more frequent in behavior, as they
are likely to be more reliable. Therefore Figure 3 plots the
significance of patterns vs their mean relative frequency in
all animals of the training set, regardless of class. We chose
pattern P{*,*,*,*,4,*,*,*,*,*} (marked by an arrow in Figure 3,
left) as our ‘opioid predictor’ although it was not the most
significant pattern, because it was very abundant in
behavior, more than 20% of the total progression time on
average. This is a single-attribute pattern in which the fifth
attribute, the jerk j (change in acceleration), accepts an
index of 4, defined as moderately positive jerk
(50ojo300 cm/s3; see Table 2). This means that the animal
is increasing its acceleration, possibly switching from
braking to ‘speeding up’.

Figure 4 illustrates some particular occurrences of this
pattern out of the data of four animals in the training set,
representing control behavior and each of the three classes.
The acceleration a is indicated by the slope of the speed
profileFnegative (‘braking down’) when it descends
and positive (speeding up) when it ascends. The jerk j is
indicated by any change in this slope, with the pattern
P{*,*,*,*,4,*,*,*,*,*} defined as a moderate positive change.
Such a change mainly includes moderate switches from
descending to ascending slope (ie like switching from the
brakes to the gas pedal while driving) that are shown as
local minima in the speed profile. However, this pattern also
includes descending slopes moderately becoming less

descending (‘gently releasing the brake pedal’) or ascending
slopes moderately becoming more ascending (‘gently
stepping on the gas’). Note that at the 5.6 mg/kg oxycodone
dose the speed of the animal is more regular than under
saline or nonopioid drugs, with progression segments
typically appearing almost rectangular in the speed profile,
which decreases the frequency of positive jerk.

Figure 5 (left) shows that all the opioid drugs consistently
decreased the frequency of the opioid predictor
P{*,*,*,*,4,*,*,*,*,*} in the training set, seen on the vertical
axis (the horizontal axis in this figure represents the
psychomotor stimulant predictor, which is discussed in
‘Mining for Psychomotor Predictors’). The size of the
decrease was not large, from about 25% in control, psycho-
motor, and psychotomimetic animals down to about 20%
or slightly less in high opioid doses. However, this decrease
was very significant, representing about six or more
standard deviations of the saline animals. Note that in
Figure 5 (as well as in Figures 7 and 9) the pattern
frequencies in percents of the total progression time uses
the same units as the frequency in Figure 3 horizontal axis,
but in Figure 3 it is the mean frequency over all animals in
the training set regardless of class, drug and dose, whereas
Figures 5, 7 and 9 show pattern frequency of particular
drugs and doses. Note also that the decrease in the
frequency of the opioid predictor in the opioids drugs is
generally dose dependent, which is of particular interest as
the patterns in this study were not explicitly selected for
dose dependency, but identified based on distinguishing the
class effect regardless of dose. The psychomotor and
psychotomimetic drugs did not have a significant effect
on the opioid predictor.

The effect of the chosen opioid predictor was validated in
the test set (Figure 5, right) and again it was significantly
decreased by the opioid drugs (F1,103 ¼ 75.3, p¼ 6.7�
10�14). As the test set was used only for testing the few
patterns chosen in the training set, it does not require
correction for the comparison of 73 042 different patterns.

Figure 3 The significance of multiple movement patterns (represented as dots) when mined for opioid prediction (left), psychotomimetic prediction
(middle), and psychomotor stimulant prediction (right). Pattern significance (vertical axes) is presented as a function of the pattern frequency in behavior
(horizontal axes). Pattern frequency is calculated as its mean percentage out of the total progression time over all animals in the training data set, using a log
scale. Only patterns more frequent than 1% are shown. Pattern significance is measured by the p-value order of magnitude �log10(p), with dashed lines
indicating the Bonferroni criterion log10(�6.8� 10�7)¼ 6.17, hence patterns above them are statistically significant. Arrows identify the patterns chosen as
class predictors (see text and Figures 4, 6, and 8) by their Pattern Array (PA) code names.
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However, note that this p-value is much more significant
even than the Bonferroni criterion, ie even if we were to
switch the training and test data sets, our chosen opioid
predictor would still be found significant. The test set
results also show similar dose dependency as the training
set results, and the frequency values themselves are similar
as well for most drugs and doses.

Mining for Psychotomimetic Predictors

Next we test all psychotomimetic-treated animals (PCP,
SDZ, and ketamine) vs all other animals in the training set,
pooled over drug and dose, in the same procedure used for
isolating the opioid predictor patterns. In total, 10 518
patterns passed the Bonferroni criterion, many of them
by several orders of magnitude (Figure 3, middle). As with
the opioid predictor, we search for a psychotomimetic

predictor pattern that is not only very frequent in behavior
or only very significant, but a combination of the two.
Unlike the case with the opioids (Figure 3, left) here the
best compromise was not so obvious. While we chose
P{*,*,*,*,*,*,2,*,3,3} as our psychotomimetic predictor,
choosing any other of the reasonable compromises bet-
ween frequency and significance in Figure 3 (middle) gives
essentially similar results.

As can be inferred from Table 2, P{*,*,*,*,*,*,2,*,3,3} is a
three-attribute pattern defined as slight turn in the direction
of the arena wall (�5oc4o�11 per cm, with the minus sign
representing wall direction) during the middle of progres-
sion segments (at least 1 s after the beginning of movement
and at least 1 s before stopping). In Figure 6 specific
occurrences of this pattern are highlighted in the same
sections of behavior shown in Figure 4. Note in the path
plots that under the psychotomimetic drug PCP the path

Figure 4 Particular occurrences of the opioid predictor pattern P{*,*,*,*,4,*,*,*,*,*} (‘moderately positive jerk’) as performed by four animals (rows) out
of the training data set, injected by saline and three drugs representing the three classes. For each animal 20 s of behavior are shown both in the speed profile
(left) and in the path plot (right), with data points belonging to the opioid predictor pattern are bolder. Note that the speed profiles show progression
segments bracketed by stops (0 speed) that were not included in the analysis. The mouse injected by the opioid drug oxycodone uses this pattern less out of
its progression time. See text for further explanations.
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of the animal includes more turning. Interestingly, how-
ever, the same significant difference was not found in
turning away from the wall. Looking at the results of
P{*,*,*,*,*,*,4,*,3,3} (ie the same as P{*,*,*,*,*,*,2,*,3,3}
except with turning away from the wall instead of toward
it) reveals that animals under the effect of psychotomi-
metics turn more than the control animals both toward the
wall and away from it. However, opioids also cause some
increase in turning away from the wall, which is why
P{*,*,*,*,*,*,4,*,3,3} is not a significant psychotomimetic
predictor, whereas P{*,*,*,*,*,*,2,*,3,3} is. That is, the way
PA was applied in this study it isolates the patterns that best
differentiate a class from the other classes in the study,
rather than the patterns that characterize a class in itself.
This example illustrates the use of PA for exploratory data
analysis and further investigation of the behavior.

In addition, as Figure 6 suggests control animals turn in
all directions nearly as much as psychotomimetic animals,
but they frequently do it in the beginning or end of
progression segments, whereas psychotomimetic animals
mainly turn in the middle of progression segments. It thus
appears that the natural turning of the control animals is
usually a response to the same stimulus that made them
start moving or stop, whereas the turning caused by
psychotomimetic drugs is usually an intrinsic effect of the
drug rather than a response to external stimuli.

Figure 7 (left, horizontal axis) shows that the chosen
psychotomimetic predictor P{*,*,*,*,*,*,2,*,3,3} increased
about twofold in all the psychotomimetic drugs in the
training set, from 5% in the vehicle to about 10% in the high
doses. This increase represents about 3–6 standard devia-
tions of the vehicle animals. Again the increase is dose

dependent although the predictor was not explicitly selected
for dose effect. Psychomotor stimulant and opioid drugs
leave the psychotomimetic predictor unchanged or decrease
it up to twofold and more. The effect of the psychotomi-
metic predictor was validated in the test set (Figure 7, right)
and again it was significantly increased by psychotomi-
metics drugs (F1,103 ¼ 60.1, p¼ 6.5� 10�12). As with the
opioid predictor pattern, this p-value is much more
significant even than the Bonferroni criterion, implying
that this pattern would still be found significant if we were
to switch the training and test data sets. The test set results
also show generally reliable replication of dose dependency
and absolute values for most drugs and doses. Using the
plane of the psychotomimetic predictor vs the opioid
predictor in Figure 7 produces clear separation
of opioids from psychotomimetics. Interestingly these
predictors also separate the psychomotors from both the
opioids and psychotomimetics, although they were not
selected for it in any way.

Mining for Psychomotor Stimulant Predictors

We now test all psychomotor stimulant-treated animals
(cocaine, methamphetamine, and methylphenidate) vs all
the other animals in the training set, pooled over drug
and dose, in the same procedure used for isolating the
opioid and psychotomimetic predictor patterns. Altogether,
10 070 patterns passed the Bonferroni criterion at a level
of a¼ 0.05, many of them by several orders of magnitude
(Figure 3, right). Here we identify two patterns,
P{*,*,1,2,*,*,*,*,*,*} and P{*,*,1,4,*,*,*,*,*,*} (marked by
arrows in Figure 3, left) that constitute a good compromise

Figure 5 Separation of drugs into classes in the training data set (left) and in the independent test data set (right). The results are shown in the plane of
the psychomotor stimulant predictor patterns frequency on the horizontal axis vs the opioid predictor pattern frequency on the vertical axis. Frequencies are
given in two different units: either in percent out of the total progression time in the session (bottom and left axes) or in SDs of the vehicle group (top and
right axes). Each series shows a drug’s dose–response, with the doses given in Table 1 connected in ascending order, and symbols representing dose group
means±SEs. Series in red: psychomotor stimulant drugs. Series in blue, opioid drugs; series in green, psychotomimetic drugs; V, vehicle mean.
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between significance and frequency. These two patterns are
also illustrated in Figure 1, right (cells A and B) and in
Figure 2 (columns mark by arrows). As these two patterns
are explicitly nonoverlapping, as shown by the different
indices in the forth attribute, we chose their union as our
psychomotor predictor.

According to Table 2, P{*,*,1,2,*,*,*,*,*,*} is a two-
attribute pattern defined as moving slowly (vo20 cm/s)
while slightly braking (�30oao�5 cm/s2). The symmetric
pattern P{*,*,1,4,*,*,*,*,*,*} is defined as moving slowly
while slightly speeding up (5oao30 cm/s2). The union of
these two patterns thus means moderately changing slow
progression. As Figure 8 suggests, animals under the effect
of the psychomotor drugs tend to move fast, using the low
speed range only briefly when strongly accelerating in the
beginning of movement or strongly decelerating when they

stop. Figure 5 (left, horizontal axis) shows that all
psychomotor drugs decreased the frequency of the psycho-
motor predictors in the training set by more than twofold,
from more than 20% in the control to less than 10% in the
high doses, which represents approximately 6 standard
deviations of the vehicle group. The decrease was again
largely dose dependent. Generally using the plane of the
psychomotor predictor patterns vs the opioid predictor
pattern very clearly separates the high doses of psychomo-
tor stimulants and opioids, and also separates the
psychotomimetics from either psychomotors or opioids.
However, the separation between low doses of psychomo-
tors and opioids is weak, and in fact it appears that opioids
behave very much like psychomotors in low doses before
they change direction in the high doses. This similarity was
also common to many other highly significant patterns, and

Figure 6 Particular occurrences of the psychotomimetic predictor pattern P{*,*,*,*,*,*,2,*,3,3} (‘turning toward the wall in the middle of progression
segments’) as performed by four animals (rows) out of the training data set, injected by saline and three drugs representing the three classes. For each animal
20 s of behavior are shown both in the speed profile (left) and in the path plot (right). These behavior sections are the same as those shown in Figure 4, but
with data points belonging to the psychotomimetic predictor pattern are bolder. The mouse injected by the psychotomimetic drug phencyclidine
hydrochloride (PCP) uses this pattern more often. See text for further explanations.
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suggests strong similarity of open-field behavior under
these low doses of psychomotors and opioids, or that the
difference is in attributes other than those chosen for the
present study. The psychomotor predictor patterns were
validated in the test set (Figure 5, right) and again were very
significant either when using their union (F1,103¼ 84.7,
p¼ 3.2� 10�15) or in each in itself (F1,103¼ 86.4,
p¼ 1.9� 10�15 for P{*,*,1,2,*,*,*,*,*,*}, F1,103¼ 90.6,
p¼ 1.9� 10�16 for P{*,*,1,4,*,*,*,*,*,*}), mostly with dose
dependency and particular dose values reliably replicated.

Classifying ‘Unknown’ Compounds

We evaluated the PA classification model by its ability to
classify four additional drugs (Table 1, last column) that
were not used in the isolation of these predictors. This is a
simulation of classifying novel compounds with unknown
psychopharmacological properties in the process of drug
discovery. Mazindol and codeine were introduced by
one of the authors (GE) with the author testing the animals
and running the analysis (NK) masked to their identity,
class, and dose. Modafinil and salvinorin A were suggested
by an anonymous reviewer. As shown in Figure 9, all four
drugs were classified in a dose-dependent manner. The
psychomotor stimulant mazindol produced a significant
(F4,17 ¼ 3.3, po0.05, using one-way ANOVA) psychomotor-
like response in the psychomotor predictor (Figure 9, left).
It also had a psychomotor-like trend in the psychotomi-
metic predictor (Figure 9, right). The psychomotor
stimulant modafinil produced a smaller effect in range but
still significant (F3,12¼ 8.4, po0.01, one-way ANOVA)
psychomotor-like response (Figure 9, left) and much
smaller yet still significant (F3,12 ¼ 4.2, po0.05, one-way
ANOVA) opioid response, slightly separating it from the
other psychomotors in this study. The opioid codeine
produced a strong (F4,15 ¼ 11.0, po0.001, one-way ANOVA)

opioid-like response in the opioid predictor, and like the
previously tested opioids also a minor (F4,15 ¼ 3.2, p¼ 0.055,
one-way ANOVA) psychomotor response in low doses
(Figure 9, left). Salvinorin A, a k-agonist opioid with
psychotomimetic properties, posed a particular challenge
because the classification model was not trained with any
k-agonists. It had a marginally significant (F3,22 ¼ 2.9,
p¼ 0.06, one-way ANOVA) response in the psychotomi-
metic predictor (Figure 9, right) and also a trend
(F3,22 ¼ 2.2, p¼ 0.11, one-way ANOVA) toward opioids in
low doses, especially in comparison with the other
psychotomimetics drugs in the study. However, salvinorin
A also showed a significant (F3,22¼ 7.3, po0.01, one-way
ANOVA) psychotomimetic-like response in the psychomo-
tor predictor (Figure 9, left), illustrating the advantage of
classifying a novel compound with a combination of several
class predictors.

In addition we also evaluated the PA classification with
mixtures of cocaine and morphine in the same injection.
These mixtures score intermediate results between the
opioids and psychomotor stimulant (Figure 9). Interestingly
the mixture of 10 mg/kg cocaine with 5.6 mg/kg morphine
scored similar to 10 mg/kg cocaine alone in the psycho-
motor predictor and very similar to 5.6 mg/kg morphine
alone in the opioid predictor (dashed line in Figure 9, left).
This suggests that at these doses the psychomotor predictor
patterns are independent of the opioid predictor pattern
both at the neuropharmacological level and the behavioral
level. When increasing the doses to 17 mg/kg cocaine
with 10 mg/kg morphine, however, the mixture scored
considerably less than either 17 mg/kg cocaine alone in the
psychomotor predictor or 5.6 mg/kg morphine alone in the
opioid predictor. This suggests that at these higher doses
there was interference between opioid and psychomotor
activities at the neuropharmacological or behavioral level
or both.

Figure 7 Separation of drugs into classes in the training data set (left) and in the independent test data set (right) is shown in the plane of psychotomimetics
predictor pattern frequency on the horizontal axis vs the opioid predictor pattern frequency on the vertical axis. Units, colors, and symbols are as in Figure 5.
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Heritability and Replicability of Class Predictors

An important advantage of the database approach is that
once new behavioral measures are isolated, they can readily
be measured in stored data from previous experiments in
diverse genotypes and conditions (Kafkafi and Elmer, 2005).
We measured the discovered class predictors in naive mice
data from 10 inbred strains across three laboratories to
estimate their broad-sense heritability and the replicability,
utilizing the mixed model approach (Kafkafi et al, 2005).
Strain differences in all predictors were significant
(po0.0001) despite the higher benchmark employed by
the mixed model. The heritability of the opioid, psychoto-
mimetic, and psychomotor predictors was 52.3, 59.6, and
58.9% respectively. Note that this is a conservative estimate
(see ‘Heritability and Replicability Analysis’). In compar-
ison, the variance attributed to the interaction of genotype

with the laboratory was 14.4, 3.6, and 6.0% respectively. One
possible issue with this comparison is that the naive mice
data were measured in 30 min sessions, as opposed to
60 min sessions used in the present study. To address this
issue we repeated the complete PA analysis of the drugs data
using the first 30 min of each session only. The results were
almost identical to the results of the 60 min analysis, except
that the p-values were less significant by about two orders of
magnitude, but still considerably more significant than the
Bonferroni criterion.

DISCUSSION

The objective of this report was to explore a data mining
approach for classifying a wide range of psychoactive drugs.
Our working hypothesis was that psychoactive drugs

Figure 8 Particular occurrences of the psychomotor stimulant predictor pattern, the union of P{*,*,1,2,*,*,*,*,*,*} (‘moderately braking while moving
slowly’) and P{*,*,1,4,*,*,*,*,*,*} (‘moderately accelerating while moving slowly’), as performed by four animals (rows) out of the training data set, injected by
saline and three drugs representing the three classes. For each animal 20 s of behavior is shown both in the speed profile (left) and in the path plot (right).
These behavior sections are the same as those shown in Figure 4, but with data points belonging to the psychomotor predictor pattern are bolder. The
mouse injected by the psychomotor stimulant cocaine uses this pattern much less. See text for further explanations.
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possess psychopharmacological profiles that can be un-
iquely characterized when the behavioral resolution is
sufficiently magnified. To this end we developed PA to
mine multiple patterns of spatial behavior and discover
those that best predict a class of psychoactive drugs (class
predictors). A total of 13 drugs were used for PA
development and proof of principle testing, chosen to
represent major psychoactive drug classes: psychomotor
stimulants (cocaine, methamphetamine, methylphenidate,
mazindol, and modafinil), opioids (morphine, oxycodone,
fentanyl, and codeine) and psychotomimetics (PCP, SDZ,
and ketamine), with one drug that may be classified into
two classes (salvinorin A, a k-agonist opioid with psycho-
tomimetic properties). We chose drugs of abuse as many of
their psychoactive properties are well described in the
clinical and preclinical literature. Within each of these drug
classes we included drugs that were structurally dissimilar
or known to have different pharmacological profiles. For
example, methamphetamine differs from cocaine in its
dopamine transporter effects (Pifl et al, 1995; Sandoval et al,
2001; Sonders et al, 1997; Vanderschuren et al, 2000) and
they both differ from mazindol in their abuse potential
(Chait et al, 1987). Morphine appears to differ from
oxycodone in its prescription abuse potential (Compton
and Volkow, 2006), and PCP is a noncompetitive NMDA
antagonist with abuse potential whereas SDZ is a compe-
titive antagonist with little abuse potential (Baron and
Woods, 1995; Koek et al, 1990).

Despite this within-class diversity PA successfully dis-
covered predictors for all three classes, thus developing a
high-performance classification scheme in small groups
(nE4 animals per dose group). The classification was

generally dose dependent within each drug and drug class
despite not being explicitly selected for dose effect, with the
high doses scoring 3–9 standard deviations from the mean
of the vehicle animals. Furthermore, in a simulation of
categorizing unknown compounds PA correctly classified in
a dose-dependent manner four drugs that were not used in
the generation of the class predictors. In particular two
problematic novel compounds, modafinil and salvinorin A,
were successfully categorized according to their predomi-
nant psychopharmacological profile. Modafinil, considered
a psychomotor stimulant that inhibits dopamine and
norepinephrine uptake (Minzenberg and Carter, 2008),
was not as fully ‘efficacious’ in its effect on our
psychomotor predictor as the more typical psychomotor
stimulants, and also had a very slight but still significant
effect on the opioid predictor (Figure 9, left). These results
could be expected given modafinil’s complex pharmacolo-
gical profile and may be indicative of commonality with
opioids in terms of their histaminergic effects (Ishizuka
et al, 2008; Chikai et al, 1994; Barke and Hough, 1992).
Salvinorin A, a k-agonist (Roth et al, 2002; Chavkin et al,
2004) with psychotomimetic properties (Gonzalez et al,
2006; Dalgarno, 2007), was an interesting compound to test
as it had the potential to fall into two classifications (opioid
and psychotomimetic). Interestingly, PA classified it along
its predominant psychopharmacological property, namely
psychotomimetic (Figure 9). Only a slight opioid-like trend
was detected, as opposed to drug discrimination studies
demonstrating clear substitution of salvinorin A for k-
agonists (Willmore-Fordham et al, 2007; Li et al, 2008), but
this hardly constitutes a failure of our current classification
scheme, considering that it was not trained with any

Figure 9 Using the discovered class predictors to classify mazindol (bold red series), modafinil (bold orange series), codeine (bold blue series), salvinorin
A (bold cyan series), and mixture of cocaine and morphine (bold purple series). Each series depicts a dose–response, with arrows indicating increasing dose
and dose values detailed in Table 1. Results are shown in the plane of psychomotor stimulant predictors frequency vs opioid predictor frequency (left), and in
the plane of psychotomimetic predictor frequency vs opioid predictor frequency (right), superimposed over the test set drug results (Figures 5 and 7, right)
in dotted red, blue and green. Purple dashed line (left) shows the effect of the cocaine–morphine mixture that would be expected from the same doses of
cocaine alone and morphine alone. All other symbols and units are as in Figure 5.
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k-agonists before, and its opioid predictor is based
predominantly on m-agonist effects. In addition to the four
test compounds a mixture of drugs (morphine and cocaine)
in the same injection was tested. The outcome score was
intermediate between their two classes, demonstrating that
the two class predictors function at least partially as
independent components. Overall, PA proved to be a
general, sensitive, and specific (at the class level) in vivo
psychopharmacological screening paradigm.

All the psychotomimetic drugs tested were found to
increase turning toward the arena wall during the middle of
progression segments. All opioid drugs decreased move-
ment jerk (change in acceleration), apparently due to slow
and uniform progression. All psychomotor stimulant drugs
decreased slight acceleration and deceleration in low speeds,
apparently due to fast crossing from 0 speed to high speed
and back. It should be stressed that these class predictors
depend also on the behavior in the other classes. For
example, turning in all directions was equally increased by
the psychotomimetics, but only turning toward the wall was
isolated as a psychotomimetic predictor, because turning
away from the wall was also increased by some opioids. It is
thus quite possible that other, more specific predictors will
be discovered when testing a wider range of drugs and
classes. As with most data mining strategies, increasing the
scope of the database is expected to increase the quality of
the predictors that can be mined.

Interestingly it appears that using the best psychomotor
stimulant predictors, low dose opioids are very similar to
low dose psychomotor stimulants, while in higher doses
they go their separate way (Figure 5). A similar phenom-
enon is seen in the cocaine–morphine mixture (Figure 9,
left), in which the lower dose combination appears slightly
more psychomotor-like while the higher dose combination
appears more opioid-like. Separating psychomotor stimu-
lants from opioids at low doses was the only aspect of
classification in this study that PA could not be trained for,
and in fact even when specifically mining for separation of
these two classes only in the low dose range we could not
find a single significant pattern. This suggests strong
similarity of behavior at this dose range, considering that
73 042 patterns were mined. Indeed, it was shown that
fentanyl can engender some discriminative stimulus prop-
erties of cocaine (Colpaert et al, 1979) and amphetamine
produces an increasing amount of fentanyl-appropriate
responding when the training doses is progressively lowered
(Colpaert et al, 1980) in animals trained to discriminate the
interoceptive cues of a drug. There is also an overlap in the
net effect of psychomotor stimulants and opioids on
dopamine release in the striatum (Fadda et al, 2005;
Murphy et al, 2001; Zocchi et al, 2003). However, this
overlap occurs only at doses of morphine and cocaine that
would not be expected to induce detectable levels of
dopamine release as measured by in vivo microdialysis in
the C57BL/6 mouse (Rouge-Pont et al, 2002), although in
CD1 mice the dopamine levels are comparable following low
doses (Zocchi et al, 2003). The overlap measured in this
study of the very low dose morphine (1.0 mg/kg) and
fentanyl (0.056, 0.1 mg/kg) with low dose cocaine (3.0 mg/
kg) may also reflect the sensitivity of PA to serotonergic
mechanisms in common at these doses (George, 1990;
Zocchi et al, 2003). Regardless, the overall sensitivity of PA

to dose, even with no explicit attempt to mine for it,
illustrates the potential utility of PA as a pharmacological
tool.

The problems of many behavioral animal models used for
novel compound classification appear to be related to their
relatively low broad-sense heritability and high interaction
with confounding environmental factors. For example,
Chesler et al (2002) estimated the heritability of the thermal
nociception test, a commonly used model for assessing pain
sensitivity and classify opioids, at only 27%, whereas 42% of
the variance was attributed to various environmental factors
(mostly the human tester) and 18% to interaction with these
factors. In a study by Valdar et al (2006) including
thousands of genetically heterogeneous mice in several
common behavioral tests, all behavioral measures scored
less than 41% heritability, and half of the environmental
factors had interaction higher than 20%. In contrast, all the
class predictors discovered in the present study were found,
in a different data set of naive animals from 10 inbred
strains across three laboratories, to have heritability higher
than 52% and interaction with the laboratory lower than
15%. Our use of previously collected data for the heritability
and replicability estimation illustrates an important advan-
tage of the database approachFthe ability to readily test
any newly discovered predictors in previous data sets from
various genotypes, treatments and conditions. In fact it is
possible to explicitly mine behavioral patterns based on
several advantageous properties as measured in different
data sets, eg that they show both high-class prediction in a
multidrugs data set and high heritability in a multi-
genotype data set.

Several attempts have been made in the past to
characterize and classify psychopharmacological substances
by their effect on complex locomotor behavior. Most
notably, Paulus and Geyer (1991, 1992), (see also Geyer
and Paulus, 1992: Risbrough et al, 2006; Young et al, 2007)
used an approach based on general considerations of
dynamical systems and fractal theory to measure spatial
and temporal scaling exponents of the path. There is no
principle contradiction between this approach and a data
mining approach, and in fact they can be complementary,
eg by mining path properties in multiple scales and/or
mining multiple relationships between properties in differ-
ent scales (as we in part do in this study using the two
attributes c4 and c16, measuring the path curvature in spatial
scales of 4 and 16 cm, respectively, see Kafkafi and Elmer,
2005). The advantage of the data mining approach is that a
very large number of potential variables can be explicitly
screened for best prediction of any experimental factor of
interest, and thus the same test can be customized and
optimized to address various research questions. For
example, the PA version used in this study for classifying
drug-induced behavior in mice was practically identical to
the PA version used for discovering early motor symptoms
in SOD1 mutant rats (a model of Amyotrophic Lateral
Sclerosis, see Kafkafi et al, in press), except for the addition
of one attribute and adapting some of the bin boundaries in
the other nine attributes to their typical range in mice.
Moreover, multiple research questions can in principle be
investigated even in the same data set, producing a variety
of different predictors for different experimental factors.
For example, in the scope of the present study patterns were
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not mined for any dose–response, and therefore all the
dose-effect curves were produced ‘for free’, but for more
advanced analysis it may be useful to explicitly mine for the
strongest dose–responses by using PA with a test such as
isotonic regression (Robertson et al, 1988) instead of t-test.
This can be performed either within drug or within class,
producing drug- or class-specific dose predictors. Subclass
predictors may be mined for within a class, eg differentiat-
ing phenanthrenes (morphine, oxycodone) from anilidopi-
peridines (fentanyl) within opioids, or direct from indirect
dopamine agonists within psychomotor stimulants. It is also
possible to mine for predictors of properties across drug
class, for example mining for behavioral patterns that are
predictive of the drug’s abuse potential in humans. If and
when they are discovered, all such predictors can easily be
measured in the same session, potentially providing a
detailed fingerprint of a novel compound. This ability is
based on the concept that open-field behavior is complex
enough to have many different aspects, and each aspect may
be the most suitable for detecting a different experimental
effect. Note also that, while other combinations of variables
not specifically mined for class prediction may nonetheless
achieve good separation of classes, the PA approach in this
study also identifies specific and relatively independent
predictors for each class separately (that is, the class
trajectories in Figures 5, 7 and 9 are not only well separated
from those of the other classes, but also generally align with
the axes).

There are several methods that can be adapted for
dissecting behavior into multiple types and mining them for
subtle differences. An important consideration in choosing
our method was the interpretability and utility of any
finding. The PA method explicitly specifies the differentiat-
ing behavioral patterns, and can trace them back to
particular events in the data (eg Figure 4, 6 and 8) or even
in a videotaped session. It is thus possible to focus on these
specific patterns, possibly reproduce them in specialized
experimental setups, and study the mechanism by which
they are affected. Note that in experiments focusing on few
standard patterns as the endpoints of interest the analysis
becomes much simpler technically, as it is not necessary
anymore to measure and mine thousands of the patterns.
Another important advantage of our method is that it is
designed to test a broad range of patterns from the very
general (single-attribute patterns, each typically occurring
for about 20% or more of the total movement time) to the
very specific (four-attribute patterns, each frequently
occurring for less than 1%).

CNS drug discovery lags behind most areas of drug
development (Kola and Landis, 2004). The difficulty in
psychiatric drug development is thought to be due to
several interrelated problems such as the overreliance
on a few pharmacological mechanisms, the implausibility
of a single causal molecular abnormality, the animals
models used to screen drugs for treatment efficacy and
the target-centric drug discovery approach (Spedding et al,
2005; Agid et al, 2007). The orientation of most animal
models in behavioral neuroscience has been toward face
and construct validity designed to provide a better under-
standing of the neurobiological underpinnings in the
disease state. However, these types of studies are generally
not ideal for the type of high-throughput screening that has

become a cornerstone technology in pharmaceutical re-
search (Bajorath, 2002). Predictive animal models better fit
the requirements of a high-throughput environment, but a
drawback to most types of these models is that they are
restricted to the identification of drugs that antagonize
either a narrow pharmacology, block a narrow behavior or
show utility for a single drug class. Novel compound
identification might be severely limited under these
conditions. In vitro assays have been successfully used as
predictive models in toxicology and cancer response (Golub
et al, 1999; Thomas et al, 2007), and a critical catalyst in
their success has been the incorporation of data mining
strategies. This type of strategy has recently been used in a
human neuronal precursor cell line as a means to discover
gene-expression patterns predictive of a drug’s psychoactive
class. In these studies (Gunther et al, 2003, 2005) various
classification algorithms were used to discover gene-
expression profiles that were predictive of antidepressant,
antipsychotic, and opioid drug action. Although this is a
significant step forward, an in vitro system is necessarily
restricted in its ability to mimic a true system pharmacology
response to psychiatric drugs, and would ideally be
complemented with an in vivo assay for more advanced
preclinical testing. Our in vivo data mining approach
establishes a framework for screening novel chemical
entities based on a response system that represents the
net pharmacological effect on the system of interest, namely
the CNS.
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