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Abstract

Dose-response studies are commonly used in experiments in pharmaceutical research in order
to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity
with respect to dose. In this paper we focus on dose-response experiments within a microarray
setting in which several microarrays are available for a sequence of increasing dose levels. A gene
is called differentially expressed if there is a monotonic trend (with respect to dose) in the gene ex-
pression. We review several testing procedures which can be used in order to test equality among
the gene expression means against ordered alternatives with respect to dose, namely Williams’
(Williams 1971 and 1972), Marcus’ (Marcus 1976), global likelihood ratio test (Bartholomew
1961, Barlow et al. 1972, and Robertson et al. 1988), and M (Hu et al. 2005) statistics. Ad-
ditionally we introduce a modification to the standard error of the M statistic. We compare the
performance of these five test statistics. Moreover, we discuss the issue of one-sided versus two-
sided testing procedures. False Discovery Rate (Benjamni and Hochberg 1995, Ge et al. 2003),
and resampling-based Familywise Error Rate (Westfall and Young 1993) are used to handle the
multiple testing issue. The methods above are applied to a data set with 4 doses (3 arrays per dose)
and 16,998 genes. Results on the number of significant genes from each statistic are discussed.
A simulation study is conducted to investigate the power of each statistic. A R library IsoGene
implementing the methods is available from the first author.
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1 Introduction

Investigation of a dose-response relationship is of primary interest in many
drug-development studies. Typically, in dose-response experiments the out-
come of interest is measured at several (increasing) dose levels, and the aim
of the analysis is to establish the form of the dependence of the response on
dose (Agresti 1997). The response can be either the efficacy of a treatment
or the risk associated with the exposure to the treatment (in toxicology stud-
ies). In a typical dose-response study subjects are randomized to several dose
groups, among which there is usually a control group. Ruberg (1995a, 1995b)
and Chuang-Stein and Agresti (1997) formulated four main questions usually
asked in dose-response studies: (1) Is there any evidence of the drug effect?
(2) For which doses is the response different from the response in the control
group? (3) What is the nature of the dose-response relationship? and (4)
What is the optimal dose?

Within the microarray setting, a dose-response experiment has the same
structure as described above. The response is the gene expression at a certain
dose level. The dose-response curve, similarly to the dose-response studies, is
assumed to be monotone, i.e., the gene activity increases or decreases as the
dose level increases. The direction of the relationship is usually unknown in
advance.

In this paper we focus on the first question: is there any evidence of the
drug effect? To answer this question, we test for the null hypothesis of homo-
geneity of means (no dose effect) against an ordered alternative. We compare
several testing procedures, that take into account the order restriction of the
means with respect to the increasing doses and that adjust for multiplicity. In
particular, we discuss the testing procedures of Williams (Williams 1971 and
1972), Marcus (Marcus 1976), the global likelihood ratio test (Barlow et al.
1972, and Robertson et al. 1988), and the M (Hu et al. 2005) statistic. More-
over, we propose a novel procedure based on a modification of the estimator
of standard error of the M statistic.

Williams (1971, 1972) proposed a step-down procedure to test for the dose
effect. The tests are performed sequentially from the comparison between the
isotonic mean of the highest dose and the sample mean of the control to the
comparison between the isotonic mean of the lowest dose and the sample mean
of the control. The procedure stops at the dose level where the null hypothesis
(of no dose effect) is not rejected. Marcus (1976) proposed a modification of
the Williams procedure, in which the sample mean of the control was replaced
by the isotonic mean of the control. A global likelihood ratio test discussed
by Bartholomew et al. (1961), Barlow et al. (1972), and Robertson et al.,
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(1988) uses the ratio between the variance calculated under the null hypothesis
and the variance calculated under an ordered alternative. Recently, Hu et al.
(2005) proposed a test statistic that was similar to Marcus’ statistic, but with
the variance estimator calculated under the ordered alternative. The degrees of
freedom of the M statistic (the difference between the number of observations
and the number of dose levels) are fixed for all the genes and all the arrays.
In this paper, we propose a modification for the variance estimator of the M
statistic. Namely, the difference between the number of observations and the
unique number of isotonic means is used as the degrees of freedom for the
variance estimator.

Our goal is to compare the performance of the five test statistics. To this
aim we apply them to a case study. The case study data come from a microar-
ray experiment with three microarrays, each containing 16,998 genes, available
for each of four dose levels of a drug. When applied to the case study, the
five test statistics are adjusted for multiple testing by using resampling-based
procedures that control either the Family-Wise Error Rate (FWER) or the
False Discovery Rate (FDR). Following the results of the analysis of the case
study, we conduct a simulation study to further investigate the performance
of the five test statistics.

The paper is organized as follows. Section 2 describes the procedure fol-
lowed to obtain the case study data. In Section 3 we review the five test
statistics. Directional inference to testing isotonic regression and multiplic-
ity issue are discussed in Section 4. In Section 5 we compare the results of
the analysis of the case study using the five tests discussed in Section 3. A
simulation study conducted to investigate the performance of variance estima-
tors and power of the five test statistics is presented in Section 6. Section 7
completes the paper with a short discussion.

2 Data Acquisition

The human epidermal squamous carcinoma cell line A431 was grown in Dul-
becco’s modified Eagle’s medium, supplemented with Lglutamine (2 mM),
Gentamycin (50 mg/ml) and 10% fetal bovine serum. The cells were stimu-
lated with EGF (R&D Systems, 236-EG) at different concentrations (0 ng/ml,
1 ng/ml, 10 ng/ml and 100 ng/ml) for 24h. RNA was harvested using RLT
buffer (Qiagen). All microarray related steps, including the amplification of to-
tal RNAs, labeling, hybridization and scanning were carried out as described
in the GeneChip Expression Analysis Technical Manual, Rev.4 (Affymetrix
2004). Biotin-labeled target samples were hybridized to human genome ar-
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rays U133 A 2.0 containing probe sets interrogation approximately 22,000
transcripts from the UniGene database (Build 133). Hybridization was per-
formed using 15 µg of cRNA for 16 h at 450C under continuous rotation
at 60 rpm. Arrays were stained in Affymetrix Fluidics stations using strep-
tavidin/phycoerythrin staining. Thereafter, arrays were scanned with the
Affymetrix scanner 3000, and images were analyzed using the GeneChip Op-
erating System v1.1 (GCOS, Affymetrix). The collected data were quantile
normalized in two steps: first within each sample group, and then across all
sample groups obtained (Bolstad et al. 2002). The resulting data set consists
of 12 samples, for four dose levels and three microarrays at each dose level,
with 16,998 probe sets. For simplicity, we refer to probe sets as genes through
our paper (Hubbell et al. 2002).

3 Testing For Homogeneity of the Means Un-

der Restricted Alternatives

In this section, we discuss several procedures for testing the homogeneity of
the means under the restricted alternative. In particular we focus on four
existing procedures: Williams’ (Williams 1971 and 1972), Marcus’ (Marcus
1976), the global likelihood ratio test (Bartholomew 1961, Barlow et al. 1972,
and Robertson et al. 1988), and the M (Hu et al. 2005) statistic. Additionally,
we introduce a modification to the degree of freedom of the M statistic.

In the microarray experiment, for each gene, the following ANOVA model
is considered

Yij = µ(di) + εij, i = 0, 1, . . . , K, j = 1, 2, . . . , ni, (1)

where Yij is the jth gene expression at the ith dose level, di (i = 0, 1, . . . , K)
are the K+1 dose levels, µ(di) is the mean gene expression at each dose level,
and εij ∼ N(0, σ2).

The null hypothesis of no dose effect is given by

H0 : µ(d0) = µ(d1) = · · · = µ(dK). (2)

A one-sided alternative hypothesis of a positive dose effect for at least one dose
level (i.e., an increasing trend) is specified by

HUp
1 : µ(d0) ≤ µ(d1) ≤ · · · ≤ µ(dK), (3)

with at least one strict inequality. When testing the affect of a drug for a
positive outcome the researcher can specify a positive effect as the desirable
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alternative. However, in the current microarray setting, it seems reasonable
to assume that the gene expression levels may increase or decrease in response
to increasing doses, but with the direction of the trend not known in advance.
Thus we must also consider an additional alternative:

HDown
1 : µ(d0) ≥ µ(d1) ≥ · · · ≥ µ(dK), (4)

with at least one strict inequality. Testing H0 against HDown
1 or HUp

1 requires
estimation of the means under both the null and the alternative hypotheses.
Under the null hypothesis, the estimator for the mean response µ̂ is the sample
mean. Let µ̂?

0, µ̂
?
1, . . . , µ̂

?
K be the maximum likelihood estimates for the means

(at each dose level) under the ordered alternative. Barlow et al. (1972) and
Robertson et al. (1998) showed that µ̂?

0, µ̂
?
1, . . . , µ̂

?
K are the isotonic regression

of the observed means.

3.1 Williams’ (1971, 1972) and Marcus’ (1976) Test Sta-
tistics

Williams’ procedure defines H0 as the null hypothesis, and HUp
1 or HDown

1 as
the one-sided alternative. Williams’ (1971, 1972) test statistics was suggested
for a setting, in which ni observations are available at each dose level. As all
dose levels are compared with the control level, the test statistic is given by

ti =
µ̂?

i − ȳ0√
2S2/r

. (5)

Here, ȳ0 is the sample mean at the first dose level (control), µ̂?
i is the estimate

for the mean at the ith dose level under the ordered alternative, r is the number
of replications at each dose level, and S2 is an estimate of the variance. For
µ̂?

i , Williams (1971, 1972) used the isotonic regression of the observed response
with respect to dose (Barlow et al. 1972). Williams’ test procedure is a
sequential procedure. In the first step, µ̂?

K is compared to ȳ0. If the null
hypothesis is rejected, µ̂?

K−1 is compared to ȳ0, etc.
Marcus (1976) proposed a modification to Williams’ test statistic that re-

placed ȳ0 with µ̂?
0, the estimate of the first dose (control) mean under ordered

restriction. Marcus’ test statistic performs closely to Williams’ in terms of
power (Marcus 1976). Note that, for K = 1, Williams’ and Marcus’ test
statistics reduce to the two-sample t-test.
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3.2 Likelihood Ratio Test Statistic for Monotonicity
(Barlow et al. 1972, and Robertson et al. 1988)

Williams’ and Marcus’ procedures are step-down procedures, i.e., the compar-
ison between a lower dose and control is tested only if the test of a higher
dose vs. control is significant. The underlying assumption is that there is a
monotone dose-response relationship with a known direction.

Testing the equality of ordered means using likelihood ratio tests (when
response is assumed to be normally distributed) were discussed by Barlow
et al. (1972) and Robertson et al. (1988). Both authors considered the
likelihood ratio test, in which the variance under the null and the alternative
were compared. The likelihood ratio test statistic is given by

Λ
2
N
01 =

σ̂2
H1

σ̂2
H0

=

∑
ij(yij − µ̂?

j)
2

∑
ij(yij − µ̂)2

, (6)

where σ̂2
H0

and σ̂2
H1

are the parameter estimates for the variance under the null
and the alternative hypothesis, respectively. The null hypothesis is rejected

for a “small” value of Λ
2
N
01. Equivalently, H0 is rejected for large value of Ē2

01,
where

Ē2
01 = 1− Λ

2
N
01 =

∑
ij(yij − µ̂)2 −∑

ij(yij − µ̂?
j)

2

∑
ij(yij − µ̂)2

. (7)

Estimating the parameters using isotonic regression requires the knowledge of
the direction of the trend. In practice, the direction of the trend is often not
known in advance. In such a case one can maximize the likelihood twice: for
a monotone decreasing trend and for a monotone increasing trend, and choose
the trend with a higher likelihood. In practice, we can calculate Ē2

01 for each
direction and choose the higher value of Ē2

01 (Barlow et al. 1972). In this paper
we use a resampling-based approach to approximate the null distribution for
the test statistic, so that the two sided p-values are obtained for inference.

3.3 The M Test Statistic of Hu et al. (2005)

Recently, Hu et al. (2005) proposed the following test statistic M to test for
a monotonic trend:

M =
µ̂?

K − µ̂?
0√∑K

i=0

∑ni

j=1(yij − µ̂?
i )

2/(N −K)
. (8)

Hu et al. (2005) discussed a setting, in which the comparison of primary
interest is the difference between the highest dose level (K) and the control
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dose. The numerator of the M test statistic is the same as of Marcus’ statistic,
while the denominator is an estimate of the standard error under an ordered
alternative. This is in contrast to Williams’ and Marcus’ approaches that use
the unrestricted means to derive the estimate for the standard error.

Hu et al. (2005) evaluated the performance of the Ē2
01 and M test statistics

by comparing the ranks of genes obtained by using both statistics, and reported
similar findings for simulated and real life data sets.

3.4 A Modification to the M test Statistic

For the variance estimate, Hu et al. (2005) used N − K degrees of freedom
(see equation (8)). However, the unique number of isotonic means is not fixed,
but changes across the genes. For that reason, we propose a modification
to the standard error estimator used in the M statistic by replacing it with√∑K

i=0

∑ni

j=1(yij − µ̂?
i )

2/(N − I), where I is the unique number of isotonic

means for a given gene. Such a modification is expected to improve the stan-
dard error estimates across all the genes.

4 Directional Inference in Isotonic Regression

and Multiplicity

4.1 Multiplicity and Resampling-based Multiple Test-
ing

In microarray experiments a large of number of null hypotheses usually needs
to be tested. The FamilyWise Error Rate (FWER, Westfall and Young 1993)
and the False Discovery Rate (FDR, Benjamini and Hochberg 1995) are two
quantities that are commonly used in controlling the error rate.

FWER is defined as the probability to reject at least one true null hypoth-
esis. FDR, introduced by Benjamini and Hochberg (1995), is defined as the
expected proportion of false rejections among the rejected hypotheses. Test-
ing procedures that control FDR tend to gain more power as compared to
procedures controlling for FWER.

FWER can be controlled by using, e.g., the Bonferroni, Holm (Holm 1979),
Hochberg (1995), or maxT (Westfall and Young 1993) procedures. Hochberg
and Benjamini (FDR-BH, 1995) and Benjamini and Yekutieli (FDR-BY, 1999)
proposed approaches for controlling FDR.
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In a microarray setting, resampling methods to adjust for multiplicity are
often used (Kerr and Churchill 2001, Reiner et al. 2003, Tusher et al. 2001, and
Ge et al. 2003). The main motivation is to avoid inference based on asymptotic
distribution of the test statistics, which, within the microarray setting, can be
problematic because of either typically small sample sizes or departure from
the assumption about the distribution of the response. Also, in some cases
the asymptotic distribution of the test statistics is unknown (Tusher et al.
2001). The resampling approach requires permutation of the sample labels,
and calculation of the test statistic for each permutation. Matrix of the values
of the test statistic for each gene and for each permutation is referred to as the
permutation matrix under the null distribution. Further inference is based on
the unadjusted p-values obtained from the permutation matrix. For example,
maxT procedure proposed by Westfall and Young (1993) to control FWER
computes the adjusted p-values from the distribution of maxima of the test
statistics over the nested subsets of ordered test statistics calculated under
the null hypothesis (by applying the permutation matrix). Alternatively, once
the unadjusted p-values of a test statistic are computed (Reiner et al. 2003
and Ge et al. 2003), they can be adjusted for multiple testing using various
procedures such as Bonferroni, Holm, FDR-BH or FDR-BY.

4.2 Directional Inference in Isotonic Regression

The five test statistics discussed in Section 3 should be calculated assuming
a particular direction of the ordered alternative. However, the direction of
the test is unknown in advance. In this section, we address the issue of how
to obtain the two-sided p-value from the five testing procedures, and how to
determine the direction of the trend from two-sided p-value afterwards.

We focus on the two possible directions of the alternatives: HUp
1 defined in

equation (3) and HDown
1 defined in equation (4). Let pUp and TUp denote the

p-value and the corresponding test statistic computed to test H0 vs. HUp
1 , and

let pDown and TDown denote the p-value and the corresponding test statistic
computed to test H0 vs. HDown

1 . Barlow et al. (1972) showed that, for K > 2,
a χ̄2 statistic for testing H0 may actually yield pUp < α and pDown < α.
However, p = 2 min(pUp, pDown) is always a conservative p-value for the two-
sided test of H0 vs. either HUp

1 or HDown
1 .

Hu et al. (2005) adapted the approach by taking the larger of the likeli-
hoods of HUp

1 or HDown
1 , i.e., the larger of TUp and TDown is used as the test

statistic for two-sided inference. In contrast to Hu et al. (2005), we obtain two-
sided p-values by taking p = min(2 min(pUp, pDown), 1), where pUp and pDown

are calculated for TUp and TDown using permutations to approximate the null
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distribution of these test statistics. We use pUp and pDown to determine the
direction of the test.

After rejecting the null hypothesis against the two-sided test there is still
a need to determine the direction of the trend. The direction can be in-
ferred by the following procedure. If pUp ≤ α/2, then reject H0 and declare
HUp

1 ; if pDown ≤ α/2, then reject H0 and declare HDown
1 . The validity of this

directional inference is based on the following property: under HUp
1 , pDown

is stochastically larger than U [0, 1]; and under HDown
1 , pUp is stochastically

larger than U [0, 1]. Thus, the probability of falsely rejecting H0 is ≤ α, and
the probability of declaring a wrong direction for the trend is ≤ α/2. It is
also important to note that the event pUp < α/2 and pDown < α/2 may be
observed. Under H0, HUp

1 or HDown
1 , this event is unlikely. However, it is

likely if the treatment has a large and non-monotone effect. An example of
this unique situation, in which the null hypothesis can be rejected for both
directions, is given in Section 5.1.

In order to verify whether the property needed for directional inference
applies to the five test statistics, we conduct a simulation study to investigate
the distribution of the pUp and pDown values. For each simulation, data are
generated under HUp

1 : the means are assumed to be equal to (1, 2, 3, 4)/
√

5
for the four doses, respectively, and the variance is equal to σ2 = 1. The
test statistics TUp and TDown are calculated for the two possible alternatives
HUp

1 and HDown
1 . Their corresponding pUp and pDown-values are obtained using

10,000 permutations.
Figure 1 shows the cumulative distribution of pUp and pDown. Clearly,

the simulations show that the cumulative distribution of pDown (the p-value
of the test statistics calculated assuming the wrong direction, dotted line in
Figure 1) is stochastically higher than U [0, 1] (solid line in Figure 1), which
is the distribution of the p-values under the null hypothesis. Moreover, the
distribution of pUp (the p-value for the test statistics calculated assuming the
right direction, dashed line in Figure 1) is, as expected, stochastically smaller
than U([0, 1]. Similar results (not shown) are obtained when the data are
generated under HDown

1 . The results imply that all the five test statistics
process the property required for the directional inference: under HUp

1 the
distribution of pDown is stochastically greater than U [0, 1]. Further discussion
of the simulation results is given in the supplementary material to this paper.

4.3 Control of the Directional FDR

When FDR controlling procedures are used to adjust for multiplicity in the
microarray setting, the set of two-sided p-values computed for each gene is
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Figure 1: The cumulative distribution of pUp-values (dashed line) and pDown-
values (dotted line) for the five test statistics. Data are generated under HUp

1

with isotonic means (1, 2, 3, 4)/
√

5 for the four doses. Solid line: cumulative
distribution of H0 ∼ U [0, 1].

adjusted using FDR-BH and FDR-BY procedure. A discovery in this case is
a rejection of H0 for some gene; a false discovery is to reject H0 when H0 is
true. As mentioned before, in a microarray dose-response experiment we are
also interested in the direction of the dose-response trend.

Benjamini and Yekutieli (2005) provide a framework for addressing the
multiplicity problem when attempting to determine the direction of multiple
parameters: a discovery is to declare the sign of a parameter as either being
positive or negative. Three types of false discoveries are possible: declaring a
zero parameter either as negative or as positive, declaring a negative param-
eter as positive, and declaring a positive parameter as negative. The FDR
corresponding to these discoveries is termed the Mixed Directional FDR. In
the current setting the Mixed Directional FDR is the expected value of the
number of genes, for which H0 is true, that are erroneously declared to have
either a positive or negative trend plus the genes with a monotone trend but
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the direction of the declared trend is wrong, divided by the total number of
genes declared to have a trend. Benjamini and Yekutieli (2005) prove that if
p-values pose the directional property described in Section 4.2, then applying
the BH procedure at level q to the the set of two-sided p-values computed for
each gene, and declaring the direction of the trend corresponding to the smaller
one-sided p-value, controls the Mixed Directional FDR at level q/2·(1+m0/m),
where m is the total number of genes and m0 is the number of genes, for which
H0 holds.

In general, directional inference is a more general setting than hypotheses
testing (Benjamini and Yekutieli, 2005). Nevertheless, as a false discovery is
made based on the p-value that is stochastically larger than U [0, 1], then the
resampling-based methods that control FDR (Yekutieli and Benjamini, 1999)
also control the Mixed Directional FDR. This is achieved by simply applying
the resampling-based procedure to test H0, and if H0 is rejected, declaring the
direction of the trend according to the minimum one-sided p-value. For each
rejected null hypothesis it is also advisable to examine if the larger p-value is
≤ α. If this is the case, this may serve as an indication of a non-monotone
dose-response relationship.

5 Results

In this section, we present results of an application of the five testing pro-
cedures to the case study. We compare the performance of each of five test
statistics in combination with the Bonferroni, Holm, maxT, and FDR-BH
multiple-testing adjustment procedures. In Section 5.1 we examine the num-
ber of significant genes for all the testing procedures. In Section 5.2 we make
a comparison between the global likelihood ratio test Ē2

01 and the two t-test
type statistics: M and the modified M .

5.1 Number of Significant Findings for Each Statistic
Using Different Multiple Testing Adjustment

The testing procedures discussed in the previous sections are applied to the
case study data. For each test statistic, pUp and pDown are obtained based on
the permutation matrix, in which the null distribution of the test statistics
(TUp and TDown) are approximated using 1000 permutations. The inference is
made based on the two-sided p-values obtained using the method described in
Section 4.2.
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Table 1 shows the number of rejected hypotheses using several multiplicity
adjusting methods and the five test statistics that are tested at the signif-
icance level of 0.05. Figure 2 shows the adjusted p-values for the five test
statistics. Clearly, the adjusted p-values for maxT, Bonferroni, and FDR-BY
are larger than the adjusted p-values obtained for FDR-BH. For instance, for
Ē2

01, without adjusting for multiple testing, we reject the null hypothesis for
5457 genes. With Bonferroni, Holm, and FDR-BY adjustment procedures we
obtain the same number of significant genes, i.e., 1814. Using maxT for con-
trolling FWER seems to be the most conservative approach with only 224
genes declared significant.

Table 1: Number of rejected null hypotheses for various testing procedures at
the significance level of 0.05.

Method Ē2
01 Willams Marcus M Modified M

Unadjusted 5457 5238 5465 5449 5451
maxT 224 215 223 265 251

Bonferroni 1814 1592 1669 1755 1745
Holm 1814 1592 1669 1755 1745

FDR-BH 3613 3209 3533 3562 3567
FDR-BY 1814 1592 1669 1755 1745

Note that the number of significant genes obtained for each test statistic for
a given multiple testing adjustment is similar. For example, for the FDR-BH
adjustment, we find 3613, 3562, and 3567 significant genes for Ē2

01, M , and the
modified M statistic, respectively. This method yields more liberal results as
compared to the other multiple testing adjustment procedures. For that rea-
son, FDR adjustment for multiplicity is commonly used within the microarray
framework (Ge et al. 2003, Tusher et al. 2001, Storey and Tibshirani 2003).
Moreover, FDR-BH controls for the directional FDR (as discussed in Section
4.3). Therefore, in what follows, we use FDR-BH procedure to investigate the
performance of the considered test statistics.

As we argue in Section 4.2, there is a possibility (although unlikely), that
the null hypothesis is rejected for both directions (i.e., pUp ≤ α/2 and pDown ≤
α/2). For the analysis discussed above, only five genes are rejected by Marcus’
statistic with pUp and pDown smaller than the rejection threshold (with multiple
testing adjustment), suggesting a non-monotonic trend. The five genes are
shown in Figure 3.
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Figure 2: Adjusted p-values using Bonferroni, BH(FDR) and maxT for the
five test statistics.

As can be observed from Figure 3, for the five genes the data reveal a non-
monotonic pattern. For Marcus’ statistic, the large values of TUp and TDown

are obtained from the large difference between the isotonic mean of the highest
and control doses relative to the variance calculated under the unrestricted
alternative. Instead, Ē2

01, M , and the modified M use the variance estimator
calculated under the ordered alternative, that results in small test statistic
values. Hence, using these test statistics, the null hypothesis is not rejected.
If the difference between the highest isotonic mean and control sample mean
exists, Williams’ test statistic will tend to reject the null hypothesis as well.

In particular, for the five genes, the estimates of σ2 (of Williams’ and
Marcus’ test statistics) calculated under the unrestricted alternative are equal,
respectively, to 0.0414, 0.0075, 0.0204, 0.0145, and 0.0232. They are smaller
than the estimates for σ2 (of Ē2

01, M , and the modified M) calculated under
the ordered alternative HUp

1 , that are equal, respectively, to 0.2995, 0.1788,
0.3277, 0.3317, and 0.2437, and under HDown

1 , that are equal, respectively, to
0.2608, 0.1868, 0.4679, 0.4401, and 0.2065.
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Figure 3: Five genes rejected by Marcus’ statistics with both pUp and pDown

values smaller than the rejection threshold. Solid line: the isotonic means
obtained for testing H0 against HUp

1 . Dashed line: the isotonic means obtained
for testing testing H0 against HDown

1 .

5.2 Comparison Between Ē2
01, M , and the Modified M

Test Statistics

Although in our case study, the number of significant genes obtained for the
five testing procedures is very similar, there are some discrepancies. In this
section, we investigate the subset of genes not commonly found by Ē2

01, M ,
and the modified M statistics, respectively.

First we compare genes identified as significant or non-significant by M and
Ē2

01. The logarithm of two-sided p-values for these genes is shown in Figure 4.
Among the total of 16,998 genes, 3420 genes are found significant for monotonic
trends for both statistics. However, 193 genes are found to be significant for
Ē2

01 and non-significant for M -test statistic, while for 142 genes the reversed
order is observed. These genes account for 8.9% ((193+142)/(3420+193+142))
of the total significant findings for both test statistics, which is not negligible.
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Figure 4: Logarithm of p-values (two sided) for Ē2
01 and M . Panel a: 3420

genes rejected by both Ē2
01 and M statistics; panel b: 142 genes are rejected

by M statistic only; panel c: 193 genes in are rejected from Ē2
01 only; panel d:

13,244 genes are not rejected by either statistic.

Similar to Hu et al. (2005), we compare the ranking of M and Ē2
01 of all the

genes. In both Hu et al. (2005) and our example the correlation of the ranks is
equal to 0.99. Based on their observation, Hu et al. (2005) concluded that the
two statistics perform similarly. However, in our data, the correlation of ranks
of 142 genes found significant only for the M statistic (panel c of Figure 5) is
0.92, while the correlation of ranks of 193 genes significant only for Ē2

01 (panel
b) is 0.85. Both are somewhat lower than the correlation for genes in panel a
(3420 genes significant for both statistics, correlation of 0.98) and in panel d
(genes non-significant by either statistic, correlation of 0.99). The discrepant
conclusions (rejecting the null only for one of statistic) can be explained by
the fact that the M statistic looks for the mean difference between the highest
dose and the control. On the other hand, Ē2

01 is a global test for the monotonic
trend.

The logarithm of the two sided p-values for the genes identified as sig-
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Figure 5: Correlation between Ē2
01 and M . Panel a: correlation (0.98) between

rankings of 3420 genes rejected both from Ē2
01 and M . Panel b: correlation

(0.92) between rankings of 142 genes rejected only from M . Panel c: correla-
tion (0.85) between rankings of 193 genes rejected only from Ē2

01 and Panel d:
correlation (0.99) between rankings of 13,244 genes not rejected from Ē2

01 and
M .

nificant or non-significant by the M and modified M statistics is shown in
Figure 6. Among the total of 16,998 genes, 3478 genes are found signifi-
cant for monotonic trends for both tests. However, 86 genes are found to be
significant for the M statistic and non-significant for the modified M test,
while for 89 genes the reverse is true. These genes account for about 4.8%
((86 + 89)/(86 + 89 + 3478)) of the total significant findings for both test
statistics.

The overall correlation between the ranks of genes obtained for M and the
modified M test statistics is 0.99. The correlation between genes in each panel
of Figure 7 is also very high, with 0.97 (in panel b) for genes rejected only by
the modified M , 0.98 (in panel c) for genes rejected only by M , 0.99 (in panel
a) for genes rejected by both of the test statistics, and 0.998 (in panel c) for
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Figure 6: Logarithm of p-values (two sided) for the M and the modified M .
Panel a: 3478 genes are rejected by both M and the modified M statistics;
panel b: 86 genes are rejected by M statistic only; panel c: 89 genes are
rejected from the modified M only; panel d: 13,345 genes are not rejected by
either statistic.

genes rejected by neither of the test statistics. The difference between the
two statistics lies in the adjustment of the degrees of freedom in the standard
error estimator of the modified M test statistic. Nevertheless, the discrepancy
found is not substantial.

6 Simulation Study

We conduct a simulation study to investigate the performance of the five test
statistics. In Section 6.1, we compare the three estimators for the variance of
Williams’ and Marcus’ (which is the same), M , and modified M test statistics.
In Section 6.2 we investigate the power of the five statistics for a single gene,
while in Section 6.3, the power of the tests with the multiple testing adjustment
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Figure 7: Correlation between M and the modified M . Panel a: correlation
(0.99) between rankings of 3478 genes rejected both from M and the modified
M . Panel b: correlation (0.97) between rankings of 89 genes rejected only
from the modified M . Panel c: correlation (0.98) between rankings of 86
genes rejected only from M and Panel d: correlation (0.998) between rankings
of 13,345 genes not rejected from the M and modified M .

is evaluated.

6.1 Standard Error Comparison

As a base for the simulations, the ANOVA model (1) is assumed. With four
dose levels, the order-restricted alternative hypothesis (3) can be classified
into seven possible trends. Table 2 defines the mean structure and assumed
parameter values for these seven models, and for the null model (H0) used in
the simulations. The scale parameter λ controls the magnitude of the isotonic
means. The larger λ, the larger distance between the means. In this set of
simulations it is chosen to equal 1 and 3 based on the settings considered by
Marcus (1976).

17

Lin et al.: Testing for Monotonic Trends for Gene Expression Data

Published by The Berkeley Electronic Press, 2007



For each model, L = 10, 000 datasets are generated. Each dataset contains
three arrays per each of four dose levels, i.e., 12 arrays (observations) in total
are generated, with variance σ2=1.

Table 2: Simulation settings: µi is the mean response of dose level i, i =
1, 2, 3, 4, and λ = 1 or 3.

Model Mean Structure µ1 µ2 µ3 µ4

g1 µ1 = µ2 = µ3 < µ4 (1 1 1 2) ×2λ/
√

3
g2 µ1 = µ2 < µ3 = µ4 (1 1 2 2) ×λ

g3 µ1 < µ2 = µ3 = µ4 (1 2 2 2) ×2λ/
√

3

g4 µ1 < µ2 = µ3 < µ4 (1 2 2 3) ×λ/
√

2

g5 µ1 = µ2 < µ3 < µ4 (1 1 2 3) ×2λ/
√

11

g6 µ1 < µ2 < µ3 = µ4 (1 2 3 3) ×2λ/
√

11

g7 µ1 < µ2 < µ3 < µ4 (1 2 3.5 4) ×λ/
√

5
Null µ1 = µ2 = µ3 = µ4 (0 0 0 0) ×λ

The performance of the standard error estimators for the Williams and
Marcus, M , and the modified M test statistics is evaluated.

For Williams’ statistic the estimator is
√

2/3S2=
√

2/3σ̂1, where

σ̂1 =

√√√√
3∑

i=0

3∑
j=1

(yij − ȳi)/(12− 4),

and where yij is the gene expression at dose level i and array j, while ȳi is the
sample mean of gene expression levels at dose i.

The estimator of the M statistic, proposed by Hu et al. (2005), is given by

σ̂2 =

√√√√
3∑

i=0

3∑
j=1

(yij − µ̂?
i )

2/(12− 4).

Moreover, we consider the standard error estimate of the modified M , denoted
as

σ̂3 =

√√√√
3∑

i=0

3∑
j=1

(yij − µ̂?
i )

2/(12− I),

where I is the number of unique isotonic mean levels obtained in the isotonic
regression model.
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First, we evaluate the mean squared error (MSE) of σ̂1, σ̂2, and σ̂3. The
squared bias is estimated by b̂2

σ̂ = (¯̂σ−σ)2, with ¯̂σ =
∑L

j=1 σ̂j/L. The empirical

variance is estimated by v̂σ̂ =
∑L

j=1(σ̂j − ¯̂σ)2/L, leading to the simulation

estimate of the MSE given by ˆMSEσ̂ = b̂2
σ̂ + v̂σ̂.

Table 3 shows the squared bias, variance, and the MSE estimates of the
three standard error estimators under the null hypothesis and under the seven
alternative hypotheses. The smallest MSE values are obtained for σ̂3. Note
that although σ̂3 tends to have the highest squared bias, its mean square error
is the smallest due to the small variability of this estimator.
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Table 3: Squared bias, variance and MSE for σ̂1, σ̂2, and σ̂3. The numbers
in the table are on 10−3 scale.

Bias2 σ̂1 σ̂2 σ̂3

g1 0.739 1.593 0.954
g2 1.079 0.831 1.382
g3 0.805 1.548 1.02
g4 1.185 0.122 1.984
g5 1.115 0.199 1.982
g6 0.917 0.304 1.751
g7 0.706 0.117 1.843

Null 0.739 1.086 2.062
Variance σ̂1 σ̂2 σ̂3

g1 60.143 61.702 52.806
g2 61.001 61.883 53.308
g3 60.254 61.787 52.608
g4 57.691 58.198 51.585
g5 59.264 59.172 52.394
g6 60.8 60.795 53.321
g7 60.131 60.513 54.102

Null 60.143 59.686 51.092
MSE σ̂1 σ̂2 σ̂3

g1 60.881 63.295 53.76
g2 62.08 62.714 54.69
g3 61.059 63.335 53.628
g4 58.876 58.321 53.569
g5 60.379 59.371 54.376
g6 61.717 61.099 55.072
g7 60.837 60.63 55.945

Null 60.881 60.772 53.154
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6.2 Power Study for a Single Gene Setting

Another simulation study is conducted to evaluate the power of the five test
statistics, for a single gene setting. Similarly, as in the study presented in
Section 6.1, datasets of 12 arrays are generated under the seven order-restricted
models and the null model (Table 2). For each model (except for the null
model), 5000 datasets are generated with an increasing and a decreasing trend,
respectively. For the null model, 10,000 datasets in total are simulated for the
comparison of the error rates. The isotonic means of the seven alternatives
are specified in Table 2 with variance σ2 = 1.

For each dataset and each test, p-values are obtained from 10,000 per-
mutations. The results are summarized by the proportion of significant tests
(with permutation-based p-values ≤ 0.05) that correctly classify the increas-
ing or decreasing trend. For each λ the power and Type I error are shown
in Table 4. The standard error estimate of the power can be obtained by√

p̂(1− p̂)/10, 000 (Marcus 1976) where p̂ is the estimate for the power.
The estimated Type I error probability is around 5% for all the tests.

The power of the tests depends on the alternative. In general, regarding
Ē2

01, Williams’ and Marcus’ tests, we arrive at the same conclusion as Marcus
(1976), that the tests yield similar power. We can additionally observe that
M and the modified M tests perform similarly as the other three. Hence, for
a single gene setting, no test is uniformly better than the others across the set
of the considered alternative hypotheses.

6.3 Power Study Under Multiple Testing Adjustment

We have also investigated the power of the considered test statistics when deal-
ing with the multiple testing problem. Micorarrays with 5000 genes per mi-
croarray are generated. For each of the seven alternative models (see Table 2)
a set of 100 genes (1400 genes in total) with an increasing and a decreasing
trend is included. For the remaining 3600 genes no dose effect is assumed (the
null model). The p-values for the considered test statistics are obtained using
10,000 permutations, and the multiplicity adjustment is provided by using the
FDR-BH procedure.

In total, 100 datasets are generated for settings with λ = 1 and λ = 3.
Table 5 shows the power and FDR with their simulation-based standard error
estimates.

For λ = 1 the power of all the tests is very low. Moreover, FDR is not
controlled at the desired level of 5%. This is related to the multiplicity ad-
justment procedure: the total number of rejected hypothesis is small, and
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Table 4: Power of the five test statistics for a single gene setting when data
are generated under the eight models in Table 2.

Ē2
01 Williams Marcus M Modified M

g1 0.2261 0.1882 0.2173 0.2299 0.1996
g2 0.2772 0.2196 0.2404 0.2371 0.2331
g3 0.2245 0.2189 0.199 0.2259 0.2096

λ = 1 g4 0.2602 0.2943 0.2706 0.3046 0.3177
g5 0.3271 0.2684 0.2873 0.3134 0.301
g6 0.2662 0.2454 0.2345 0.2604 0.2819
g7 0.2953 0.2866 0.2744 0.3053 0.3231
g1 0.9739 0.9369 0.961 0.9669 0.9169
g2 0.9761 0.9058 0.9289 0.9462 0.887
g3 0.9772 0.9773 0.9678 0.9773 0.9416

λ = 3 g4 0.9787 0.9914 0.9873 0.993 0.994
g5 0.9871 0.9624 0.9761 0.9844 0.9822
g6 0.9684 0.9706 0.9579 0.9747 0.9856
g7 0.9803 0.9826 0.978 0.9883 0.9936

Null 0.0556 0.0584 0.0579 0.059 0.0564

Table 5: Power study of the five test statistics under multiple testing adjust-
ment.

λ = 1 Ē2
01 Williams Marcus M Modified M

Power 0.0354 0.0287 0.0289 0.0306 0.0309
SE(Power) (0.0049) (0.0046) (0.0046) (0.0048) (0.0048)
FDR 0.1944 0.2077 0.2135 0.1835 0.1907
Se(Power) (0.0507) (0.0579) (0.0568) (0.0534) (0.0534)
λ = 3 Ē2

01 Williams Marcus M Modified M
Power 0.9112 0.8454 0.8477 0.8905 0.8928
SE(Power) (0.0074) (0.0099) (0.0096) (0.0082) (0.0079)
FDR 0.0404 0.0424 0.0426 0.0399 0.0401
SE(Power) (0.0053) (0.0054) (0.0053) (0.0052) (0.0052)

the proportion of wrong rejections is not well estimated, i.e, FDR is not well
controlled.

With λ = 3 the power of the test statistics is greatly improved and FDR
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is well controlled. Ē2
01 seems to provide a slightly higher power compared to

the other tests. This can be explained by good performance in power under
individual seven models. Note that the power obtained using the modified M
test statistic is comparable. When multiplicity is taken into account, Ē2

01, M ,
and the modified M have higher power compared to Williams’ and Marcus’
tests (0.9112, 0.8905, and 0.8928 compared to 0.8454 and 0.8477, respectively).

7 Discussion

In this paper, we evaluate several test statistics for testing monotonic trend
in the relationship of gene expression and doses in a microarray context. In
particular, we consider Williams’ step down procedure (Williams 1971, 1972),
Marcus’ procedure (Marcus 1976), likelihood ratio statistic (Robertson et al.
1988), M (Hu et al. 2005), and the modified M test statistic. Directional in-
ference using these statistics is discussed for the situation when the direction
of the trend is unknown in advance. To avoid inference based on asymp-
totic theory, we consider the use of permutation tests. Accordingly, several
multiplicity adjustment methods including directional FDR are applied. BH
procedure controlling FDR provides the most powerful approach as compared
to the other methods (Tusher et al. 2001, Ge et al. 2003, Storey and Tibshirani
2003).

For the analysis discussed above, we observe comparable results for the
five test statistics. However, a difference in the results between M and Ē2

01

is observed. Modifying the number of degrees of freedom for the M statistics
improves the MSE of the estimate of the standard error. However, the simula-
tion study investigating power of the five test statistics under multiple testing
adjustment shows that the M and the modified M have a similar power.

As we argue in Section 4.2, a two sided inference can result in rejecting the
null hypothesis in both directions (pUp < α/2 and pDown < α/2). This implies,
as illustrated in Section 5.1, a non-monotone dose-response relationship. The
difference between the four t-type test statistics (Williams’, Marcus’, M , and
the modified M) is due to the estimates of the standard error. Williams and
Marcus used the unbiased estimator calculated under the unrestricted ordered
alternative, while M and the modified M use an estimator calculated under
the ordered alternative. Williams’ and Marcus’ tests tend to reject genes
when the difference calculated for the numerator exists and the standard error
calculated under the unrestricted alternative is small. In particular, when the
true means follow a simple tree (i.e., µ1 ≤ [µ2, µ3, µ4]), a unimodal partial
ordering (i.e., µ1 ≤ µ2 ≤ µ3 ≥ µ4) or a simple loop (i.e., µ1 ≤ [µ2, µ3] ≤ µ4)

23

Lin et al.: Testing for Monotonic Trends for Gene Expression Data

Published by The Berkeley Electronic Press, 2007



(Robertson et al. 1988), Williams’ and Marcus’ tests are more likely to reject
the null hypothesis of homogeneity of means (no dose effect) in favor of the
simple ordered alternative (HUp

1 or HDown
1 ) than M and the modified M test

statistics. We have shown that for a single gene the power of the four t-type
test statistics is comparable (Table 4). However, the power after adjusting
multiplicity obtained for M and the modified M is higher than those obtained
for Williams’ and Marcus’.

For a single gene the power obtained for Ē2
01 is comparable to the power

obtained for the four t-type test statistics. Moreover, after adjustment for
multiplicity, the power obtained for Ē2

01 is only slightly higher than M and the
modified M tests (shown in Table 5). In our opinion, if the question of primary
interest is the comparison between the highest and the lowest dose levels, Ē2

01,
M , and the modified M tests are comparable (in terms of FDR controlling and
power). However, if the question of primary interest is to detect a monotone
trend, the global test Ē2

01 is to be preferred.
In this paper, we focus on testing the null hypothesis against a simple

ordered alternative. Whenever the null hypothesis is rejected, the primary
interest is to identify the dose-response curve shape. For a dose-response
experiment with K+1 dose levels, there is a finite number of isotonic models
which can be fitted to the data. For example, for an experiment with four dose
levels there are seven upward monotone models (given in Table 2) and seven
downward monotone models, which can be fitted to the data. The testing
procedures discussed in this paper allows us to identify genes, for which the
dose response curve is monotone, but not to identify the dose-response curve
shape. The latter can be done using a model selection procedure, based on
information criteria. Such a procedure will be presented in a future paper.

The R library implementing the methods presented in this paper is avail-
able from the first author.
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