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The multiplicity problem is evident in the simplest form of statistical
analysis of gene expression data – the identification of differentially
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cases, it may be necessary to consider testing millions of hypo-
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discovery rate (FDR) controlling procedures; (b) apply FDR-control-
ling procedures to a selected subset of hypotheses; (c) apply hierar-
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1 Introduction

1.1 Multiplicity issues in assessing differentially expressed genes

Identifying differentially expressed genes under two experimental conditions, possi-
bly a treatment group versus a control, is the most direct form of utilizing expression
data. Testing differential expression at each of the many genes, multiple testing is an
immediate concern. When many hypotheses are tested, the probability that a type I
error is committed increases sharply with the number of hypotheses. This problem
of multiplicity is not unique to microarray technology, yet its magnitude here, where
a single experiment may involve many thousands of genes, dramatically intensifies
the problem.

While a control of the family-wise error rate (FWE) is needed in some cases, the
multiplicity problem in microarray data analysis does not require protection against
even a single type I error, so that the severe loss of power involved in such protection
is not justified. Instead, it may be more appropriate to emphasize the proportion of
errors among the identified differentially expressed genes. The expectation of this
proportion is the false discovery rate (FDR) of Benjamini and Hochberg (1995,
hereafter BH).

Advances in FDR methodology offer improved ways of incorporating FDR con-
trol in gene expression analysis. Reciprocally, the extensive studies by statisticians
on microarray data have advanced our understanding of the FDR approach and
enriched the methodology. We review the research related to the simultaneous test-
ing of a family of hypotheses in Section 2 (a section that the reader more familiar
with the area may choose to skip). Controlling the FDR in complex and large-
scale studies of gene expression, discussed in later sections, is the focus of this
paper.

1.2 Controlling FDR over a very large family

The FDR criterion is scalable in the sense that enough power can be retained even
when testing a very large family, so simply using the linear step-up procedure in
BH may accommodate a research direction that involves testing a very large fam-
ily of hypotheses. In the following sections we present, and illustrate with real data
examples, two additional approaches for controlling the FDR over a very large fam-
ily. The second approach is to select a subset of hypotheses from the large pool
of hypotheses considered, using test statistics that are independent from the those
used to test the hypotheses, and apply the BH procedure to the subset of selected
hypotheses. The third approach is to arrange the families of hypotheses in a hierar-
chical tree structure and apply a hierarchical testing procedure to the tree of hypoth-
eses, where a hypothesis is tested only if its parent hypothesis is rejected, and where
all hypotheses sharing the same parent are tested simultaneously. If the testing at
each branch of the tree is conducted using the linear step-up procedure one can get
bounds on the overall FDR, but it now matters what structure has the set of rejected
© 2006 The Authors. Journal compilation © 2006 VVS.
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hypotheses that are of interest to the researchers. In Section 3 we introduce trees of
hypotheses, hierarchical testing and three types of FDR that may be relevant. We
discuss the theoretical properties of hierarchical FDR testing and demonstrate their
use.

1.3 Complex research questions

The common concern of researchers of multiple inferences is the level of FDR (or
FWE) in the set of rejected hypotheses when testing a family of null hypotheses. But
when it comes to complex, large-scale studies, it is no longer clear that all hypothe-
ses encountered form a single family, as demonstrated in the sequel. Westfall and
Young (1993) suggest three guidelines for determining whether a set of tests should
be considered a ‘family’ of tests, thus tested in a multiple testing procedure. (a) The
questions asked form a natural and coherent unit. (b) All tests are considered simul-
taneously. (c) It is considered a priori probable that many or all members of the
family of null hypotheses are in fact true. It is important to note that the guidelines
are subjective in the sense that a family of hypotheses is determined not only by the
nature of the hypotheses tested but also by the goal of the study and by the prior
knowledge of the researcher. The time may be ripe for a more serious discussion of
the above criteria, but even without such a discussion, it becomes clear that the set
of hypotheses that is of interest to the researcher in a single study does not necessar-
ily form a single family of hypotheses, as demonstrated in the sequel. We call such
a study, comprising of several families of hypotheses, a complex study. Complex
studies are not limited to microarray analysis: even in two-way anova all pairwise
comparisons of one factor and all pairwise comparisons of the second factor are
usually not treated jointly as a single family, but rather as two families, and multi-
plicity is controlled over each one separately. The novelty in microarray data is in
the scale of the problem. For illustration, some of the statistical analyses described
in this paper involve testing hypotheses in tens of thousands of separate families
– a family of hypotheses for each of the ∼26,000 genes in the array. Therefore, a
problem that could be overlooked in a single two-way anova can no longer escape
attention in complex microarray studies.

Some authors have already discussed the possibility of controlling the FDR sep-
arately in several families of hypotheses. Abramovich et al. (1998) discussed the
asymptotic theoretical properties of this practice. Lee et al. (2002) suggested dividing
a search for genetic determinant of multiple quantitative traits into separate FDR-
controlled searches for each quantitative trait, and the practice was further discussed
in Benjamini and Yekutieli (2005). In general, the relationship between the FDR
in each of the families of tested hypotheses and the combined FDR is complicated.
If all the hypotheses tested are true null hypotheses then the FDR will equal the
FWE, and the combined FDR will increase with the number of families tested. On
the other hand, if each family of hypotheses also consists of false null hypotheses
with near-zero P-values then the proportion of false discoveries made by FDR
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controlling procedure applied on each family will be approximately q, and the over-
all FDR of the entire study will also be approximately q.

In response to this complexity, our second offering in this paper is a compre-
hensive framework, based on the hierarchical FDR approach, for analyzing and
addressing the multiplicity problem in complex studies. We suggest dividing the sta-
tistical analysis into several main research directions, or research questions, and con-
trolling the FDR for each research direction separately. It is even not necessary to
specify all the research directions simultaneously; additional research directions can
be included at later stages of the analysis.

If the FDR is controlled locally in each research direction and the total number
of discoveries greatly exceeds the number of research directions considered, then the
FDR is also controlled globally in the entire study.

The specification of research directions and the choice of families of null hypoth-
eses influence the discoveries made. Therefore, the interpretation of the results of
a complex study is impossible without a detailed account of the choice of fami-
lies of tested hypotheses, the considerations guiding the researcher in constructing
the families of hypotheses, and the multiplicity corrections applied. We therefore
describe in some detail the experimental setting and research questions involving
gene expression-indifferent brain regions, which are of great biological interest, and
do not merely serve as the vehicle for explaining and demonstrating our approaches.

2 The FDR

2.1 The FDR criterion

The traditional approach in simultaneous testing has been to construct a procedure
that controls the probability of making one or more type I error – the FWE. Ben-
jamini and Hochberg (1995) offered another measure for the erroneous rejection
of a number of true null hypotheses, the FDR. The FDR is the expected propor-
tion of erroneously rejected null hypotheses among the rejected ones. When some of
the tested hypotheses are in fact false, FDR-control is less strict than FWE control,
and thus FDR-controlling procedures are potentially more powerful. The analysis of
gene expression data is a case where FDR control suffices, as its purpose is to extract
genes that are potential candidates for further investigation. A single or even several
erroneous rejections will not distort the conclusions at this stage of the investigation,
as long as their proportion is small. Such errors do incur economical cost in that
pursuing them at later stages will result in loss of time and money, so we would like
to minimize their number. However, to ensure that the probability of even one such
erroneous rejection will result in large loss of power, appears to be over-conservative.
Controlling the FDR at some level q allows the researcher to control the proportion
of effort invested in vain, on the average, at the next stage of the investigation.

In order to define the FDR precisely we need a few notations. Consider a family
of m simultaneously tested null hypotheses H1, . . ., Hm, m0 of which are true and
© 2006 The Authors. Journal compilation © 2006 VVS.
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m1, are false. For each hypothesis, Hi , a test statistic is calculated along with the
corresponding P-value Pi . Let R denote the number of hypotheses rejected by a
procedure, and V the number of true null hypotheses erroneously rejected. Let Q
denote the proportion of false discovery V/R when R > 0, and 0 otherwise. Then
FDR is defined as FDR=E(Q).

2.2 The linear step-up procedure in (BH)

This procedure makes use of the ordered P-values P(1) ≤· · ·≤P(m). Denote the cor-
responding null hypotheses H(1), . . ., H(m). For a desired FDR level q, the ordered
P-value P(i) is compared with the critical value i ·q/m. Let k =max

{
i : P(i) ≤ i ·q/m

}
.

Then reject H(1), . . ., H(k), if such a k exists.
Benjamini and Hochberg (1995) proved that the BH procedure controls the FDR

at the level q · m0/m ≤ q for independently distributed test statistics. Benjamini and
Yekutieli (2001) further show that the FDR is controlled for positively dependent
test statistics as well. The type of positive dependency needed is a weak form of
positive regression dependency – positive regression dependence of the entire set of
test statistics on each of the test statistic corresponding to the true null hypotheses.
In particular, the condition is satisfied by positively correlated normally distributed
one-sided test statistics, and their Studentized t-tests.

For more general cases, in which the positive dependency conditions are not appli-
cable, Benjamini and Yekutieli (2001) prove that replacing q with q/�m

i =1

(
1/i

)
in

the BH procedure will provide FDR control for all types of test statistic distribu-
tions. However, this modification is needlessly conservative for the microarray prob-
lem. The simulation study presented in Reiner, Yekutieli and Benjamini (2003)
demonstrates that applying the BH procedure at level q already controls the FDR
for identifying differentially expressed genes.

2.3 Adaptive procedures

As the BH procedure controls the FDR at a level too low by a factor of m0/m, it
is natural to try to estimate m0 and use q∗ =q ·m/m̂0 instead of q to gain more power.
In fact, in a well-defined asymptotic context, Genovese and Wasserman (2002)
showed that the BH procedure at level q · m/m0 is the most powerful level q FDR-
controlling procedure, in the sense that it minimizes the expected proportion of the
hypotheses for which the alternatives hold among the non-rejected ones (minimiz-
ing the false non-discovery rate). Estimating m0 from a set of P-values goes back to
Schweder and Spjøvtoll (1982). Hochberg and Benjamini (1990) formalized their
approach and synthesized an adaptive procedure that controls the FWE (see Turk-
heimer, 2001, for further progress). Benjamini and Hochberg (2000) suggest the
adaptive procedure that combines the estimation of m0 with the BH procedure. The
procedure first uses the linear step-up procedure at level q, and stops if no hypoth-
eses are rejected. Otherwise, m0 is estimated by the following algorithm:
© 2006 The Authors. Journal compilation © 2006 VVS.
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1. Compute m0[k]= (m+1−k)/(1−P(k)).
2. Starting with k =2, stop when for the first time m0[k] > m0[k].
3. Estimate m̂0 =Ceiling(min(m0[k], m)).
4. Use the linear step-up procedure with q∗ =q ·m/m̂0.

A related method of estimating m0, actually m0/m=�0, appeared in Storey (2002)
and implemented in Significance analysis microarray (SAM) (Storey and Tibshirani,
2003) in the context of the Bayesian FDR discussed below. Given �, a tuning
parameter, use �̂0(�)= (m − R(�))/((1 − �) · m) as an estimator of �0, where R(�) is
the number of P-values less than �. They further suggest choosing � by bootstrap-
ping.

It is quite impossible to review all methods suggested over the last 5 years to esti-
mate the factor �0 without devoting a full review to the topic. It is interesting to
note that most of these methods were motivated by microarray applications where
the many genes offer opportunities to estimate this factor either parametrically or
non-parametrically. (For a partial list see Jiang, 2004.)

We would like to emphasize two adaptive procedures of proven properties.
Storey, Taylor and Siegmund (2004) prove that adhering to fixed � and adding
1 to the numerator of the above estimate of �0, the above-the-linear step-up with q
replaced by q∗ =q/�̂0(�), controls the FDR at q for independent test statistics. Ben-
jamini, Krieger and Yekutieli (2001) suggest a two-stage procedure with proven
FDR-controlling properties under independence and show in simulations that their
procedure offers FDR control under positive dependency. The procedure is as fol-
lows: apply the BH procedure at level q′ =q/(1+q), let r1 be the number of rejected
hypotheses; if r1 =0 reject no hypotheses and stop; if r1 =m reject all m hypothe-
ses and stop; otherwise, let m̂0 =m − r1, and apply the BH procedure with q∗ =q′ ·
m/m̂0.

Adaptive methods offer better performance only by utilizing the difference
between m0/m and 1. If the difference is small, i.e. when the potential proportion
of differentially expressed genes is small, they offer little advantage in power while
their properties are not well established under dependency. As more specific genes
are pre-selected to the microarray experiments, such that the proportion of differen-
tially expressed genes is not small, m0/m gets smaller, and the adaptive procedures
will offer a more detectable advantage.

2.4 Multiplicity-adjusted P-values

The results of a multiple testing procedure can be reported as multiplicity-adjusted
P-values. As with the regular P-value, the adjusted P-value of each hypothesis is
compared with the desired significance level of the test, and if smaller, the hypothe-
sis is rejected. For an FWE-controlling procedure, the adjusted P-value of an indi-
vidual hypothesis is the lowest level for which FWE ≤�. For instance, the adjusted
P-value for the Bonferroni procedure is simply Pi ·m.
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For an FDR-controlling procedure, the adjusted P-value of an individual hypoth-
esis is the lowest level of FDR for which the hypothesis is included in the set of
rejected hypotheses. Thus the adjusted P-value using the linear step-up procedure is
PBH

(j) =min
j≤i

(Pi ·m/i).

2.5 Bayesian formulation of the FDR

A different line of development in FDR methodology is reflected in the evolution
of the SAM software. Tusher, Tibshirani and Chu (2001) addressed the estimated
FDR at a fixed threshold using resampling. Storey (2002, 2003) offered Bayesian
interpretation to the FDR: by conditioning on at least one rejection being made, the
positive FDR can be defined pFDR=E(V/R|R > 0), with �0 =m0/m as a prior in a
mixture model, the pFDR has an immediate Bayesian interpretation. Furthermore,
with an emphasis on the estimated FDR using a given threshold, Storey suggested
that the results of the study be described by the levels at which each hypothesis will
be rejected – the q-values.

With the use of estimate for �0, Efron et al. (2001) gave an empirical Bayes inter-
pretation of FDR. Given a statistic Z measuring the differential expression of a gene
and having density f , define the local FDR as fdr(Z)=p0f0(Z)/f (Z), where p0 is the
probability that a gene is unaffected and f0 the density of Z for unaffected genes.
Thus fdr(Z) is the a posteriori probability that a gene with score Z is unaffected.
The FDR is the average of the local FDR over the rejection region.

Storey and Tibshirani (2003) presented FDR control by means of maximizing
rejections while observing the estimated q-value, the smallest estimated FDR for
which this P-value is still rejected. This suggestion completed the circle, in the sense
that the latter is the same as working with the FDR adjusted P-values using an
adaptive BH procedure with �̂0(�) as an estimator (see Section 2.3). Thus the two
approaches are in fact similar.

3 The hierarchical FDR approach

3.1 Trees of hypotheses

The hierarchical FDR testing approach is a new way to address multiple testing of
very large families of hypotheses. First, the set of m tested hypotheses is arranged
in a tree structure of L levels, where L(i) denotes the level of hypothesis Hi . With
the exception of hypotheses on the first level – which have no parent hypotheses –
each hypothesis Hi , on level L(i)=2, . . ., L has a single-parent hypothesis, indexed
as Par(i), on level L(i)−1. The m hypotheses are divided into T +1 families: �0 is
the family of hypotheses at level 1, and for t =1, . . ., T let �t ={Hi : Par(i)= t}. mt

and m0
t denote the total number and number of true null hypotheses in �t.
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3.2 Hierarchical testing

Hierarchical testing of a tree of hypotheses can be described easily by specifying two
rules: hypotheses sharing the same parent are tested simultaneously as a family; a
family of hypotheses is tested only if its parent hypothesis is rejected.

Testing begins with �0; at the next stage, each family of hypotheses correspond-
ing to a second-stage discovery is tested; this testing process continues as long as
additional rejections of parent hypotheses are made.

3.3 Types of FDR for hierarchical testing

The final component of the hierarchical FDR testing of a tree of hypotheses is the
specification of the set of discoveries on which the inference is of importance to the
investigator, and therefore for which the control of FDR is relevant. Once the set
of interesting discoveries is determined, following Benjamini and Hochberg (1995),
the FDR is defined as the expected proportion of false interesting discoveries out
of the total number of interesting discoveries made (this proportion is set to 0 if no
discoveries are made). We present three types of FDRs suitable for different types
of applications.

3.3.1 Full-tree FDR

Here interest lies in the entire set of discoveries, whether it is internal-node discov-
ery or end node. This FDR is relevant when each discovery along the hierarchical
testing path is important. It can also be used for high dimensional statistical mod-
elling, in particular, applications where the model is specified hierarchically and it
is important to extract all of the components of the model.

3.3.2 Level-restricted FDR

In this testing scheme, there is only interest in the set of discoveries on a specific
level of the tree that is chosen in advance This FDR is relevant, for example, when
the parent hypotheses serve only as screening devices leading to the inferences of
importance.

3.3.3 Outer (end) node FDR

In the outer node scheme, the discoveries of interest are those on the outer nodes of
the tree (end nodes) as reached by the hierarchical testing procedure. This FDR can
be used for conducting multi-resolution searches, where higher resolution discoveries
make the initial lower resolution discovery irrelevant. In fact, the application which
motivated the development of this new testing approach was a genomic scan for
genes affecting quantitative traits (Benjamini and Yekutieli, 2005).
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3.4 FDR bounds for the hierarchical testing of trees of hypotheses

Yekutieli (2005) provides upper bounds for the three types of FDR under the
assumptions that the test statistics are independently distributed and each family
of hypotheses is tested by the BH procedure at level q. These results are reviewed
in this section, and in Section 3.5 we consider, and present theoretical results for
trees in which the families of hypotheses are tested by the subset-restricted FDR
procedure.

The bounds for the FDR are sums over t =0, . . ., T of bounds for FDRt, the
expected proportion of false discoveries in �t out of the total number of discov-
eries made,

FDRt =EP

{
I (�t is tested) · Vt

R

}
,

where Vt is the number of false discoveries in �t and R is the total number of FDR
tree discoveries. To derive the bounds, FDRt is expressed in terms of RP =0

t and
RP =0 – the number of hypotheses rejected in �t and the total number of FDR dis-
coveries given that a specific true null hypotheses in �t is rejected. Employing this
approach, Benjamini and Yekutieli (2001) prove that the FDR of the BH proce-
dure applied to a single family of hypotheses is m0q/m. However, since the event
conditioned on in each family of hypotheses is different, aggregating the bounds for
FDRt over the multiple families is not possible. To overcome this problem, Yekuti-
eli (2005) substitutes RP =0

t and RP =0 with Rt and R – the unconditional number
of rejections in �t and finds a multiplicative factor �∗, as small as possible satisfy-
ing,

�∗ ≥E
RP =0

t

RP =0

/
E

Rt +1
R +1

. (1)

It is proven that if the P-values are independently distributed and their marginal
cumulative density function (cdf) is star shaped in relation to 0, then setting �∗ =1.44
is sufficient to satisfy Expression (1). The condition, marginal cdf is star shaped
in relation to 0, is somewhat a stronger condition than that of being stochastically
smaller than U [0, 1]. Yet, it holds if the distribution function of Pi is concave un-
der the alternative, a condition satisfied under the often used condition of monotone
likelihood ratio. Simulation results are also presented there, indicating that for most
P-value configurations �∗ ≈1 is sufficient to satisfy (1). With inequality (1) Yekuti-
eli (2005) proves that

FDRt ≤�∗ ·q ·EP

{
I (�t is tested) ·�0

t · Rt +1
R +1

}
, (2)

where �0
t is the proportion of true null hypotheses in �t. The bound for FDRt leads

to a bound for the FDR:
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FDR=
T∑

t =0

FDRt ≤�∗ ·q ·
T∑

t =0

EP

{
I (�t is tested) · (Rt +1)�0

t

R +1

}
(3)

= �∗ ·q ·EP

{
T∑

t =0

I (�t is tested) · (Rt +1)�0
t

R +1

}
(4)

=�∗ ·q ·EP

{
no. of families tested+

no. of discoveries
no. of discoveries+1

· �̃0

}
(5)

To derive (5), observe that summing (Rt +1) over all tested families yields the
number of tested families plus R – the total number of discoveries, thus �̃0 is a
weighted mean of �0

t .
The bound in (5) implies a universal bound for the full-tree FDR – 2 ·�∗ ·q and

the outer nodes FDR – 2 · L · �∗ · q. But there is no universal bound for the level-
restricted testing scheme, in some cases it may approach 1. Furthermore, Expression
(5) implies that if the number of discoveries greatly exceeds the number of families
tested then the three types of hierarchical FDR are approximately q · �∗ · �̃0. Thus,
in spite of the lack of a universal bound in the case of level-restricted FDR, the
implication of Expression (5) is straightforward: in a complex study with 10 research
questions, each tested separately by applying the BH procedure at level 0.05, if the
data only produce 10 discoveries then the combined FDR is approximately 0.10; the
FDR is approximately 0.05 in large-scale studies with a few hundred discoveries.

3.5 The subset-selected BH procedure

The subset-selected BH is another method of alleviating the multiplicity problem.
Each tested hypothesis Hi is associated with an indicator variable Ii , which deter-
mines whether the hypothesis is selected for testing or not; the BH procedure is
applied to the subset {Hi : Ii =1, i =1, . . ., m} of the family.

We allow the vector I to be data dependent, but require it to be independent of
the vector P of P-values corresponding that correspond to the tested hypotheses.
This setup can also be applied to families of hypotheses – setting the same indica-
tor, Ii , for all the members of a family of hypotheses means that the entire family of
hypotheses is either selected or not based on a single test statistic (see Section 4.4);
setting I ≡1, we are back at using the BH procedure on the entire family.

Note that Ii may be considered as a test of a parent hypothesis to Hi , and in
that sense it is also a test of hierarchical tree of hypotheses. However, one distinc-
tion makes the situation much simpler here than in hierarchical testing discussed
before: all hypotheses whose parents belong to the same ‘grandparent’ are tested
jointly. This is the reason we can get the following result: If the components of P
are positive regression dependent on the subset of P-values corresponding to true
null hypotheses, then according to Benjamini and Yekutieli (2001), once condition-
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ing on the values of I, the FDR of subset-selected BH procedure, conducted at level
q, is less than or equal to q ·m0(I )/m(I ), where m(I ) and m0(I ) denote the number of
selected hypotheses and number of selected true null hypotheses, respectively. Tak-
ing expectation over I yields the following obvious result: the subset-selected BH
procedure controls the FDR at level q ·EI (m0(I )/m(I )).

3.6 Casting a complex study into the hierarchical testing framework

The hierarchical testing framework can be used to assess the global FDR of a com-
plex study that consists of several research questions. We begin by considering the
simple case of a complex study with multiple research directions where the fam-
ily of null hypotheses corresponding to each of the research directions is separately
tested by the BH procedure at level q. To evaluate the FDR of the entire study,
we construct the following FDR tree: all the tested hypotheses are positioned on
the second level of the tree, and each family of tested hypotheses is associated to a
dummy parent P-value, which is set to 0, on the first level of the tree. Notice that
the overall FDR for the entire study can be expressed as the level-2 restricted FDR.
This implies that if the number of discoveries greatly exceeds the number of research
directions, then the FDR of the entire study is approximately q ·�∗ · �̃0.

We now consider the more general case of a complex study with multiple research
directions, where each research direction is tested by a FDR tree and each family
of null hypotheses is separately tested by the subset-restricted BH procedure. Let
�t,d denote the hypotheses in family t =0, . . ., Td of research direction d =1, . . ., D;
Vt,d is the number of false discoveries made in �t,d by the FDR tree applied to
research direction d . To express the FDR of the entire study as the FDR of a tree
of hypotheses, we combine the FDR trees from each research direction by lifting
all the hypotheses one level higher and associating the hypotheses in �0, d with a
dummy parent P-value, P0, d =0, positioned on the first level of the tree. To accom-
modate the subset-restricted BH procedure we define an indicator variable, Ii, d , for
each tested hypothesis Hi, d , such that for i ∈ �t,d the hypothesis Hi, d is tested in
the subset-restricted BH procedure of �t,d if and only if Ii, d =1. Notice that the
FDR corresponding to the set of discoveries of interest is unlike any of the FDRs
described in Section 3.3: unlike the full-tree FDR and outer nodes FDR we are not
interested in any of the level-1 discoveries; unlike the level-restricted FDR we may
be interested in a discoveries on any level greater than 1. As a result of the indepen-
dence of I and P, conditioning on I, the hierarchical test of the FDR tree for the
entire study only involves repeated hierarchical applications of the BH procedure,
hence we can apply the methods presented in Section 3.4 to bound the FDR.

If we denote the total number of discoveries in the study by R, then the FDR of
the study is

FDR=EIEP

{
D∑

d =1

Td∑
t =0

I (�t,d is tested) · Vt,d

R

}
=EI

D∑
d =1

Td∑
t =0

FDRt,d . (6)
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Applying the bound in (2) for each value of I we get,

FDRt,d ≤�∗ ·q ·EP

{
I (�t,d is tested) · m0(I )

m(I )
�t,d · Rt,d +1

R +1

}
. (7)

Incorporating Expression (7) into Expression (6) we can phrase the FDR for the
entire study as,

FDR≤�∗ ·q ·E�I

{
D∑

d =1

Td∑
t =0

·E �P

[
I (�t,d is tested) · m0

t,d (�I )

mt,d (�I )
· Rt,d +1

R +1

]}

=�∗ ·q ·E�I E �P

[
D∑

d =1

Td∑
t =0

I (�t,d is tested) ·m0
t, d (�I )/mt,d (�I ) · (Rt, d +1)

R +1

]

(8)

Expression (8) is very similar to the bound for the simple case. The main differ-
ence is that the total number of FDR tree discoveries is compared with the total
number of families considered in the entire study, which can be much greater than
the number of research directions. Still, if the number of discoveries greatly exceeds
the number of families considered, the FDR of the entire study is approximately
q ·�∗ · �̃0.

4 The experiment

The experiment involved 10 adult males of 10 strains of inbred mice, which included
the major inbred strains traditionally used for research, among them inbred strains
derived from wild mice. Note that inbred strains are homogeneous in terms
of genetic background, as all animals of the same strains are homozygous in all
genes. The exploratory behaviour of the mice was tracked as part of a large high
throughput phenotyping experiment (Kafkafi et al., 2005), and the different strains
exhibited a wide range of behaviour.

The gene expression part of the experiment involved harvesting tissue from the
mice used in the behavioural assessment protocol 7–12 days following the behavio-
ural experiment. Five tissue areas were dissected (prefrontal cortex, ventral striatum,
temporal lobe, periaquaductal grey and cerebellum). The mice of same strain were
divided into two groups, and tissue within group pooled, providing two biological
replications per strain. The level of gene expression was measured versus a pooled
control, swapping the dyes between the two replicates. In total, ∼27,000 genes were
analyzed.

We denote the expected expression level of gene in the brain region of mouse
strain by �gsr; the average expression level over the brain by �gs +; the average expres-
sion level over the strains in one brain region by �g + r; and the average expression
level over the strains and over the brain by �g ++.
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4.1 Question 1: strain ANOVA per gene

The first question addressed in this study is the discovery of genes with strain differ-
ences in their expression levels in the brain. This is an immediate extension of the
discovery of two groups of differentially expressed genes. This question can be easily
posed as a testing problem for the intersection null hypothesis for each gene:

H0
S(g) :�g1+ =�g2+ = · · ·=�g10+.

These hypotheses can be tested by one-way anova, using F -test, or Tukey’s test.
A discovery in this analysis is that there is some difference in brain expression levels
of gene g between the strains. The multiplicity issue that stems from testing many
genes is typically addressed by controlling the FDR over all the genes.

Unlike the usual application of anova, microarray analysis may end with the
rejection of the intersection null hypothesis. As an important example take the case
where the analysis is performed as a dimension-reduction preliminary step, to be
followed by clustering analysis or discriminant analysis. More commonly in anova,
the rejection of the intersection hypothesis is followed by an analysis of the pairwise
comparisons. This question is discussed next.

In the current study, the emphasis is on differences in expression levels related
to the studied strains. In another phase of this study, the parallel question regard-
ing the testing across brain regions for differences in expression levels of genes, as
reflected by H0

R(g) :�g +1 =�g +2 = · · ·=�g +5 (in obvious notation), may be of similar
interest. This certainly constitutes a different research question as well.

4.2 Question 2: strainwise comparisons in brain analysis per gene

A question of immediate interest to researchers is the identification of which spe-
cific pairs of strains differ in their expression level in a gene where difference exists.
This is the classical pairwise comparison problem, where the strainwise comparison
of strains s′′ and s′′, in terms of their brain expression level in gene g is expressed
in the hypothesis

H0
S(s′, s′′;g) :�gs′1+ =�gs′′ +.

Pairs of strains identified to differ in the expression level of a gene of importance
may serve as the breeding source for a backcross experiment that tries to identify
the genomic locations of other genes that caused the difference in their expression.
Clearly discovering such pairs is of scientific importance.

Note that there are 10∗9/2=45 such pairwise comparisons per gene, and with the
∼27k genes analyzed we reach the multiplicity problem of about 1.2 million pairwise
comparisons.

4.3 Question 3: strain ∗ region interactions in brain analysis per gene

While identifying strains that differ in their expression level of a certain gene over
the brain is of obvious interest, the availability of data on five brain regions offers
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the possibility to search the data for interesting findings in another direction as well:
identifying specific strain ∗ region interactions in the expression level of a gene. The
relevant hypothesis is

H0
S×R(s, r;g) :�gsr −�gs + −�g + r +�g ++ =0

where finding a significant interaction means that the expression level of gene g, in
strain s, is different than what would be expected under a typical additive pattern
for that gene. This is clearly a data-mining operation, looking for interesting clues
to pursue.

Two approaches can be taken. The first argues that such an interaction is inter-
esting only after brain analysis showed strain differences in that gene. The second
argues that any identification of interaction is of interest, but only after the interac-
tion was shown to exist in the gene at large. Taking the first approach, any finding
of strainwise difference in a gene is of interest, and then finding the interaction is
another discovery. In the second approach genes are first screened for significant
interaction, and then the specific interactions become the only interesting discov-
eries. This is actually parallel to the relationship between the testing of the strain
factor in the anova that is followed by the identification of specific pairwise com-
parisons. Both approaches are legitimate, but in the current study we take the first
approach.

4.4 FDR-controlled testing in the experiment

4.4.1 The direct approach using the procedure in BH

In the direct approach we consider the entire set of tested hypotheses, even if it con-
sists of several separate families, as a single family, and use the BH procedure on
the P-values. FDR is controlled if the two conditions in Benjamini and Yekutieli
(2001) are satisfied: (i) the test statistics are positive regression dependent on the
subset of true null hypotheses; (ii) the distribution of each P-value corresponding
to a true null hypothesis is either U [0, 1] or stochastically greater than U [0, 1]. As
a result of (ii), if the entire family of tests is not at our disposal and the missing
is at random, we may put the unknown P-values at 1, and get valid (if somewhat
conservative) inference.

As we noted in Section 1, the FDR criterion is quite accommodating when fami-
lies of hypotheses are combined. It is important to note that the BH procedure has
some asymptotic properties that make it very effective.

4.4.2 The direct approach for selected subset

In the direct approach the family of tested hypotheses is very large. In some cases,
this multiplicity problem can be alleviated if there is a way to exclude a large pro-
portion of the families of hypotheses in a way that little information is lost and the
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FDR is still controlled when the BH procedure is applied to the hypotheses in the
remaining families of hypotheses. One way to achieve both these goals is to choose
families of the null hypotheses according to prior knowledge.

Extra care must be taken when the choice of families is data dependent. Notice for
example that in research question 3, a strain ∗ region interaction in gene expression
levels is not possible if there is no strain effect in the expression level. We therefore
test each gene for a significant strain effect, and then apply the direct approach to
the hypotheses belonging to families of hypotheses with significant strain effects. The
test statistics we use to test the strain effect is independent of the interaction term
test statistics. This means that any selection criterion applied to strain effect test
statistics does not violate the conditions needed for FDR control. In Section 5 the
selection criterion used is the BH procedure at level 0.05. Note that this approach
cannot be used for research question 2. The dependency between the strain effect
test statistics and the individual strain pairwise test statistics rules out the possibility
of using the strain effects to choose the set of families used in the direct approach.

Note also that this is in sharp contrast to the case where the ‘same hypotheses
are tested again’ using independent data in both stages. Under such circumstances,
if FDR is first controlled at level q1 to select a subset of hypotheses, and then con-
trolled at q2 on the selected subset, the joint procedure enjoys an FDR level of q1 ∗q2

(Reiner et al., 2003). The difference lies in the fact that using that method, if a
hypothesis is erroneously selected in stage II it was also at error when selected at
stage I, the probability for an error being smaller. This is not the case in the gen-
eral hierarchical selection outlined above, where the hypotheses are different from
one stage to the next.

5 Analysis and results

5.1 Strain by brain ANOVA per gene: repeated median removal of chip layout effects

Our approach is to use an F -test at each gene to test the hypothesis

H0
S(g) :�g1+ =�g2+ = · · ·=�g10+.

No pooling across genes was used (with no fudge factor as in SAM), so the distri-
bution of the test statistics under the null hypothesis should be F -distribution with 9
and 40 degrees of freedom. Figure 1a presents the results of close to 25,600 P-values
using their quantile plot, where the ordered P-values are plotted versus their rank.
This is equivalent to a P–P plot under the assumed F -distribution. We expect to see
in the upper right part of the plot a straight line, corresponding to genes where the
hypothesis of no strain differences is true. Instead the line curves concavely, indicat-
ing that the P-values are bigger than they should be.

We therefore revisited the preprocessing stage and studied the possible effects of
the physical layout of the chips on individual expression levels. The structure of an
array is schematically described in Figure 2. Effects of block row and column and
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Fig. 1. Significance of strain effects before and after removal of spatial effects (a) Before spatial
effects removal – raw P-values distribution is clearly not U (0, 1) even for ranks from 1000
and higher, as indicated by the deviation of the ranked raw P-values from a straight line;
730 genes are identified as differentially expressed. (b) After spatial effects removal – raw
P-values distribution is closer to U (0, 1), deviating substantially from a straight line only for
low ranks. Now nearly 1000 genes are identified. Thus effect removal improves the sensitivity
of the testing procedure.

within-block row and column were estimated for log-transformed Cy3 signal and
Cy5 signal. A four-way median polish model, which is an extension of the two-way
median polish (Tukey, 1977; Emerson and Wong, 1985), was applied for the pur-
pose of identifying block and slide spatial effects. This algorithm iteratively sub-
tracts the median signal for each category of each effect (block row, block column,
within-block row, within-block column), until the residuals no longer change. The
‘polished’ signals are then used for data analysis. It is essential that this resistant
procedure be used, and not the usual anova that is based on mean values, so that
real differences in expression levels will not be smoothed away.

Figure 1b presents the results of the same anova tests as those displayed in Fig-
ure 1a, except after the four-way median polishing. The improvement is noticeable,
with the P-values on the right side lying closer to a straight line than before. The
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12 * 4
blocks 

24 * 24
spots 

Fig. 2. A schematic structure of a microarray: the printing structure of the array comprises the effects
of block row, block column, within block row, and within block column.

large P-values are still somewhat larger than expected under the Uniform. This may
stem from the lack of normality of observations where the F -test is known to be
conservative under such circumstances. Fortunately, this fact does not harm the valid-
ity of the conclusions as the BH procedure still guarantees FDR control when the
P-values under the null are stochastically larger than Uniform.

5.2 Strain ANOVA per genes

A two-way anova was applied to identify genes that could distinguish between strains,
while adjusting for the effect of brain region. Each gene was analyzed separately,
resulting in a P-value for the main factor of strain for the gene.

Among the 25,600 P-values, 2676 were lower than 0.05 (10.5%). Adjusting the
P-values for multiplicity using the linear step-up procedure in BH, 957 genes were
found statistically significant at 0.05 FDR level. The procedure simply amounts to
passing a line through the points (1, q/m) and (m, q), and looking for the largest
value under this line in Figure 2b. The FDR-adjusted P-values using the BH proce-
dure for the most significant genes are presented in Figure 3. We note that applying
the model to non-polished logs difference produced around 700 adjusted P-values
lower than 0.05, being a clear evidence that removing the spatial effects can sub-
stantially improve the sensitivity of the analysis.
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Fig. 3. Raw and FDR adjusted P-values – strain effect. Zooming in for FDR less or equal to 0.1,
the multiplicity effect on the significance threshold is visible. After FDR adjustment at the
0.05 level, nearly 1000 genes are found to have a differential expression across strains.

5.3 Identifying specific strainwise differences in the brain analysis per gene

Comparing strains by pairs through the two-way anova model described above
involves approximately 25, 600∗45=1.15 million comparisons. The hypotheses have
a natural and intuitive tree structure where the parent of all pairwise hypotheses in
a gene is the intersection hypothesis for that gene residing at level 1. It makes sense
to follow hierarchical testing at this stage, but the test statistics will clearly not be
independent. As we do not know how the FDR is inflated under such circumstances,
we turn to direct testing of all 1.15 million hypotheses, relying on the many studies
indicating that the BH procedure controls the FDR under the pairwise correlation
structure (Yekutieli, 2002a,b; Kesselman, Cribbie and Holland, 1999; Benjamini,
Hocbberg and Kling, 1999). Controlling the FDR at the 0.05 level yields 7771 sig-
nificant pairs. Figure 4 shows the frequency of significant pairwise comparisons for
each pair of strains. Although each of the strains was found to have at least 10 genes
at which it differs from any other strain, the pattern of significant pairs indicated
that two of the strains, CAST/Ei and SPRET/Ei, are different in a substantial way
from all other strains as well as from each other (as reflected by hundreds of gene
expression level differences).

Interestingly, the SPRET/Ei belongs to the Mus spretus species, the CAST geno-
type belongs to the subspecies Mus musculus castaneus while the eight other inbred
strains belong to the subspecies Mus musculus musculus (Bonhomme and Guenet,
1996). It is thus interesting to find that the divergent speciation of SPRET and
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Mice Strains

1 -
2 -

3 -
4 -
5 -

6 -
7 -

8 -
9 -

10 -

   C3H
   BALBcByJ

   DBA2J
   SJ/L
   A/J

   C57BL/6J
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   FVB/NJ
   CAST/Ei
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Fig. 4. Frequency of genes with significant pairwise difference. The number of genes found to have a
different expression between strains is visibly higher when comparing to strain 10 (SPRET/Ei),
implying a large-scale change in genetic activity in the brain for this strain.

CAST is reflected in the large gene-expression distinction consistently recognized in
the pair-wise comparisons in the brain. This raises the possibility that differences in
behaviour that are known to exist between the strains will be associated with differ-
ences in levels of gene expression in the brain.

5.4 Brain region interactions with strain per gene

Standardized residuals from the above analysis of variance model were used to cal-
culate a test statistic for each combination of strain and brain region, for each gene.
Testing those interactions only in those 957 genes that were identified at the first
stage of the analysis still involves the testing of about 50,000 interactions. We can
restrict our testing to these interactions only by the subset selection method, because
the tests of the interactions are independent of the tests of strain effects in anova.
Only 13 significant interactions of strain and brain region were found this way at
FDR level 0.05.

Turning to hierarchical testing, it is natural to arrange all hypotheses of strain
effects for the genes at level 1, with the family of interactions per gene being its
progeny at level 2. If any such discovery amounts to a meaningful discovery, it calls
for a full-tree testing scheme. Thus, if each one of the first-level analysis is performed
at the FDR level of 0.017, and at each rejected gene separately the testing of the 50
relevant hypotheses is performed at FDR level of 0.017, the overall FDR level is
bounded by 2∗1.44∗0.017−0.05.
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Fig. 5. Genes mapped into a network linked with seizure activity. Five genes in the seizure activity
network that exhibit significant interactions in the CAST strain and various brain regions are
marked in dark.

Some 758 genes and 76 interactions are found significant using the hierarchical
testing approach. The interaction component of the hierarchical analysis was
sufficiently powerful to detect the brain region by strain interactions. Of these 76
interactions, two-thirds (47) were associated with the CAST genotype indicating a
non-additive pattern against the model suggested by the parent species Mus muscu-
lus musculus. A possible explanation for this disproportionate representation, which
reflects the deviation from the additive pattern formed by the eight Mus musculus
musculus genotypes, lies in either a cis- or trans-acting regulatory polymorphism
whose consequence affects a gene network that is tissue-specific (Cowles et al., 2002).
An evidence for such a functional explanation of the brain region by strain inter-
actions can be found in the mapping of these genes into networks (Figure 5). For
example, five of the 47 genes (Casp8AP2, Tnfsf6, Trip15, Fkbp3, Nrf1) exhibiting
significant interactions associated with CAST are part of a gene network that has
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been linked with seizure activity. Interestingly, CAST is particularly resistant to beta-
carboline-3-carboxylate induced seizures (Le Roy et al., 1998). A possible explana-
tion to the fact that the CAST is involved in such interactions more than other
strains lie in the increased incidence in which such wild-derived genotypes naturally
carry Robertsonian chromosomes, but we shall not dwell into this topic here.

5.5 Assessing the FDR level of the entire study

In this paper, we presented two methods for addressing the multiplicity of interac-
tions in research question 3, which lead to two FDR trees into which the complex
study is imbedded. We describe the structure of the two FDR trees and evaluate
the realized value of the bound FDR for the entire study – Expression (8). As the
statistical analysis included a very large number of hypotheses, the bound for the
FDR is probably close to its realized value.

In the first framework, the complex study comprises of three research directions.
In the first research direction, strain anova per gene, the BH procedure was applied
at level 0.05 on a single family of 25,600 hypotheses, and 957 genes were found
statistically significant. The strainwise differences research direction, a single fam-
ily of 1.15 million hypotheses, was tested by the BH procedure at level 0.05, yield-
ing 7771 discoveries. In the third research direction, the initial family consisted of
about 1.325 million interaction null hypotheses; subset selection of 957 genes with
significant strain differences reduced this number to approximately 957 ∗ 50 inter-
action null hypotheses, and applying the BH procedure at level 0.05 on the selected
subset of hypotheses yielded 13 discoveries. In (8) a bound for the FDR of the
entire complex study is given in the form of the �∗q times the expected ratio of a
weighted mean of the proportion of true null hypotheses multiplied by the number
of discoveries plus the number of families tested divided by the number of discov-
eries plus 1. In this case the realized value of (8) is less than �∗q multiplied by
(957+7771+13+3)/(957+7771+13+1)≈1, thus the FDR for the entire study is
at most 0.072.

In the second framework, the complex study comprises of only two research direc-
tions. The first research direction is a FDR tree in which in the first level included
the 25,600 strain anova per gene hypotheses, and the families in the second level
of the tree include the 50 strain ∗ brain interactions for each gene exhibiting a sig-
nificant strain effect. Applying the BH procedure at level q =0.017 in each family,
yielded 758 level-1 discoveries; the 758 families tested in level-2 yielded 76 addi-
tional discoveries. The second research direction regarding strainwise differences
involves the same analysis used in the first framework. In the first research direction
q < 0.05/(2 ·1.44) ensures that the universal bound for the full-tree FDR is less than
0.05. For evaluating the total FDR notice that the total number of discoveries was
8605=758+76+7771 and the number of families tested is 759=758+1, thus the
realized value of (8) is now at most �∗q multiplied by (8605+759)/(8605+1)≈1.09,
which is less than 0.078.
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6 Discussion

The purpose of this paper was to demonstrate how our understanding the way by
which the FDR progresses when testing hypotheses hierarchically, can enable us to
test complex and extremely large families of hypotheses. Generally, we used the the-
ory developed for independent test statistics in the dependent situations faced in
microarray analysis. This is based on our experience in using the BH procedure
in microarray analysis (Reiner et al., 2003), where under the type of dependency
encountered in practice the FDR is controlled. Further verification of the validity
of the procedure is being planned. Moreover, experience at quantitative trait locus
(QTL) analysis using hierarchical testing revealed that the upper bounds offered by
the current theory are somewhat high. Further theoretical and simulation work may
allow us to lower them. The multiple-testing FDR-controlling procedures discussed
in this paper, were implemented using the MULTTEST procedure of SAS software.
The input to this procedure is the set of P-values derived from an anova model, or
from tests of correlations. The flexibility of this approach lies in the fact other pro-
cedures, such as those based on mixed model, repeated measurements and the like,
can all be easily implemented. Resampling-based procedures have also been imple-
mented using R programming language (and Splus), so the above approach should
be easy to implement for other settings.

The biological implications of the results obtained here will be detailed elsewhere,
but some conclusions of importance were discussed here. In particular, it was found
that even though we started with two different research questions, they turn out
to be related. Moreover, the results reported here are the first stage of an even
more complex study, where interest further lies in the relationship between measured
behavioural aspects of the mouse strains and the gene expression levels in the brain
of those strains, in those genes where strain differences are evident. In particular,
we have interest in correlating gene expression levels in the brain with the 17 mea-
sures of behaviour, which quantify exploratory behaviour giving rise to a multiplicity
problem of about 2.2 million tests of hypotheses. While the approach taken here is
applicable there as well, the solutions developed will be discussed in a later study.
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