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1 Overview

In the period since my previous research statement, I completed my research on

hierarchical FDR controlling procedures (Yekutieli, 2008) and then decided to

change the focus of my research to Bayesian methodology. I will discuss my work

on Bayesian methodology in the next section. The emphasis in my collaborative

efforts also shifted from frequentist analysis (Rubinshtein et al., 2008; Kafkafi

et al., 2008; Kafkafi et al., 2009; Benjamini et al., 2009) towards Bayesian anal-

ysis. I am collaborating with Prof. Ziv Shkedy from the Center for Statistics

in Hasselt University, co-editor and co-author of the monograph on analysis of

dose response microarray experiments (Lin et al., 2012), on implementation of

Bayesian FDR in analysis of dose response microarray experiments. I am collab-

orating with Dr. Ruth Heller from TAU on developing Bayesian FDR methodol-

ogy for discovering replicability in Genome-Wide Association Scans and we also

plan on implementing similar ideas for analyzing ChIP-sequencing data. I am

collaborating with Prof. Edward George from the University of Pennsylvania

on providing Bayesian post-model selection inference, we also plan to develop a

Bayesian FDR framework for model selection. I am collaborating with Dr. Amit

Saad on developing a Bayesian approach for integration of results from random-

ized multi-center clinical trials. I am also collaborating with Asaf Weinstein,

a PhD student at the University of Pennsylvania, on frequentist methodology

for making directional discoveries and constructing confidence intervals for the

discovered effects.

2 My work on Bayesian methodology

Bayesian inference is generally assumed to be unaffected by selection (Senn,

2008). In Yekutieli (2012) I show that this is not necessarily the case. The

observation that selection may affect Bayesian inference carries the important

implication that in almost all Bayesian analyses (especially analyses of large
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data sets in which there are many potential parameters to choose from), it is

necessary to specify explicitly, for each potential parameter, a selection rule

that determines when inference is provided for this parameter and to adjust the

inference accordingly. In Yekutieli (2012) I present a framework for providing

Bayesian inference for selected parameters. The second contribution is method-

ology for selecting parameters. I will discuss this aspect of my work in Section

2.2.

2.1 Bayesian adjusted inference for selected parameters

From a Bayesian perspective selective inference can be expressed as follows. θ

is the parameter, Y ∈ Ω is the data. The parameters that may or may not be

selected are functions of θ: h1(θ), h2(θ), . . . , and for each hi(θ) there is a subset

Si
Ω ⊆ Ω, such that inference is provided for hi(θ) only if y ∈ Si

Ω is observed.

This means that providing selective inference is a truncation problem in which

only realizations of (θ, y) with y ∈ Si
Ω are used for providing inference on hi(θ).

Notice that selective inference for each parameter involves a separate truncation

problem, and that the truncation involves both the data and the parameter. I

show that the way that truncation acts on the parameter determines whether

and how the Bayesian inference is affected by selection.

I call θ a fixed parameter in cases where only the conditional distribution

of Y given θ is truncated, θ is a random parameter in cases where the joint

distribution of θ and Y is truncated. The fixed parameters are generally fixed

unknown constants whose value can be thought to be generated once from a prior

distribution and remain unchanged, while the random parameters are usually

the random effects whose values are generated, and thus truncated, concurrently

with the data. For example, in an experiment comparing m groups of laboratory

yields, where θ = (θ1 · · · θm) is the vector of expected yields and Y = (Y1 · · ·Ym)

is the vector of mean yields. θ is a fixed parameter when the groups correspond

to different methods of making the particular chemical product. But when the

groups correspond to different batches made by the same method θ is a random

parameter.

Bayesian selective inference for hi(θ) is based on the truncated conditional

distribution of θ given Y = y, which I call the selection-adjusted posterior

distribution. I show that if θ is a random parameter than the selection-adjusted

posterior distribution is the same as the posterior distribution of θ and thus the

Bayesian inference does not have to be corrected for selection. However, if θ is
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a fixed parameter, or if θ is elicited a non-informative prior, then the selection-

adjusted posterior distribution is different than the posterior distribution and

thus the Bayesian inference must be corrected for selection.

2.2 Bayesian FDR controlling selection rules

The more widely studied aspect of selective inference is how to select interesting

parameters. The frequentist approach to selecting parameters identifies selecting

a parameter, an action called making a statistical discovery, with the rejection

of a null hypothesis. A true discovery is rejecting a false null hypothesis and

a false discovery is rejecting a true null hypothesis, i.e. committing a type-

I error. Thus the decision whether to select multiple parameters is phrased

as a multiple testing problem. In post-hoc analysis (Scheffe, 1953) the set

of parameters that may be selected is the set of all contrasts of a vector of

effects, and the selection rule that is applied a Family-Wise Error rate controlling

multiple testing procedure that ensures that the probability of making at least

one type-I error is less than α. Benjamini and Hochberg (1995) suggest a new

paradigm for selecting interesting parameters: selection via multiple testing

procedures that control the FDR at level α, which can be thought of as a

frequentist mechanism for ensuring that the marginal conditional probability of

committing a type-I error given selection is less than α.

Scott and Berger (2006) present a Bayesian approach for discovering active

genes in a microarray experiment that declare a gene active if the posterior

expected loss of this action is smaller than the posterior expected loss of declar-

ing the gene inactive. However, the more common form of Bayesian parameter

selection procedures are Bayesian FDR controlling methods that select a param-

eter if the probability of making a type-I error, for this parameter, is less than

α. In Efron et al. (2001) a parameter is selected if the posterior probability of

making a type-I error (the local FDR) is less than α, while Storey (2002, 2003)

suggests specifying selection rules for which the conditional distribution of mak-

ing a type-I error given selection (the pFDR) s less than α. Despite its great

conceptual importance, the practical implication of Bayesian FDR methodology

has been small. The only difference between the BH procedure and a pFDR

controlling procedure is calibration – the level q the BH procedure controls the

pFDR at level m0q/m instead of q. In fact, the pFDR controlling suggested in

Storey (2002) is equivalent to an adaptive BH procedure (Benjamini et al., 2006)

in which the BH procedure is applied mq/m̂0 to ensure level q FDR control,
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with m̂0 being an estimate of m0.

In Yekutieli (2012) I study the relation between Bayesian selective inference

and Bayesian FDR methodology and generalize Bayesian FDR methodology to

increase its scope of application. I show that parameter selection can be ex-

pressed as a Bayesian selective inference problem in which θ is treated as a

random parameter (regardless of whether it is indeed a random parameter) and

that the local FDR is the posterior expected loss and pFDR is the average risk

for the 0 − 1 loss corresponding to to the event that null hypothesis is true. I

generalize Bayesian FDR methodology by allowing the discovery event associ-

ated with selecting a parameter to be any subset of the parameter space not just

the rejection of a null hypothesis. Note that this with this generalization I can

apply the FDR paradigm for selecting parameters in more complex situations.

For example, to discover that θi is the largest component in θ = (θ1 · · · θm) I

only need to verify whether Pr{θi = max(θ1 · · · θm)| Data} ≥ 1 − α, whereas

previously discovering that θi is the largest component involved testing the

pairwise comparisons between θi and the other components of θ. Generalizing

Storey (2007), I show that for any discovery event the optimal Bayesian FDR

controlling selection rule is specified by the local FDR. I also present an eBayes

approach for controlling the FDR for selecting parameters with different prior

distributions.
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