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1 Overview

My research includes development, theoretical study, and implementation of
False Discovery Rate controlling methodology. I currently participate in two
NIH funded projects: Microarray analysis of morphine’s behavioral effects –
collaboration with Prof. Benjamini and a group of scientists from the University
of Maryland, headed by Prof. Elmer; Synthetic lethality based assay for high
through-put screening drug discovery – collaboration with Prof. Benjamini
and Prof. Canaani from the Biochemistry Department at TAU. I collaborate
with researchers from TAU on various projects: Microarray analysis with Prof.
Chamovitz from the Department of Plant Sciences; discovery of over-represented
Gene Ontology terms with Dr. Sharan from the School of Computer Science;
statistical inference in Bioinformatic with Dr. Pupko from the Department of
Cell Research and Immunology. I also collaborate with researchers from abroad:
methodology for the analysis of dose response microarray experiments with Prof.
Shkedy, from the Center for Statistics in Hasselt University, Belgium; behavioral
phenotyping of exploratory rat behavioral for screening chemical compounds
with Dr. Kafkafi and Prof. Elmer from the University of Maryland. The focus
of my theoretical research is hierarchical FDR controlling procedures (supported
by a grant from the Israel Science Foundation).

In Section 2 I provide a brief outline of some of the main research directions
in FDR methodology, highlighting my contributions (underlined) and how they
relate to the work of other researchers. In Section 3 I discuss hierarchical FDR
testing. Section 4 is devoted to my planned research on Bayesian FDR.

2 FDR methodology

Benjamini and Hochberg introduced the FDR in 1995 as an alternative mea-
sure for type I error, in multiple testing, to the family wise error rate (FWE –
the probability of making at least one type I error). Benjamini and Hochberg
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(1995) argued that in many cases FWE control is not necessary, and that it is
sufficient to control the proportion of false discoveries out of the total discoveries
made. Benjamini and Hochberg (1995) also introduced a FDR controlling pro-
cedure (BH procedure), and proved that it controls the FDR for independently
distributed test statistics.

Implementing the Westfall and Young (1993) resampling based multiple test-
ing approach to control the FDR, Yekutieli and Benjamini (1999) introduced
FDR adjusted p-values, and used them to scan the northern hemisphere for
geographic regions whose atmospheric pressure is correlated to the precipita-
tion in Israel; this methodology was later applied to microarray analysis in
Reiner et al. (2003). However, the main significance of Yekutieli and Benjamini
(1999) is that it turned control of the FDR from a multiple comparisons prob-
lem to an estimation problem much more amenable to statistical investigation:
instead of comparing the sorted p-values to a series of critical values determined
by the FDR level q (the BH procedure), estimate the FDR in a series of fixed
rejection region tests. Storey (2002) and Storey (2003) discussed a Bayesian
setting for the fixed rejection region FDR and introduced the positive FDR
and the q-value with the following, very appealing, Bayesian interpretation: the
conditional probability that a discovery is a false discovery given that its test
statistic is in the rejection region. Efron et al. (2001) suggested empirical Bayes
estimation of the FDR and even considered conditioning locally on the value of
the test statistic, not just the rejection region. Genovese and Wasserman (2004)
developed a framework in which the False Discovery Proportion, the number of
false rejections divided by the number of rejections in a continuum of fixed
rejection regions, is treated as a stochastic process.

Benjamini and Yekutieli (2001) generalized the work of Sarkar and Chang
(1997) and Sarkar (1998) to derive an explicit expression for the FDR, proved
that the BH procedure controls the FDR for positively dependent test statis-
tics, and provided a general upper bound for the FDR of the BH procedure.
Benjamini and Yekutieli (2005b) verified that the BH procedure can be validly
applied to control the FDR in QTL mapping. Yekutieli (2006) presented a mod-
ification of the BH procedure for testing non positive dependent test statistics,
and introduced a FDR controlling procedures for testing pairwise comparisons.

When some of the null hypotheses are not true, FDR controlling procedures
are too conservative by a factor which is the proportion of the true null hy-
potheses among the the total number of hypotheses – m0/m. In adaptive FDR
procedures m0/m is estimated and then used to derive a more powerful test-
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ing procedure (Benjamini and Hochberg, 2000; Storey, Taylor and Siegmund,
2004; and others). Benjamini, Krieger and Yekutieli (2006) introduce an adap-
tive procedure in which the BH procedure is applied twice: once at level q to
estimate m0, and a second time at level qm/m̂0 to decide which hypotheses to re-
ject; they also provide exact FDR computations and prove FDR control of adap-
tive procedure for independently distributed test statistics. Benjamini, Krieger
and Yekutieli (2006) show in simulations that their procedure controls the FDR
for dependent test statistics, and that the other, more powerful adaptive proce-
dures, fail to control the FDR for dependent test statistics. Gittelman (2007)
discusses the use of bootstrapping to approximate the sampling distribution of
m̂0 and to construct a powerful testing procedure which controls the FDR for
dependent test statistics.

Benjamini and Yekutieli (2005a) address the problem of providing statisti-
cal inference for selected parameters: e.g. consider a microarray experiment in
which the goal is to discover differentially expressed genes, and then to construct
a valid marginal confidence interval for each discovered gene. The solution sug-
gested in Benjamini and Yekutieli (2005a) is control over the False Coverage
statement Rate (FCR) – a generalization of the FDR, defined as the expected
proportion of non-covering confidence intervals out of the total number of confi-
dence intervals. For independently distributed parameter estimators Benjamini
and Yekutieli (2005a) prove that the FCR of 1−Rq/m marginal confidence in-
tervals for a subset of R parameters chosen out of m parameters is less than or
equal to q. Benjamini and Yekutieli (2005a) also show that the BH procedure is
simply a particular example of selective inference, and provide a coherent frame-
work for providing selective inference which includes the discovery of non-zero
parameters, assigning a sign to each non-zero parameter, and constructing valid
confidence intervals for each non-zero parameter.

In his 2001 NSF conference talks at Temple University, Yosef Hochberg iden-
tified the problem of Multiple Comparisons with Selective and Simultaneous
Inference (he attributed this point of view to earlier work by Joseph Putter –
reference unavailable). Benjamini and Yekutieli (2005a) argue that the problem
of selective inference and the simultaneity problem are two distinct problems
encountered when trying to provide inference for multiple parameters. The si-
multaneity problem is directly caused by multiplicity, it is the need to provide
marginal inference that applies to all the parameters – e.g. marginal confidence
intervals that cover all the parameters with probability 0.95, and the solution
to this problem is FWE adjusted inference. Selective inference can occur when
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considering a single parameter, however it is more common when initially consid-
ering multiple parameters. The construction of level q FCR adjusted confidence
intervals usually implies that approximately 1 − q of the confidence intervals
cover their respective parameters; thus the probability that a FCR adjusted
confidence interval covers a selected parameter is ≈ 1− q.

3 Hierarchical FDR procedures

Existing FDR methodology can only be applied to test a single family of hy-
potheses. Yekutieli (2007) introduces a hierarchical testing approach that con-
trols the FDR in more general settings – complex large-scale studies which
involve considering multiple families of tested hypotheses. In this testing ap-
proach the tested hypotheses are arranged in a tree of disjoint subfamilies, and
the subfamilies of hypotheses are hierarchically tested by the BH procedure.
Yekutieli (2007) derives an approximation for the multiple family FDR for in-
dependently distributed test statistics: q – the level at which the BH procedure
is applied, times the number of families tested plus the number of discoveries,
divided by the number of discoveries plus 1; it is also shown that hierarchical
testing inherently implies FDR control, thus the universal bound for the FDR
in the new hierarchical testing approach is 2× 1.44× q.

The BH procedure has been successfully applied to provide adaptive scalable
thresholding (the threshold is determined by the proportion of discoveries in
the data, not the number of tested hypotheses) which ensures reproducible
results (approximately 1 − q of the discoveries are true discoveries); the BH
procedure has also been applied in model selection to produce models with small
estimation error (Abramovich and Benjamini, 1996). Yekutieli (2007) explains
that if the data analyzed has an hierarchical structure, the hierarchical FDR
procedure passes over the families of tests with no discoveries and adaptively
tests the families with the large proportion of discoveries. Yekutieli (2007) shows
through simulations that hierarchical FDR procedures control the FDR and can
yield substantially more discoveries than the BH procedure, and used in model
selection it produces models with more terms and smaller MSE.

In general, I think the fact that the hierarchical approach yields more FDR-
controlled discoveries points to a more important property – selective inference
based on hierarchical testing has smaller estimation error. Recall that the main
message in Benjamini and Yekutieli (2005a) is that selection biases and corrupts
estimation; thus by reducing the dimension of the testing problem, and the
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selection, the hierarchical testing produces better estimation. To illustrate this
point consider the idealized example of families of m null hypotheses in a tree
with L level: assume that there are two types of families – (a) families made of m

true null hypotheses and (b) families in which π1 of the hypotheses are false null
hypotheses; the first level of the tree is a type (b) family; for Levels 1 through
L− 1, true null hypotheses are parent to type (a) families following level of the
tree and false null hypotheses are parent to type (b) families on the following
level of the tree. Thus the entire testing problem includes almost mL hypotheses
and the proportion of false null hypotheses is slightly more than πL

1 . On the
other hand, the hierarchical approach essentially involves separately applying
the BH procedure to the type (b) families – i.e. testing families of L hypotheses
in which π1 of the null hypotheses are false – logarithmically decreasing the
dimension of the problem and the extent of selection.

The microarray analysis in Yekutieli et al. (2006) is the first application of
the hierarchical FDR approach. The data includes microarrays measuring the
expression levels of 27, 000 genes in two replicate assays taken from five areas
in the brains of mice from ten inbred mice strains. A two-way ANOVA, with
strain and brain region main effects, is fitted for each gene in order to identify
genes with strain expression differences. The researchers are also interested
in testing the interaction terms to locate areas in the brains and strains with
abnormal expression levels. In the standard FDR approach the two questions
are addressed separately: applied at level 0.05 to test the strain effect for the
27, 000 genes the BH procedure yielded 957 discoveries; however, there were no
discoveries when the 0.05 BH procedure was applied to test the 1.35 million
interaction terms. In the hierarchical approach the discovery of genes with
significant strain effects is considered as the initial question for each gene, and
localizing the effect to specific strains and brain regions are considered follow-up
questions for genes with significant strain effects. Separately applying the 0.05
BH procedure in each of the 957 families of interactions yields 170 interaction
discoveries.

The hierarchical FDR approach has also been used to select log-linear model
in a Behavioral Genetic application: Kafkafi et al. (2007) present an algorithm
for discovering behavior patterns that differentiate between mutant and wild-
type rats. A filmed session of exploratory is coded into a series of nine behavioral
relevant endpoints (Drai and Golani, 2001), which are discretized and summa-
rized in a 9-way contingency table; the algorithm scans these immense, sparse,
contingency tables for patterns with significant frequency differences between
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mutant and wild-type rats, and the main challenge is to work at the highest
resolution level and still avoid over-fitting. In the hierarchical approach this
problem is overcome by using a hierarchical FDR procedure to fit a log-linear
model to the mutant rat and wild-type rat contingency tables (Maltser, 2006):
at the first stage the 0.05 BH procedure is applied to test the terms in the main
effects model; at the second stage the 0.05 BH procedure is separately applied
to test two-way interactions with each of the significant main effects from the
first stage; in the third stage, the 0.05 BH procedure is separately applied to
test three-way interactions with each of the significant two-way interaction; and
so on. The tables are then scanned for the behavior patterns with the largest
differences between the fitted values of the log-linear models.

Dr. Sharan and I are currently developing a hierarchical FDR procedure for
the discovery of over-represented Gene-Ontologies. The Gene Ontology (GO)
database (Ashburner et al., 2000) contains the hierarchy of current GO terms,
and links between genes and the associated GOs that define their function.
Scanning the database for GO terms which are over-represented in a list of
differentially expressed genes from a microarray experiment (Beissbarth and
Speed, 2004) is widely used for understanding biological processes. In our new
approach the BH procedure is applied to test for over-representation in the
high-level ontologies; and at later stages the BH is repeatedly applied to test
for the conditional over-representation in families of terms corresponding to
over-represented parent terms.

My current study of the hierarchical FDR approach is focused on three
questions: (1) the results in Yekutieli (2007) were derived for independently dis-
tributed test statistics. In most applications the test statistics are dependent,
thus it is very important to study the effect of dependency on the FDR of hierar-
chical FDR procedures. the expression for the hierarchical derived in Yekutieli
(2007) is a multiplicative factor (shown to be < 1.44) times the aggregate FDR
computed across families. The results in Benjamini and Yekutieli (2001) indi-
cate that the FDR is controlled when the BH procedure is applied to test a single
family of dependent test statistics, however my preliminary results suggest that
dependency may affect the aggregation of the FDR and also the value of the
multiplicative factor. (2) At the beginning of this section I speculated that es-
timation via hierarchical FDR may yield small estimation error. I aim to study
the estimation error of selective inference based on hierarchical FDR testing and
compare it with selective inference based on the BH procedure. Note that here
we consider marginal estimation error for selected parameter, whereas in the
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application of FDR for model selection (Abramovich et al., 2006) it is common
to consider the estimation error for the m-dimensional parameter (computed
in a lp norm). (3) A related question is the construction of valid confidence
intervals for hierarchical FDR discoveries. Note that the method suggested in
Benjamini and Yekutieli (2005a) cannot be applied, because in the hierarchical
FDR setting it is not clear how to define m – the number of tested parameters
and R – the number of selected parameters. Furthermore, in the hierarchical
approach we are often interested in confidence intervals for functions of several
discoveries (e.g. the fitted values in the log-linear models are sums of model
parameters estimated in the hierarchical log-linear model selection).

4 Bayesian adjusted inference for selected pa-
rameters

My goal in this research is to develop methodology for providing better selective
inference. Control over the FCR is a frequentist mechanism for providing valid
selective inference: it measures the strength of selection by the proportion of
selected parameters – R/m, and adjusts the statistical inference accordingly.
However it has two major limitations: (a) it attributes the same strength of
selection to all the selected parameters – clearly there is no need to adjust for
selection a parameter that is always selected; (b) the mode of adjustment is
only determined by the type of statistical inference given (the same confidence
interval but with a larger confidence level) and not by the selection criterion,
whereas Benjamini and Yekutieli (2005a) show that adjustment is not necessary
for some types of selection. Note that existing Bayesian FDR methodology
(Storey, 2002; Storey, 2003; Efron et al., 2001) offers the same type of statistical
inference as the BH procedure – thus, implicitly, it suffers from limitations (a)
and (b). In my new research I will try to generalize Storey’s Bayesian FDR
approach, and I think that the key to the problem is to answer a question that
has puzzled me for some time: is Bayesian adjustment for selected inference
necessary?
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