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Abstract

We consider a model of a random height function with long-range constraints on a discrete

segment. This model was suggested by Benjamini, Yadin and Yehudayoff and is a general-

ization of simple random walk. The random function is uniformly sampled from all graph

homomorphisms from the graph Pn,d to the integers Z, where the graph Pn,d is the discrete

segment {0, 1, . . . , n} with edges between vertices of different parity whose distance is at most

2d+ 1. Such a graph homomorphism can be viewed as a height function whose values change

by exactly one along edges of the graph Pn,d. We also consider a similarly defined model on

the discrete torus.

Benjamini, Yadin and Yehudayoff conjectured that this model undergoes a phase transition

from a delocalized to a localized phase when d grows beyond a threshold c log n. We establish

this conjecture with the precise threshold log2 n. Our results provide information on the

typical range and variance of the height function for every given pair of n and d, including

the critical case when d− log2 n tends to a constant.

In addition, we identify the local limit of the model, when d is constant and n tends to

infinity, as an explicitly defined Markov chain.
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Chapter 1

Introduction

Given two graphs G and H, a graph homomorphism from G to H is a function f : V (G)→
V (H) such that if x and y are neighbors in G, then f(x) and f(y) are neighbors in H. A graph

homomorphism from a graph G to Z is then a map from the vertex set of G to the integers,

that maps adjacent vertices to adjacent integers. For a given vertex v0 ∈ G, we denote by

Hom(G, v0) the set of all homomorphisms from G to Z, which map v0 to 0. Precisely,

Hom(G, v0) :=
{
f : V (G)→ Z | f(v0) = 0, |f(x)− f(y)| = 1 when (x, y) ∈ E(G)

}
.

The set Hom(G, v0) is non-empty and finite when G is finite, bipartite and connected.

Benjamini, Häggström and Mossel [1] initiated the study of random Z-homomorphisms, that

is, uniformly chosen elements of Hom(G, v0). Special cases of this model include the simple

random walk, when G = {0, 1, . . . , n} with nearest-neighbor connections, the random walk

bridge, when G is a cycle, and the branching random walk, when G is a tree. The model is

sometimes referred to as aG-indexed random walk. The behavior of typical Z-homomorphisms

is poorly understood for general graphs G. Beyond simple and branching random walks,

results are available mainly for the hypercube [8, 6], high-dimensional cubic lattices [10] and

expander and tree graphs [1, 11]. In particular, the case when G = Z2
2n, a two-dimensional

discrete torus, appears completely open. This case is related to the 6-vertex, square-ice and

antiferromagnetic 3-state Potts models of statistical physics (see [10]).

Benjamini, Yadin and Yehudayoff [2] suggested the study of this model when G = Tn,d
is a certain one-dimensional graph with long-range edges, defined below. In this work we

study the properties of the model on this graph, as well as its close relative, the graph Pn,d.

Specifically, let Pn,d, for n, d ≥ 1, be the graph defined by

V (Pn,d) := {0, 1, . . . , n},
E(Pn,d) := {(i, j) | |i− j| ∈ {1, 3, . . . , 2d+ 1}}.

(1)

Thus, a uniformly chosen random function f from Hom(Pn,d, 0) is a simple random walk

conditioned on satisfying |f(i) − f(j)| = 1 whenever i, j have different parity and are at

distance at most 2d + 1. Figure 1 shows a typical sample from Hom(Pn,d, 0). Similarly, let

1



2 Introduction

n = 500, d = 0

n = 500, d = 1

n = 500, d = 2

Figure 1: Uniformly sampled homomorphisms in Hom(Pn,d, 0). The case d = 0

is just a simple random walk. The simulation uses a Metropolis algorithm (see,

e.g., [9, Chapter 3]) and coupling from the past [12].

Tn,d, n ≥ 1 even and d ≥ 1, be the graph defined by

V (Tn,d) := {0, 1, . . . , n− 1},
E(Tn,d) :=

{
(i, j) | min{|i− j|, n− |i− j|} ∈ {1, 3, . . . , 2d+ 1}

}
.

(2)

Thus, a uniformly chosen random function f in Hom(Tn,d, 0) is a simple random walk bridge

conditioned on satisfying |f(i) − f(j)| = 1 whenever i, j have different parity and are at

distance at most 2d+ 1 on the cycle.

In the rest of the paper we abbreviate Z-homomorphisms to homomorphisms. We shall

loosely refer to homomorphisms on Pn,d as being on the line, and to homomorphisms on Tn,d
as being on the torus.

Our main objects of study are the size of the range of a typical homomorphism on Pn,d or

Tn,d and the variance of the homomorphism at given vertices. For a graph G, the range of a

function f : V (G)→ Z is defined as

Rng(f) := {f(v) | v ∈ V (G)}.

Benjamini, Yadin and Yehudayoff made the following conjecture.

Conjecture ([2]). There exist constants b, c > 0 such that if fn,d is uniformly sampled from

Hom(Tn,d, 0),

1. If d(n)− c log n→ −∞ as n→∞ then for any positive integer r, we have

P(|Rng(fn,d(n))| ≤ r) −−−→
n→∞

0.
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i k

Figure 2: A homomorphism jumps from some value t at vertex i to t + 3 at

vertex k. The minimal length of such a segment is k − i = 2d+ 3. In order for

this jump to occur, the values at the d+ 1 vertices, k− 1, k− 3, . . . , k− 2d− 1,

are forced to be t+ 2. Here d = 3.

2. If d(n)− c log n→∞ as n→∞ then

P(|Rng(fn,d(n))| ≤ b) −−−→
n→∞

1.

Our work establishes this conjecture with the precise constants b = 3 and c = 1/ log 2, both

on Tn,d and Pn,d. In addition, we discover that in the subcritical regime, when d(n)− log2 n→
−∞, the size of the range of a typical homomorphism is of order

√
n2−d and the variance of

the homomorphism at vertex k is of order k2−d. Moreover, we explore the behavior in the

critical regime, when d(n)− log2 n→ µ ∈ R, and find that in this case, the size of the range

is a tight random variable whose distribution is closely related to the Poisson distribution.

Our results may be intuitively understood as follows. Let f ∈ Hom(Pn,d). It is not difficult

to verify that if f(i+m)−f(i) ≥ 3 then m ≥ 2d+3. Figure 2 shows such an event. Moreover,

if m = 2d+ 3 and this event occurs, then necessarily(
f(i+ 1)− f(i), f(i+ 2)− f(i), . . . , f(i+ 2d+ 3)− f(i)

)
= (1, 2, 1, 2, . . . , 1, 2, 1, 2, 3).

However, if this sequence of values is possible for f , then there are at least 2d other possible

candidates of the form

(1, 1 + s1, 1, 1 + s2, . . . , 1, 1 + sd, 1, 2, 1), si ∈ {−1, 1}.

Thus, intuitively, the probability that the homomorphism changes its height by 3 on any given

small segment is about 2−d. Therefore, when n2−d → 0, we will not have any such segment,

so that the size of the range of the homomorphism will be bounded by 3. Conversely, when

n2−d → ∞, the expected number of segments with an upward or downward movement of

size 3 will be roughly n2−d. Since the direction of these movements should be only mildly

correlated, we expect the size of the resulting range to be of order
√
n2−d. Our work makes

these ideas precise.
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Chapter 2

Main Results

2.1 Homomorphisms on the line

In this section we present results on homomorphisms on the graph Pn,d, which was de-

fined in (1). Throughout this section, fn,d denotes a uniformly chosen homomorphism in

Hom(Pn,d, 0).

We state results regarding the size of the range of a typical homomorphism. As a homo-

morphism must change its value by exactly one along edges, the range is always of size at

least 2. In fact, the range is exactly 2 only for two particular homomorphisms, and at least 3

otherwise. We shall show that the size of the range is 3 plus a term of order
√
n2−d. Hence,

we distinguish between three regimes, n2−d →∞, n2−d → 0 and n2−d → λ ∈ (0,∞), termed

the subcritical regime, the supercritical regime and the critical regime, respectively.

The supercritical regime. The supercritical regime is when d(n) − log2 n → ∞ (i.e.

n2−d(n) → 0) as n → ∞. In this case, the large number of constraints prevents a typical

homomorphism from growing. In fact, we show that, with high probability, it will take on

only 3 values.

Theorem 2.1. For any positive integers n, d and r, we have

P
(
|Rng(fn,d)| ≥ 3 + r

)
≤
(
n

r

)
2−dr and P

(
|Rng(fn,d)| < 3

)
≤ 21−n/2.

Thus, if d(n)− log2 n→∞ as n→∞ then

P
(
|Rng(fn,d(n))| = 3

)
−−−→
n→∞

1.

The following corollary gives more precise information about the structure of a typical

homomorphism in the supercritical regime. Denote by Vi := {2k+i | 0 ≤ 2k+i ≤ n}, i = 0, 1,

the even and odd vertices, respectively, and denote by Ω0 and Ω1 the set of homomorphisms

which are constant on V0 and V1, respectively. Note that for each i ∈ {0, 1}, conditioned on

f ∈ Ωi, the random vector (f(x)− f(i) | x ∈ V1−i) consists of independent uniform signs.

5



6 Main Results

Corollary 2.2. If d(n)− log2 n→∞ as n→∞ then

P(Ω0 ∪ Ω1) = P
(
|Rng(fn,d(n))| ≤ 3

)
−−−→
n→∞

1 and

P(Ω0 ∩ Ω1) = P
(
|Rng(fn,d(n))| < 3

)
−−−→
n→∞

0.

Moreover, if n tends to infinity through odd numbers then P(Ω0) → 1/2, and if n tends to

infinity through even numbers then P(Ω0)→ 1/3.

The corollary implies that a typical homomorphism in the supercritical regime has one of

three possible structures. For odd values of n, with probability 1/2−o(1), the homomorphism

takes the value 0 on all the even vertices, with probability 1/4− o(1), it takes the value 1 on

all the odd vertices, and, with probability 1/4 − o(1), it takes the value −1 on all the odd

vertices. For even values of n, the probability of each of these three options is 1/3−o(1). The

dependence on the parity of n arises from the difference in the number of even and odd vertices

in each case. For odd values of n, |V0| = |V1|, whereas for even values of n, |V0| = |V1|+ 1.

The subcritical regime. The subcritical regime is when d(n)−log2 n→ −∞ (i.e. n2−d(n) →
∞) as n→∞. Here, the relatively small number of constraints allows a typical homomorphism

to grow.

Theorem 2.3. There exist absolute constants C, c > 0 such that for any positive integers n

and d, we have

3 +
⌊
c
√
n2−d

⌋
− 21−n/2 ≤ E

[
|Rng(fn,d)|

]
≤ 3 + C

√
n2−d.

Moreover, for any ε > 0 there exists a δ > 0 such that for any positive integers n and d, we

have

P
(
|Rng(fn,d)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ ε+ 21−n/2. (3)

In particular, if d(n)− log2 n→ −∞ as n→∞ then for any positive integer r, we have

P(|Rng(fn,d(n))| ≤ r) −−−→
n→∞

0.

The next theorem quantifies the rate of growth of the variance of the homomorphism.

Theorem 2.4. There exist absolute constants C, c > 0 such that for any positive integers n

and d, we have

max{ck2−d, 1} ≤ Var(fn,d(k)) ≤ Ck2−d + 4, 1 ≤ k ≤ n.

The critical regime. The critical regime is when d(n)− log2 n→ − log2 λ (i.e. n2−d(n) → λ)

as n→∞, for some λ ∈ (0,∞). In this case, the balance between the number of constraints at

each vertex and the amount of time available leads to an interesting limiting behavior. Perhaps

surprisingly, it turns out that the parity of n induces an effect which does not disappear in

the limit.

Denote by µeven(λ) the distribution of a Poisson(λ) variable conditioned to be even, and

denote by µodd(λ) the distribution of a Poisson(λ) variable conditioned to be odd. Define
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the parity-biased Poisson distribution with parameters λ and α to be the following convex

combination of µeven(λ) and µodd(λ),

µ(λ, α) :=
α

α+ tanh(λ)
· µeven(λ) +

tanh(λ)

α+ tanh(λ)
· µodd(λ). (4)

One may check that

µ(λ, α)(r) = Z(λ, α)−1 · α(r) · λ
r

r!
, r ≥ 0, (5)

where α(r) = α if r is even and α(r) = 1 if r is odd and where Z(λ, α) is a normalizing

constant. In particular, we see that the Poisson(λ) distribution is obtained as µ(λ, 1).

Let (Si | i = 0, 1, . . . ) denote a simple random walk, and let

N±(λ) ∼ µ
(
λ/(2
√

2), (3/(2
√

2))±1
)

be independent of (Si | i ≥ 0). Then SN+(λ) and SN−(λ) are simple random walks stopped at

independent random times. For a positive integer k, denote Rng(Sk) := {Si | 0 ≤ i ≤ k}.

Theorem 2.5. If n2−d(n) → λ as n→∞, for some λ ∈ (0,∞), then

|Rng(fn,d(n))|
(d)−−−−→

n→∞
n even

|Rng(SN+(λ))|+ 2 and |Rng(fn,d(n))|
(d)−−−→

n→∞
n odd

|Rng(SN−(λ))|+ 2.

In fact, as the proof shows, one may couple a critical homomorphism to a simple random

walk run for N+ or N− steps, according to the parity of n.

2.2 Homomorphisms on the torus

In this section we present results for homomorphisms on the graph Tn,d, which was defined

in (2). Throughout this section, n is even and fn,d denotes a uniformly chosen homomorphism

in Hom(Tn,d, 0).

The supercritical regime. The supercritical regime is when d(n) − log2 n → ∞ (i.e.

n2−d(n) → 0) as n → ∞. Similarly to the case on the line, the large number of constraints

cause a typical homomorphism to take on only 3 values.

Theorem 2.6. For any positive even integer n and any positive integers d and r, we have

P
(
|Rng(fn,d)| ≥ 3 + r

)
≤
(
n

r

)2

2−(2d−1)r and P
(
|Rng(fn,d)| < 3

)
≤ 21−n/2

Thus, if d(n)− log2 n→∞ as n→∞ then

P
(
|Rng(fn,d(n))| = 3

)
−−−→
n→∞

1.

Similarly to the case of the line, the following corollary gives more precise information

about the structure of a typical homomorphism in the supercritical regime. Denote by Vi :=

{2k + i | 0 ≤ k < n/2}, i = 0, 1, the even and odd vertices of Tn,d, respectively, and denote

by Ω0 and Ω1 the set of homomorphisms which are constant on V0 and V1, respectively. Note

that for each i ∈ {0, 1}, conditioned on f ∈ Ωi, the random vector (f(x) − f(i) | x ∈ V1−i)

consists of independent uniform signs.
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Corollary 2.7. If d(n)− log2 n→∞ as n→∞ then

P(Ω0 ∪ Ω1) = P
(
|Rng(fn,d(n))| ≤ 3

)
−−−→
n→∞

1 and P(Ω0) = P(Ω1) −−−→
n→∞

1/2.

Thus, a typical homomorphism in the supercritical regime is constant on either the even

or odd vertices of Tn,d, with the two cases being equally likely. The effect induced by the

parity of n in Corollary 2.2 does not appear here, as n is always assumed to be even in the

case of the torus.

The subcritical regime. The subcritical regime is when d(n)−log2 n→ −∞ (i.e. n2−d(n) →
∞) as n → ∞. As before, the relatively small number of constraints allows a typical homo-

morphism to grow.

Theorem 2.8. There exist absolute constants C, c > 0 such that for any positive even integer

n and any positive integer d, we have

3 +
⌊
c
√
n2−d

⌋
− 21−n/2 ≤ E

[
|Rng(fn,d)|

]
≤ C(

√
n2−d + 1).

Moreover, for any ε > 0 there exists a δ > 0 such that for any positive even integer n and any

positive integer d, we have

P
(
|Rng(fn,d)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ ε+ 21−n/2.

In particular, if d(n)− log2 n→ −∞ as n→∞ then for any positive integer r, we have

P
(
|Rng(fn,d(n))| ≤ r

)
−−−→
n→∞

0.

The critical regime. The critical regime is when d(n)− log2 n→ − log2 λ (i.e. n2−d(n) → λ)

as n → ∞, for some λ ∈ (0,∞). As for the line, this choice of parameters leads to an

interesting limiting behavior. In this case, the random homomorphism behaves similarly to a

simple random walk bridge of length 2N , where N is an independent random variable whose

distribution is a type of biased Poisson distribution. The distribution of N here is biased

differently from the case of the line. Specifically, N has the distribution of a Poisson random

variable with parameter

λ′ :=
λ

4
√

2
, (6)

conditioned to be equal to another such independent Poisson random variable.

Denote by ν(λ′) the distribution of X conditioned on X = Y , where X and Y are inde-

pendent Poisson(λ′) random variables. One may check that

ν(λ′)(k) = Z(λ′)−1 · (λ′)2k

(k!)2
, k ≥ 0, (7)

where Z(λ′) is a normalizing constant.

For a positive even integer k, let (Bk
i | 0 ≤ i ≤ k) denote a simple random walk bridge of

length k (that is, a simple random walk conditioned on Bk
k = 0), and let N(λ′) ∼ ν(λ′) be

an independent random variable. Thus, B2N(λ′) is obtained by first sampling N(λ′) and then

sampling a simple random walk bridge of length 2N(λ′). For a positive even integer k, denote

Rng(Bk) := {Bk
i | 0 ≤ i ≤ k}.
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Theorem 2.9. If n2−d(n) → λ as n→∞, for some λ ∈ (0,∞), then

|Rng(fn,d(n))|
(d)−−−→

n→∞

∣∣Rng
(
B2N(λ′)

)∣∣+ 2,

where λ′ is defined by (6).

This theorem is closely related to Theorem 2.5. On the line, the range of a homomorphism

in the critical regime is determined by a simple random walk whose length is a parity-biased

Poisson random variable. Note that if we condition a simple random walk with a Poisson(µ)

number of steps to end at its initial value, then the number of steps it takes has distribution

ν(µ/2). To see this, observe that the number of positive and negative steps of the random walk

are independent Poisson(µ/2) random variables and we are conditioning that these variables

are equal. The same phenomenon continues to hold if we start with a simple random walk

taking a parity-biased Poisson(µ,α) number of steps. Indeed, the number of steps must be even

in order for the walk to end at its initial value, and a parity-biased Poisson(µ,α) conditioned

to be even is the same as a Poisson(µ) conditioned to be even.

2.3 Local limits on the line

In this section we present results for homomorphisms on the graph Pn,d, which was defined

in (1), when d is constant and n tends to infinity.

Our first result gives an approximate count of the number of homomorphisms.

Theorem 2.10. For any positive integer d there exists a constant C(d) > 0 such that

|Hom(Pn,d, 0)| = C(d)λ(d)n/2(1 + o(1)) as n→∞,

where λ(d) is the unique positive solution to the equation

λd−1/2(λ− 2) = 1.

Remark. The constant λ(d) above satisfies

λ(d) = 2 + 2−d+1/2(1− o(1)) as d→∞.

Our next result concerns the local limit of the homomorphism. This local limit lives on

P∞,d, the limiting graph of Pn,d. Precisely, P∞,d, for d ≥ 1, is the graph defined by

V (P∞,d) := {0, 1, 2, . . .},
E(P∞,d) :=

{
(i, j) | |i− j| ∈ {1, 3, . . . , 2d+ 1}

}
.

(8)

For a function g defined on a domain Ω and a set A ⊆ Ω, we write g|A for the restriction of g

to A.

Theorem 2.11 (Local Limit). For any constant d ≥ 1, there exists a distribution µ∞,d on

Hom(P∞,d, 0) such that the uniform distribution on Hom(Pn,d, 0) converges to µ∞,d as n→∞,

in the following sense. Let fn,d be a uniformly chosen homomorphism in Hom(Pn,d, 0) and let

f∞,d be sampled from µ∞,d. Then,

P(fn,d|{0,1,...,r} = f) −−−→
n→∞

P(f∞,d|{0,1,...,r} = f) for any r ≥ 0 and f ∈ Z{0,1,...,r}.
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Remark. The random homomorphism f∞,d is described by an explicit Markov chain on 2d+2

states, as shown in Figure 12, through a process which decodes infinite words on the alphabet

{a, b, A,B} into homomorphisms on P∞,d. See Section 6 for details.

Policy on constants: In the rest of the paper we employ the following policy on constants.

We write C, c, C ′, c′ for positive absolute constants, whose values may change from line to

line. Specifically, the values of C,C ′ may increase and the values of c, c′ may decrease from

line to line.



Chapter 3

Preliminaries

We gather here a number of general tools which we require for our proof.

Lemma 3.1. Let E and F be events in a discrete probability space and let T : E → P(F ) be

a mapping, where P(A) denotes the collection of all subsets of A. For f ∈ F , define

N(f) := {e ∈ E | f ∈ T (e)} .

If for some p, q > 0, we have

P(T (e)) ≥ P(e) · p, e ∈ E,
|N(f)| ≤ q, f ∈ F,

(9)

then

P(E) ≤ P(F ) · q
p
.

Proof. It is a simple matter to verify that∑
e∈E

P(T (e)) =
∑
e∈E

∑
f∈F

P(f)1T (e)(f) =
∑
f∈F

∑
e∈E

P(f)1T (e)(f) =
∑
f∈F

P(f) · |N(f)|.

The result now follows by the assumptions in (9).

Remark. The opposite inequalities in (9) would yield the analogous result. Namely, if

P(T (e)) ≤ pP(e) for all e ∈ E and |N(f)| ≥ q for all f ∈ F , then pP(E) ≥ qP(F ). Note

that when applying this lemma for the uniform distribution, the assumptions in (9) become

|T (e)| ≥ p for all e ∈ E and |N(f)| ≤ q for all f ∈ F , while the conclusion remains the same.

Lemma 3.2. Let X be a non-negative, integer-valued random variable. Assume that, for

some positive integer n and some a > 1, we have P(X = k) ≥ a · P(X = k − 1), for all

1 ≤ k ≤ n. Then

P(X < n) ≤ 1/a.

Proof. It is easy to verify (by induction) that

P(X = n) ≥ ak · P(X = n− k), 1 ≤ k ≤ n.

11
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Thus,

P(X < n) =
n−1∑
k=0

P(X = k) =
n∑
k=1

P(X = n− k) ≤ P(X = n) ·
n∑
k=1

a−k ≤ P(X = n)

a− 1
.

Therefore,

1 ≥ P(X ≤ n) = P(X < n) + P(X = n) ≥ P(X < n)(1 + (a− 1)) = a · P(X < n).

We will use a theorem by Benjamini, Häggström and Mossel [1] to transfer results from

the line to the torus. This is an FKG inequality for the measure induced on non-negative

homomorphisms by taking pointwise absolute value.

Given a set V , we equip ZV with the usual pointwise partial order �. A function φ : ZV →
R is said to be increasing if φ(f) ≤ φ(g) whenever f � g.

Theorem 3.3 (FKG inequality for absolute values [1, Proposition 2.3]). Let G be a finite,

bipartite and connected graph, let v0 ∈ V (G) and let f be a uniformly chosen homomorphism

in Hom(G, v0). Then, for any two increasing functions φ, ψ : Hom(G, v0)→ R, we have

E
[
φ(|f |) · ψ(|f |)

]
≥ E

[
φ(|f |)

]
· E
[
ψ(|f |)

]
where |f | is the non-negative homomorphism obtained from f by taking pointwise absolute

value.

Consider the event Q that a homomorphism on Pn,d is in fact a valid homomorphism on

Tn,d (by identifying the vertex n with the vertex 0). If we could write 1Q(f) = ψ(|f |) for

some function ψ then we may be able to use the above theorem to transfer results from the

line to the torus by conditioning on Q. However, it is not the case that 1Q is a function

of the absolute value of the homomorphism, and so we cannot apply Theorem 3.3 directly.

Instead, we make use of Theorem 3.3 in order to prove a similar proposition specialized for

our purposes. See Proposition 5.8 in Section 5 for more details.

The following result of Erdős is useful for analyzing homomorphism on the line.

Theorem 3.4 ([4, Theorem 1]). Let n be a positive integer, let a1, . . . , an ∈ R satisfy |ai| ≥ 1

for 1 ≤ i ≤ n and let ε1, . . . , εn ∼ U({−1, 1}) be random independent signs. Denote

S := ε1a1 + · · ·+ εnan.

Then, for any integer r > 0 and any a ∈ R, we have

P(|S − a| < r) ≤ r ·
(

n

bn/2c

)
· 2−n ≤ Cr√

n
.

The next proposition, which is a consequence of the previous result, is useful for analyzing

homomorphisms on the torus.
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Proposition 3.5. Let n be a positive integer, let a1, . . . , an ∈ R satisfy |ai| ≥ 1 for 1 ≤ i ≤ n
and let π be a uniformly chosen permutation of {1, 2, . . . , n}. Denote

Si := aπ(1) + · · ·+ aπ(i), 1 ≤ i ≤ n.

Then, for any integer r > 0, we have

P
(

max
1≤i≤n

|Si| < r

)
≤ Cr√

n
.

Proof. Let ε1, . . . , εn ∼ U({−1, 1}) be uniform independent signs. Denote

a := a1 + · · ·+ an,

S′ :=
n∑
i=1

εi + 1

2
ai =

ε1a1 + · · ·+ εnan
2

+
a

2
.

Let T ∼ Bin(n, 1/2) be independent of π and observe that

ST
d
=S′,

an observation which was pointed out to us by Gady Kozma. Therefore, by Theorem 3.4,

P
(

max
1≤i≤n

|Si| < r

)
≤ P (|ST | < r) = P

(
|S′| < r

)
= P

(∣∣∣∣∣
n∑
i=1

εiai + a

∣∣∣∣∣ < 2r

)
≤ Cr√

n
.

The next lemma presents a simple result on limits of distributions.

Lemma 3.6. Let X∞, X1, X2, . . . be non-negative, integer-valued random variables. Assume

that P(X∞ = k) > 0 for all integers k ≥ 0. If the family {X1, X2, . . . } is tight, and

lim
n→∞

P(Xn = k)

P(Xn = k − 1)
=

P(X∞ = k)

P(X∞ = k − 1)
, k ≥ 1, (10)

then

Xn
(d)−−−→

n→∞
X∞.

Proof. Let ε > 0 and, using the tightness assumption, choose an integer M such that P(Xn >

M) ≤ ε for all n ∈ N ∪ {∞}. Then

1− ε ≤
M∑
k=0

P(Xn = k) ≤ 1, n ∈ N ∪ {∞}.

Therefore, by the assumption (10),

lim sup
n→∞

1− ε
P(Xn = 0)

≤ lim
n→∞

M∑
k=0

P(Xn = k)

P(Xn = 0)
=

M∑
k=0

P(X∞ = k)

P(X∞ = 0)
≤ 1

P(X∞ = 0)
.

Similarly, we have

lim inf
n→∞

1

P(Xn = 0)
≥ lim

n→∞

M∑
k=0

P(Xn = k)

P(Xn = 0)
=

M∑
k=0

P(X∞ = k)

P(X∞ = 0)
≥ 1− ε

P(X∞ = 0)
.

Since ε is arbitrary, we conclude that P(Xn = 0) → P(X∞ = 0) as n → ∞, which in turn

gives that P(Xn = k)→ P(X∞ = k) as n→∞ for all k, by (10).
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Chapter 4

Homomorphisms on the Line

In this section we will prove the theorems regarding homomorphisms on the line which

were stated in Section 2.1. As was pointed out in the introduction, it seems unlikely that

a homomorphism jumps from some value t to t ± 3 on any given small segment. Figure 2

illustrates a section of a homomorphism for which such a jump occurs. The main idea in

our proofs is to identify the vertices at which these jumps occur, as they determine the large

scale behavior of the homomorphism. That is, the values of the homomorphism at the jumps

contain the global information necessary to determine the range and the variance. To this

end, we first define the notion of the (local) average height of a homomorphism at a vertex

(this is illustrated by the horizontal dashed line in Figure 3). The average height at a vertex is

determined by finding the closest past time at which 3 different values appeared consecutively

and taking the midpoint to be the average height. For vertices which no such time exists (as

is the case for the 0 vertex), we set the average height to 0. One can think of the average

height as a process beginning at 0 that “lazily follows” the homomorphism, only to ensure

that it is never at a distance greater than 1. With this notion in hand, we define a jump as

a change in the average height. Of course any such jump has an associated sign or direction,

which is determined by whether the average height increased or decreased.

We later show that the probability of a jump occurring at a given vertex (greater than 2d)

is no more than 2−d. This will show that in the supercritical regime, with high probability,

there will not be any jumps (after vertex 2d). That is, the average height does not change

after time 2d. A moment’s reflection reveals that this means that the homomorphism takes

on at most 3 different values (not 4, as it may initially seem).

We do not give a lower bound for the probability of a jump occurring at a given vertex.

Instead, we only show that the typical number of jumps is of order n2−d, the jumps are

approximately equidistributed on the line and that, moreover, the directions of these jumps

are weakly correlated. Of course, if the directions of these jumps were truly independent, then

the values of the homomorphism at the jumps would constitute a simple random walk. We

will show that, at least in terms of the maximum/range of the homomorphism, the behavior

is very similar to that of a simple random walk. This will show that the range is of order√
n2−d and that the variance at a vertex k is of order k2−d.

In the analysis of these so-called jumps, we encounter a minor complication due to the

15
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fact that jumps in the same direction can “clump” together. Of course jumps cannot occur

consecutively in the sense of two consecutive vertices on the line. So then what is the minimal

distance between two jumps? The answer is twofold. The minimal distance between two

jumps with different directions is 2d + 3, while two jumps in the same direction can already

occur at distance 2d + 1. This phenomenon will pop up again and again in our analysis.

For example, its manifestation is evident in the Markov chain describing the local limit in

Section 6 (see Figure 12).

One meaning of this phenomenon is that if we condition on the event that a jump occurs

at two given vertices, say k1 and k2, k1 < k2, the directions of these jumps are non-negatively

correlated. However, conditioning also on the event that a jump does not occur just after the

first of these jumps (i.e. at k1 + 2d+ 1), their directions become independent. This leads us

to consider “chains” of jumps. A chain is just a sequence of minimal-distance same-direction

jumps. Now, if we condition on the event that there are chains of given lengths (and not

longer) at any number of given vertices, the directions of all these chains will be independent.

This will allow us to reduce some of the analysis to a case of independent variables.

4.1 Definitions

We consider the graph Pn,d whose vertex set is {0, 1, ..., n} and whose edges are (k,m) for

|k−m| = 1, 3, ..., 2d+1. Throughout this section, Hom(Pn,d) := Hom(Pn,d, 0), f is a uniformly

sampled homomorphism from Hom(Pn,d), the probability space is the uniform distribution on

the set Hom(Pn,d), and events are subsets of Hom(Pn,d).

We define h(k), the (local) average height at vertex k, inductively as follows. Set h(0) := 0.

For 1 ≤ k ≤ n, define

h(k) :=

{
h(k − 1) if |f(k)− h(k − 1)| ≤ 1

f(k − 1) otherwise
,

∆(k) := h(k)− h(k − 1).

Define the event

Ak := {∆(k) 6= 0}.

When Ak occurs, we say that a jump occurred at vertex k (see Figure 3). Let

S := {1 ≤ k ≤ n | ∆(k) 6= 0} (11)

be the positions of the jumps, and denote by

R := |S \ {1, . . . , 2d+ 1}| =
n∑

k=2d+2

1Ak
(12)

the number of jumps after vertex 2d + 1. Recall that if a jump occurs at vertex k, then the

minimal possible value of k′ > k at which another jump can occur is k + 2d+ 1. Let Ck,t be
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Figure 3: A homomorphism in Hom(Pn,d). The big vertices denote the po-

sitions of the jumps. The dashed horizontal lines denote the average height.

Here d = 3.

the event that there is a chain of t minimal-distance jumps ending at vertex k. That is, for

t ≥ 1 and (t− 1)(2d+ 1) < k ≤ n, we define

Ck,t := Ak ∩Ak−2d−1 ∩ · · · ∩Ak−(t−1)(2d+1).

Let I = {s1, . . . , st} ⊂ {1, 2, . . . , n}. We say that I is a feasible jump structure if {S =

I} 6= ∅. Observe that {S = I} 6= ∅ if and only if P(S = I) > 0 if and only if when we reorder

the si to satisfy s1 < s2 < · · · < st, we have

s1 is even and for 2 ≤ j ≤ t, sj − sj−1 is odd and satisfies sj − sj−1 ≥ 2d+ 1. (13)

In addition, we say that a subset I ⊂ {1, . . . , n} is a feasible jump sub-structure if it is a subset

of a feasible jump structure, or equivalently, if {I ⊂ S} 6= ∅. For a feasible jump sub-structure

I, the event {I ⊂ S} can be uniquely written as Ck1,t1 ∩ · · · ∩ Ckm,tm , where

t1 + · · ·+ tm = |I|,
kj − kj−1 > (2d+ 1)tj , 2 ≤ j ≤ m.

(14)

These conditions ensure that there is no overlap between the different chains, and moreover,

that there is some gap between them (since otherwise they would merge into a larger chain).

For such I, we define

C(I) := {(kj , tj) | 1 ≤ j ≤ m},

and refer to this as the chain structure of I.

4.2 Main lemmas

As the above definitions suggest, the notion of a jump at a given vertex plays an important

role in our analysis. It turns out that the behavior of jumps at the first 2d+ 1 vertices differs

significantly from that of the other vertices. Hence, it will be a recurring theme throughout

Section 4 that these cases are handled separately.

The first two lemmas concern the probability of jumps at given vertices. The first of which

shows that jumps at the first 2d + 1 vertices are not unlikely, while the second shows that

elsewhere jumps are unlikely.

Lemma 4.1. We have

1/4 ≤ P(A2) ≤ 1/2

and

1/3 ≤ P(A1 ∪ · · · ∪A2d+1) ≤ 2/3.
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Proof. Denote J := A1 ∪ · · · ∪A2d+1. We shall show that

P(A2) ≤ P(J) ≤ 2P(A2),

P(A2) ≤ P(Jc) ≤ 2P(A2),

from which the result easily follows. Note that, by (13), Ak = ∅ for k = 1, 3, . . . , 2d + 1, so

that J = A2 ∪A4 ∪ · · · ∪A2d. Clearly P(A2) ≤ P(J), as A2 ⊂ J .

We note the following useful observation. For a homomorphism f ∈ Hom(Pn,d), we have

f ∈ A2 ⇐⇒ f(2) = 2f(1) ⇐⇒ f(2) 6= 0. (15)

We begin by showing that P(J \ A2) ≤ P(A2), from which it follows that P(J) ≤ 2P(A2).

To this end it suffices to show an injective mapping from J \A2 to A2. Consider the mapping

f 7→ f1 from J \A2 to A2 defined by

f1(k) :=

{
f(k) if k 6= 2

2f(1) if k = 2
, 0 ≤ k ≤ n.

One may check that if f ∈ J \ A2 then f1 ∈ A2. Recalling (15), it is clear that this mapping

is invertible, and so we have P(J \A2) ≤ P(A2).

We now show that P(A2) ≤ P(Jc). Define a mapping f 7→ f2 from A2 to Jc by

f2(k) :=

{
f(k + 1)− f(1) if 0 ≤ k < n

f(n− 1)− f(1) if k = n
, 0 ≤ k ≤ n.

Again one may check that this mapping is well-defined (in fact, this mapping can be defined

on the entire space). Since it is injective (recall (15)), we obtain P(A2) ≤ P(Jc).

Finally, we show that P(Jc) ≤ 2P(A2). Consider the mapping T : Jc → A2 defined by

T (f)(k) :=

{
0 if k = 0

f(k − 1) + f(1) if 1 ≤ k ≤ n
, 0 ≤ k ≤ n.

To see that this mapping is well-defined, recall (15), and note that f ∈ Jc implies that

f(0) = f(2) = · · · = f(2d) = 0. This is not an injective mapping, however, it satisfies

|T−1(g)| ≤ 2 for g ∈ A2. Therefore, by Lemma 3.1, we have P(Jc) ≤ 2P(A2).

The next lemma is concerned with the probability of jumps occurring at given vertices

after 2d + 1. It states that this probability is exponentially small in d times the number of

jumps. The idea behind the proof is to remove the jumps and replace the freed up areas with

segments of constant average height. This allows us to gain entropy by setting the values at

every other vertex in each such segment to be the average height ±1. See Figure 4.

Lemma 4.2. For any t ≥ 1 and for any 2d+ 1 < s1 < · · · < st ≤ n, we have

P(As1 ∩ · · · ∩Ast) ≤ 2−dt.
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Proof. If I := {s1, . . . , st} is not a feasible jump sub-structure then there is nothing to prove.

Otherwise, we consider the chain structure of I, C(I) = {(k1, t1), . . . , (km, tm)}, where we have

ordered the elements so that the kj are increasing. Due to our assumption that s1 > 2d+ 1,

we have k1 > (2d+ 1)t1. We note that it is enough to prove that for all 1 ≤ j ≤ m,

P(Ckj ,tj | Ck1,t1 ∩ · · · ∩ Ckj−1,tj−1
) ≤ 2−dtj .

We prove something stronger. Let 1 ≤ k ≤ n and t ≥ 1 be such that k′ := k−(2d+1)t−1 ≥ 0.

Then, for any ξ ∈ Z{0,...,k′} such that P(f |{0,...,k′} = ξ) > 0, we have

P
(
Ck,t | f |{0,...,k′} = ξ

)
≤ 2−dt−bt/2c. (16)

In order to show this, we construct a mapping which removes this chain and replaces the freed

up segment with a segment of constant average height (see Figure 4). Formally, we proceed

as follows. For m ≥ 1 and w ∈ {−1, 1}m, denote

w̃ := (w1, 0, w2, 0, . . . , wm, 0).

Define a mapping

Tk,t : Ck,t × {−1, 1}dt+bt/2c → Hom(Pn,d)

by

Tk,t(f, w)(i) :=


f(i) if i ≤ k′

f(k′) + w̃(i− k′) if k′ < i < k − 1

f(i+ δ)− f(k − 1) + f(k′) if k − 1 ≤ i < n

f(i− δ)− f(k − 1) + f(k′) if i = n

, (17)

where δ = 0 if t is even and δ = 1 if t is odd.

We now show that Tk,t is well-defined, i.e. that Tk,t(f, w) ∈ Hom(Pn,d). For 0 ≤ i, j ≤ n,

denote

∆i,j := |Tk,t(f, w)(i)− Tk,t(f, w)(j)|.

For 0 ≤ j ≤ n, define the event

Bj :=
{
f(i) = f(j) when 0 ≤ i ≤ n satisfies |i− j| ∈ {2, 4, . . . , 2d}

}
.

We must show that ∆i,j = 1 whenever |i − j| ∈ {1, 3, . . . , 2d + 1}. Let 0 ≤ i, j ≤ n satisfy

|i− j| ∈ {1, 3, . . . , 2d+ 1} and assume without loss of generality that i < j. We shall further

assume that j < n, the case j = n being similar. If j ≤ k′, i ≥ k − 1 or k′ < i < j < k − 1

then ∆i,j = 1 follows immediately from (17) and the fact that f ∈ Hom(Pn,d). It remains to

check the case when i ≤ k′ and j > k′ and the case when i < k − 1 and j ≥ k − 1.

We begin with the first case. Here, we have ∆i,j = |f(i)− f(k′)− w̃(j−k′)|. Observe that

Ck,t ⊂ Bk′ . Therefore, if i has the same parity as k′ then f(i) = f(k′) and |w̃(j − k′)| = 1

since j has the same parity as k′. Otherwise, i has the opposite parity of k′, and then

|f(i)− f(k′)| = 1 and w̃(j − k′) = 0. Thus, ∆i,j = 1.

In the second case, we have ∆i,j = |f(j+ δ)−f(k−1)− w̃(i−k′)|. Note that Ck,t ⊂ Bk−1

and that i− k′ has the same parity as j + δ− k. One finds in a similar manner as in the first
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f ∈ Ck,t

Tk,t(f, w)

k′ k

Figure 4: A section of a homomorphism f in the event Ck,t. Removing the

chain between k′ and k, and replacing it with fluctuations around the average

height, gives the homomorphism Tk,t(f, w). The dashed horizontal lines denote

the average height. Here d = 2, t = 3 and w = (−1, 1, 1,−1,−1, 1,−1).

case that |f(j + δ) − f(k − 1)| = 1 and w̃(i − k′) = 0 when i has the same parity as k′, and

that f(j + δ) = f(k − 1) and |w̃(i − k′)| = 1 when i has the opposite parity of k′. Hence,

∆i,j = 1.

Observe that for any f ∈ Ck,t, necessarily,

(f(k′), f(k′ + 1), . . . , f(k), f(k + 1))

= (f(k′), . . . , f(k′))± (0, 1, . . . , 0, 1, 0︸ ︷︷ ︸
2d+1

, 1, 2, . . . , 1, 2, 1︸ ︷︷ ︸
2d+1

, . . . , t− 1, t, . . . , t− 1, t, t− 1︸ ︷︷ ︸
2d+1

, t, t+ 1, t).

Thus, it is easy to see that the mapping is injective. Moreover, the event {f |{0,...,k′} = ξ} is

clearly invariant under this mapping, so that

P
(
Ck,t ∩ {f |{0,...,k′} = ξ}

)
· 2dt+bt/2c ≤ P

(
f |{0,...,k′} = ξ

)
,

proving (16).

Remark. The proof shows in fact that the probability of the event As1∩· · ·∩Ast is bounded by

2−dt−(bt1/2c+···+btr/2c), where t1, . . . , tr are the lengths of the chains corresponding to s1, . . . , st.

With a small modification, the proof can be enhanced to give the bound 2−dt−bt/2c, but we

neither prove nor use this.

Recall the definition of R from (12). We would like to obtain inequalities on the probability

that R is a given value. We could do this in a similar manner to which the previous lemma was

proved. However, for variety, we prefer to employ a more direct combinatorial technique. This

approach also has the advantage of introducing Lemma 4.4, which gives a useful description

of the structure of the homomorphisms in Hom(Pn,d).
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f

Y (f)

X(f)

+ − − + +

+

− + + −
+

+ −
−

+ + + −
+

− + −

Figure 5: A homomorphism is decomposed into two parts; chains (in blue)

and fluctuations (in gray). The chains, which consist of consecutive jumps,

contribute to the change in average height, while the fluctuations do not. From

the chains, we construct X(f), which contains the direction of each chain.

From the fluctuations, we construct Y (f), which contains the direction of each

fluctuation. Given the positions of the jumps, X(f) and Y (f) precisely contain

the remaining information on the homomorphism. That is, for any choice of X

and Y , there exists a unique homomorphism f with X(f) = X and Y (f) = Y .

Here d = 2.

We decompose a homomorphism into two parts (see Figure 5). The first part constitutes

the changes in average height (the underlying walk) of the homomorphism, while the second

part constitutes the fluctuations around the average height (the segments of constant average

height). For a feasible jump sub-structure I, define the chain points of I by

CP (I) :=
⋃

(k,t)∈C(I)

{k − (2d+ 1)t− 1, . . . , k − 1, k},

and the fluctuation points of I by

FP (I) :=
{

1 ≤ k ≤ n | min
{
i > 0 | k − i ∈ CP (I) ∪ {−1}

}
is even

}
.

That is, a point is a fluctuation point if its distance from the chain to its left is positive and

even. In particular, recalling the definition of S from (11), for any homomorphism f and any

k ∈ FP (S(f)), f is not at its average height at k. Now, for a homomorphism f , define

X(f) ∈ {−1, 1}C(S(f)) and

Y (f) ∈ {−1, 1}FP (S(f))

by
X(f)(k,t) := f(k)− f(k − 1) and

Y (f)k := f(k)− f(k − 1).
(18)

Claim 4.3. For any feasible jump structure I, we have

|FP (I)| = max

{
0, d+ 1− min I

2

}
+

⌈
n− |I|

2

⌉
− d|I| − |C(I)|. (19)
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Proof. Suppose that C(I) = {(k1, t1), . . . , (km, tm)}. Denote t := |I| = t1 + · · · + tm and

s := min I. Then

|CP (I)| =
m∑
j=1

(
(2d+ 1)tj + 2

)
= (2d+ 1)t+ 2m,

|CP (I) ∩ {0, 1, . . . , n}| = (2d+ 1)t+ 2m−max{0, 2d+ 2− s}.

Therefore, recalling that s is even by (13),

|FP (I)| =
⌈
n− |CP (I) ∩ {0, 1, . . . , n}|

2

⌉
=

⌈
n− (2d+ 1)t− 2m+ max{0, 2d+ 2− s}

2

⌉
=

⌈
n− t

2

⌉
− dt−m+ max{0, d+ 1− s/2}.

Lemma 4.4. For any feasible jump structure I, the mapping f 7→ (X(f), Y (f)) is a bijection

between {S = I} and {−1, 1}C(I) × {−1, 1}FP (I).

Proof. We shall describe the inverse mapping which maps a pair (X,Y ) ∈ {−1, 1}C(I) ×
{−1, 1}FP (I) to the homomorphism fX,Y ∈ {S = I}. For 0 ≤ i ≤ n, let

H(X, i) :=
∑

(k,t)∈C(I)
k<i

t ·X(k,t),

be the average height accumulated by chains ending before i. For (k, t) ∈ C(I), denote by

k′(k, t) := k−(2d+1)t−1 the first vertex of the chain and observe thatH(X, i) = H(X, k′(k, t))

for all k′(k, t) ≤ i ≤ k. Now, define

fX,Y (i) :=


H(X, i) + Yi if i ∈ FP (I)

H(X, i) if i+ 1 ∈ FP (I) or i− 1 ∈ FP (I)

H(X, i) +X(k,t)Ci−k′(k,t) if k′(k, t) ≤ i ≤ k for some (k, t) ∈ C(I)

,

where C = (C0, C1, . . . ) is the infinite sequence defined by

C := (0, 1, . . . , 0, 1, 0︸ ︷︷ ︸
2d+1

, 1, 2, . . . , 1, 2, 1︸ ︷︷ ︸
2d+1

, 2, 3, . . . , 2, 3, 2︸ ︷︷ ︸
2d+1

, . . . ).

See Figure 5. It is not difficult to check that fX,Y ∈ Hom(Pn,d) and that S(fX,Y ) = I.

It remains to check that X(fX,Y ) = X, Y (fX,Y ) = Y and fX(f),Y (f) = f . We omit the

details.

Corollary 4.5. Conditioned on S, the following properties hold.

1. X is uniformly distributed over {−1, 1}C(S).

2. The random variables {∆(s)}s∈S are independent uniform signs conditioned on ∆(s) =

∆(s′) whenever s, s′ ∈ S satisfy |s− s′| = 2d+ 1.



4.2 Main lemmas 23

3. The difference in average height between two vertices 0 ≤ k0 < k1 ≤ n is a sum of

independent variables, namely,

h(k1)− h(k0) =
∑

(j,t)∈C(S∩{k0+1,...,k1})

t ·∆(j). (20)

Proof. The first statement is an immediate consequence of Lemma 4.4. The second statement

is in turn a consequence of the first statement and of the definition of the chain structure

C(S). For the third statement, since

h(k) =
k∑
i=1

∆(i) =
∑
s∈S
s≤k

∆(s), 1 ≤ k ≤ n,

we see that

h(k1)− h(k0) =
∑
s∈S

k0<s≤k1

∆(s) =
∑

(j,t)∈C(S∩{k0+1,...,k1})

t ·∆(j).

Corollary 4.6. Conditioned on |S| and min(S ∪ {2d + 2}), S is uniformly distributed over

all feasible jump structures I having |I| = |S| and min(I ∪ {2d+ 2}) = min(S ∪ {2d+ 2}).

Proof. By Lemma 4.4 and Claim 4.3, log2 |{S = I}| = |C(I)| + |FP (I)| depends only on |I|
and min(I ∪ {2d+ 2}).

For r ≥ 0 and 1 ≤ i ≤ d + 1, denote by ci(r) the number of feasible jump structures I

having |I \ {1, . . . , 2d+ 1}| = r and min(I ∪ {2d+ 2}) = 2i (recalling from (13) that min I is

even).

Claim 4.7. For any non-negative integer r, we have

cd+1(r) =

(
b(n− r − 1)/2c − (d− 1)r

r

)
and

ci(r) =

(
b(n− r)/2c − (d− 1)r − i

r

)
, 1 ≤ i ≤ d.

(21)

Proof. By considering the distance between two consecutive values in I and recalling (13), we

see that the number of feasible jump structures I having |I| = r and min I > 2d + 1 (where

we set min ∅ :=∞) is given by the number of non-negative integer solutions to the equation

x1 + x2 + · · ·+ xr ≤ n

under the additional constraints that x1 is even and at least 2d+ 2 and, for 2 ≤ j ≤ r, xj is

odd and at least 2d+ 1. Therefore, after substituting x1 = 2y1 + 2d+ 2 and xj = 2yj + 2d+ 1

for 2 ≤ j ≤ r, we see that cd+1(r) is equal to the number of non-negative integer solutions to

the equation

2(y1 + · · · yr) ≤ n− (2d+ 1)r − 1,
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from which the first result easily follows. Similarly, the number of feasible jump structures I

having |I| = r+ 1 and min I = 2i is given by the number of non-negative integer solutions to

the equation

2i+ x1 + · · ·+ xr ≤ n

under the additional constraint that, for 1 ≤ j ≤ r, xj is odd and at least 2d+ 1. Therefore,

substituting xj = 2yj + 2d + 1 as before, we see that, for 1 ≤ i ≤ d, ci(r) is equal to the

number of non-negative integer solutions to the equation

2(y1 + · · · yr) ≤ n− (2d+ 1)r − 2i,

from which the second result follows.

The next lemma and its corollary give bounds on the distribution of R. Observe that, by

Claim 4.7, for any 1 ≤ i ≤ d + 1, P
(
R = r | min(S ∪ {2d + 2}) = 2i

)
> 0 when r satisfies

(2d+ 1)r + 2d ≤ n.

Lemma 4.8. For any positive integer r such that (2d+ 1)r + 2d ≤ n, we have

n− Crd
4r2d

≤
P
(
R = r | min(S ∪ {2d+ 2}) = 2i

)
P
(
R = r − 1 | min(S ∪ {2d+ 2}) = 2i

) ≤ n

2r2d
, 1 ≤ i ≤ d+ 1.

Proof. By Lemma 4.4, Claim 4.3 and Claim 4.7, we have

|{R = r} ∩ {min(S ∪ {2d+ 2}) = 2i}| = ci(r)bi(r), 1 ≤ i ≤ d+ 1,

where ci(r) is given by (21) and

bd+1(r) = 2d(n−r)/2e−dr,

bi(r) = 2d(n−r−1)/2e−dr−i+1, 1 ≤ i ≤ d.
(22)

It is easy to see that

2−d−1 ≤ bi(r)

bi(r − 1)
≤ 2−d, 1 ≤ i ≤ d+ 1, (23)

and a computation shows that

n− Crd
2r

≤ ci(r)

ci(r − 1)
≤ n

2r
, 1 ≤ i ≤ d+ 1. (24)

We present this last computation for i = d+ 1. We have

cd+1(r)

cd+1(r − 1)
=
b(n− r − 1)/2c − (d− 1)r

r
·
r−1∏
j=1

b(n− r − 1)/2c − (d− 1)r − j
b(n− r)/2c − (d− 1)(r − 1)− j + 1

.

Since

n/2− Cdr ≤ b(n− r − 1)/2c − (d− 1)r ≤ n/2,

it suffices to show that the product above is at most 1 and at least 1−Cdr/(n−Cdr). Indeed,

every element in the product is clearly at most 1, and hence so is the product. For the other



4.3 Proof of theorems 25

inequality, note that the last element in the product is the smallest, so that the product is at

least(
b(n− r − 1)/2c − dr + 1

b(n− r)/2c − d(r − 1) + 1

)r−1

≥
(

1− d+ 1

n/2− r/2− dr + d+ 1

)r
≥ 1− 4dr

n− 4dr
.

The statement now follows directly from (23) and (24).

Corollary 4.9. For any positive integer r such that (2d+ 1)r + 2d ≤ n, we have

n− Crd
4r2d

≤ P(R = r)

P(R = r − 1)
≤ n

2r2d
.

4.3 Proof of theorems

We are now ready to prove the theorems stated in Section 2.1.

The supercritical regime. We prove Theorem 2.1 and Corollary 2.2. By Lemma 4.2, we

have

P(R ≥ r) = P

 ⋃
2d+1<s1<···<sr≤n

As1 ∩ · · · ∩Asr

 ≤ (n
r

)
2−dr, r ≥ 1.

One may easily check that |Rng(f)| ≤ R+ 3, so that

P
(
|Rng(f)| ≥ 3 + r

)
≤ P(R ≥ r) ≤

(
n

r

)
2−dr, r ≥ 1.

Moreover, it is easy to describe all homomorphisms which take on at most 3 values. Denote

by V0 and V1 the even and odd vertices in {0, 1, . . . , n}, respectively, and denote by Ω0 and

Ω1 the set of homomorphisms which are constant on V0 and V1, respectively. Then it is clear

that {|Rng(f)| ≤ 3} = Ω0 ∪Ω1, that {|Rng(f)| < 3} = Ω0 ∩Ω1 and that |Ω0 ∩Ω1| = 2. Also,

note that |V0| = bn/2c + 1 and |V1| = dn/2e, so that |Ω0| = 2|V1| = 2dn/2e and |Ω1| = 2|V0| =

2bn/2c+1. Therefore,

P
(
|Rng(f)| < 3

)
= P(Ω0 ∩ Ω1) ≤ |Ω0 ∩ Ω1|

|Ω0 ∪ Ω1|
=

2

2dn/2e + 2bn/2c+1 − 2
≤ 21−n/2,

completing the proof of Theorem 2.1. To obtain Corollary 2.2, note that

P(Ω1)

P(Ω0)
= 2bn/2c+1−dn/2e =

{
2 if n is even

1 if n is odd
.

Hence, if d− log2 n→∞ as n→∞ then, since P(Ω0 ∪ Ω1) = P(|Rng(f)| ≤ 3) = 1− o(1) by

Theorem 2.1, we see that P(Ω0) = 1/2− o(1) if n is odd and P(Ω0) = 1/3− o(1) if n is even.

The subcritical regime. Before proving the relevant theorems, we need a better under-

standing of the typical number of jumps.

Lemma 4.10. For any ε > 0, we have

P
(
R < bεcn2−dc | min(S ∪ {2d+ 2}) = 2i

)
≤ ε, 1 ≤ i ≤ d+ 1.



26 Homomorphisms on the Line

Proof. Let 0 < ε < 1 and 1 ≤ i ≤ d+ 1. Lemma 4.8 implies that if c is small enough,

P(R = r | min(S ∪ {2d+ 2}) = 2i)

P(R = r − 1 | min(S ∪ {2d+ 2}) = 2i)
≥ 1

ε
, 1 ≤ r ≤ bεcn2−dc.

Lemma 3.2 now yields the result.

Corollary 4.11. For any ε > 0, if n2−d ≥ C/ε then

P
(
R < εcn2−d | min(S ∪ {2d+ 2}) = 2i

)
≤ ε, 1 ≤ i ≤ d+ 1. (25)

Consequently, if n2−d ≥ C then

E
[
R | min(S ∪ {2d+ 2}) = 2i

]
≥ cn2−d, 1 ≤ i ≤ d+ 1. (26)

Proof. If n2−d ≥ C/ε then εc′n2−d ≤ bεcn2−dc, and hence, (25) follows from Lemma 4.10. To

obtain (26), substitute ε = 1/2 in (25).

We shall also require a similar inequality for the number of jumps up to a given vertex.

For 2d+ 1 ≤ k ≤ n, define

R(k) := |S ∩ {2d+ 2, 2d+ 3, . . . , k}| =
k∑

i=2d+2

1Ai .

Lemma 4.12. We have

E[R(k)] ≥ ck2−d − 1/6, 1 ≤ k ≤ n.

Proof. First note that the statement is trivial when n2−d < C. Thus, we may assume that

n2−d ≥ C. Denote x1 := minS−1 and denote by x2, . . . , xr the distances between consecutive

values in S. By Corollary 4.6 and (13), conditioned on the event {R = r} and on the event

E := {minS > 2d} (again, we set min ∅ = ∞), x1, . . . , xr are identically distributed and

satisfy 1 + x1 + · · ·+ xr ≤ n. Hence

E[xi | R = r, E] ≤ n/r, 1 ≤ i ≤ r.

Since R(k) < j if and only if 1 + x1 + · · ·+ xj > k, we have by Markov’s inequality that

P(R(k) < j | R,E) = P(x1 + · · ·+ xj ≥ k | R,E) ≤ 1

k
E[x1 + · · ·+ xj | R,E] ≤ jn

kR
.

So

E[R(k) | R,E] ≥ P
(
R(k) ≥ bkR/2nc | R,E

)
· bkR/2nc ≥ (1/2)bkR/2nc ≥ kR/4n− 1/2.

Hence, by the assumption that n2−d ≥ C and by (26),

E[R(k) | E] ≥ kE[R | E]/4n− 1/2 ≥ ck2−d − 1/2.

Finally, by Lemma 4.1, we have

E[R(k)] ≥ E[R(k) | E] · P(E) ≥ ck2−d − 1/6.
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Lemma 4.13. We have

Var(f(k)) ≥ 1, 1 ≤ k ≤ n.

Proof. If k is odd then |f(k)| ≥ 1 and the result follows by the fact that f(k) is symmetric.

Henceforth, we assume that k is even.

Consider the mapping f 7→ f0 from A2 to Ac2 defined by

f0(i) :=

{
0 if i = 0

f(i)− f(2) if i ≥ 1
, 0 ≤ i ≤ n.

One may check that this mapping is indeed well-defined and that it is injective. Since |f0(k)| =
2 when f(k) = 0, and since the mapping is injective, we have

P({f(k) = 0} ∩A2) ≤ P({|f(k)| = 2} ∩Ac2)

≤ P({f(k) 6= 0} ∩Ac2) = 1− P({f(k) = 0} ∪A2).

Therefore,

P(f(k) = 0) + P(A2) = P({f(k) = 0} ∪A2) + P({f(k) = 0} ∩A2) ≤ 1.

Since, P(A2) ≥ 1/4 by Lemma 4.1, we have

P(f(k) = 0) ≤ 3/4.

Finally, since f(k) 6= 0 if and only if |f(k)| ≥ 2, we have

Var(f(k)) = E
[
f(k)2

]
≥ 4 · P(|f(k)| ≥ 2) = 4 · P(f(k) 6= 0) ≥ 1.

We are now ready to prove Theorem 2.4 and Theorem 2.3. In both proofs, we consider

the following modified average height h′. For 1 ≤ k ≤ n, define

h′(k) :=

{
0 if k ≤ 2d+ 1

h(k)− h(2d+ 1) otherwise
.

Recall that Corollary 4.5 implies that, for any 2d+2 ≤ k ≤ n, conditioned on S, {∆(j) | (j, t) ∈
C(S ∩ {2d+ 2, . . . , k})} are independent and

h′(k) =
∑

(j,t)∈C(S∩{2d+2,...,k})

t ·∆(j), 1 ≤ k ≤ n. (27)

Proof of Theorem 2.4. By the above remark, we have

Var(h′(k) | S) =
∑

(j,t)∈C(S∩{2d+2,...,k})

t2, 1 ≤ k ≤ n. (28)

Notice that, conditioned on S, the expectation of h′(k) is zero, so that by the law of total

variance,

Var(h′(k)) = E[Var(h′(k) | S)], 1 ≤ k ≤ n. (29)
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To obtain an upper bound on Var(h′(k)), we use Lemma 4.2 to obtain

P
(
(j, t) ∈ C(S ∩ {2d+ 2, . . . , k})

)
≤ P(Cj,t) · 1{(2d+1)t<j≤k} ≤ 2−dt · 1{j≤k},

for any 1 ≤ j ≤ n and t ≥ 1. Therefore, by (28) and (29), we have

Var(h′(k)) = E
[
Var(h′(k) | S)

]
≤
∞∑
t=1

n∑
j=1

t22−dt · 1{j≤k} = k
∞∑
t=1

t22−dt ≤ Ck2−d. (30)

Finally, since |f(k) − h(k)| ≤ 1 and |h(k) − h′(k)| ≤ 1, we have |f(k)| ≤ |h′(k)| + 2, which

gives

Var(f(k)) = E
[
f(k)2

]
≤ E

[
(|h′(k)|+ 2)2

]
= E

[
h′(k)2 + 4|h′(k)|+ 4

]
≤ 5 · E

[
h′(k)2

]
+ 4 = 5 ·Var(h′(k)) + 4 ≤ Ck2−d + 4.

For the lower bound, we note that∑
(j,t)∈C(S∩{2d+2,...,k})

t2 ≥
∑

(j,t)∈C(S∩{2d+2,...,k})

t = |S ∩ {2d+ 2, . . . , k}| = R(k).

Therefore, by (28), (29) and Lemma 4.12, we have

Var(h′(k)) = E[Var(h′(k) | S)] ≥ E[R(k)] ≥ ck2−d − 1/6.

Since |f(k) − h(k)| ≤ 1 and |h(k) − h′(k)| ≤ 1, we have |f(k)| ≥ |h′(k)| − 2. In particular,

|f(k)| ≥ |h′(k)|/3 when |h′(k)| ≥ 3. Therefore,

Var(f(k)) = E
[
f(k)2

]
≥ E

[
(h′(k)/3)2 · 1{|h′(k)|≥3}

]
= E

[
h′(k)2

]
/9− E

[
h′(k)2 · 1{|h′(k)|≤2}

]
/9

≥ Var(h′(k))/9− 4/9

≥ ck2−d − 1/2.

Finally, together with Lemma 4.13, we have

Var(f(k)) ≥ max{1, ck2−d − 1/2} ≥ max{1, c′k2−d}.

Proof of upper bound in Theorem 2.3. Denote C(S∩{2d+2, . . . , n}) = {(k1, t1), . . . , (km, tm)},
ordering the elements so that the kj are increasing. Observe that for any 1 ≤ j < m and any

kj ≤ k ≤ kj+1, we have that h(k) is between h(kj) and h(kj+1). Therefore,

max
1≤k≤n

|h′(k)| = max
1≤j≤m

|h′(kj)|.

In this notation, by (27) we have

h′(kj) =

j∑
i=1

ti ·∆(ki), 1 ≤ j ≤ m,
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where, conditioned on S, {∆(kj) | 1 ≤ j ≤ m} are independent. Therefore, we may apply

Kolmogorov’s maximal inequality to the process (h′(kj) | 1 ≤ j ≤ m), conditioned on S, to

obtain

P
(

max
1≤k≤n

|h′(k)| ≥ x | S
)

= P
(

max
(k,t)∈C(S∩{2d+2,...,n})

|h′(k)| ≥ x | S
)
≤ Var(h′(n) | S)

x2
.

Therefore, by (30), we have

P
(

max
1≤k≤n

|h′(k)| ≥ x
)

= E
[
P
(

max
1≤k≤n

|h′(k)| ≥ x | S
)]
≤ Var(h′(n))

x2
≤ Cn2−d

x2
.

From this we obtain

E
[

max
1≤k≤n

|h′(k)|
]

=
∞∑
x=1

P
(

max
1≤k≤n

|h′(k)| ≥ x
)
≤
∞∑
x=1

min

{
1,
Cn2−d

x2

}
≤ C ′

√
n2−d.

Finally, using the fact that

|Rng(f)| ≤ 3 + max
1≤k≤n

h′(k)− min
1≤k≤n

h′(k),

we obtain

E
[
|Rng(f)|

]
≤ 3 + 2 · E

[
max

1≤k≤n
|h′(k)|

]
≤ 3 + C

√
n2−d.

Proof of lower bound in Theorem 2.3. We begin by showing that the range is large with high

probability, when n2−d is large enough. Fix 0 < ε < 1. Assume that n2−d ≥ C/ε. By (25),

there exists a δ1 > 0, depending only on ε, such that

P
(
R < 2δ1n2−d

)
≤ ε/4. (31)

This tells us that typically there are many jumps. We now show that typically there are many

distinct chains as well. For s ≥ 1, let

Ms :=
∑

(2d+1)s<k≤n

1Ck,s

be the number of sub-chains of length s. Then, as we shall now show,

|C(S)| ≥ R−Ms

s− 1
, s ≥ 2. (32)

Indeed, denoting C(S ∩ {2d+ 2, . . . , n}) = {(k1, t1), . . . , (km, tm)} and considering the contri-

bution of each chain to Ms, we see that

Ms =

m∑
i=1

max{0, ti − s+ 1} ≥
m∑
i=1

(ti − s+ 1) = R− (s− 1)m.

Noting that |C(S)| ≥ m now yields (32). By Lemma 4.2, we have

E[Ms] =
∑

(2d+1)s<k≤n

P(Ck,s) ≤ n2−ds ≤ n2−d21−s, s ≥ 1.
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Taking s = s0 large enough, we have by Markov’s inequality,

P
(
Ms0 ≥ δ1n2−d

)
≤ E[Ms0 ]

δ1n2−d
≤ 21−s0

δ1
≤ ε/4. (33)

Therefore, by (31), (32) and (33), we have for δ2 := δ1/s0 that

P
(
|C(S)| ≥ δ2n2−d

)
≥ P

(
R ≥ 2δ1n2−d,Ms0 ≤ δ1n2−d

)
≥ 1− ε/2. (34)

Recalling from Corollary 4.5 that, conditioned on S, h(n) is the sum of |C(S)| independent

random variables, we may apply Theorem 3.4 to obtain

P
(
|h(n)| < r | S

)
≤ Cr√

|C(S)|
, r ∈ N.

Therefore,

P
(
|Rng(f)| < r | |C(S)|

)
≤ P

(
|h(n)| < r | |C(S)|

)
≤ Cr√

|C(S)|
, r ∈ N. (35)

Finally, by (34) and (35), for any δ > 0, we have

P
(
|Rng(f)| <

⌊
δ
√
n2−d

⌋)
≤ P

(
|C(S)| < δ2n2−d

)
+ P

(
|Rng(f)| <

⌊
δ
√
n2−d

⌋
| |C(S)| ≥ δ2n2−d

)
≤ ε/2 + Cδ/

√
δ2.

Therefore, there exists a δ > 0, depending only on ε, such that if δ
√
n2−d ≥ 1 then

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ P

(
|Rng(f)| <

⌊
4δ
√
n2−d

⌋)
≤ ε,

proving (3) when n2−d is large enough. On the other hand, if δ
√
n2−d < 1 then (3) follows

immediately from Theorem 2.1, since

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
= P (|Rng(f)| < 3) ≤ 21−n/2.

It remains to show the lower bound on the expectation. Note that the statement is trivial

when n ≤ 2, and so we may assume that n ≥ 3. By taking ε = 1/4 in (3), noting that

|Rng(f)| ≥ 2 and by Theorem 2.1, we conclude that

E
[
|Rng(f)|

]
= 3 + E

[
(|Rng(f)| − 3) · 1{|Rng(f)|≥3}

]
+ E

[
(|Rng(f)| − 3) · 1{|Rng(f)|<3}

]
= 3 + E

[
(|Rng(f)| − 3) · 1{|Rng(f)|≥3}

]
− P (|Rng(f)| < 3)

≥ 3 + (1− 1/4− 2−1/2)
⌊
δ
√
n2−d

⌋
− 21−n/2

≥ 3 +
⌊
c
√
n2−d

⌋
− 21−n/2.

(36)

The critical regime. Here we prove Theorem 2.5. Denote λ := limn2−d which exists and is

a positive number by assumption. The proof of Theorem 2.5 consists of two parts. First, we
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show that R converges to N±(λ) as n tends to infinity through even or odd integers. Next,

we show that in this regime the values at the jumps constitute a simple random walk and

that this walk determines the range of the homomorphism.

By Lemma 4.2, we have

E[R] =
n∑

k=2d+2

P(Ak) ≤ n2−d = λ+ o(1).

Therefore, the expectation of R is uniformly bounded as n → ∞, and hence, Markov’s in-

equality implies that R is tight as n→∞. Using notation as in the proof of Lemma 4.8, we

have

|{R = r} ∩ {min(S ∪ {2d+ 2}) = 2i}| = ci(r)bi(r), 1 ≤ i ≤ d+ 1.

A direct computation shows that for any constant r ≥ 0, we have

ci(r) ∼
nr

2rr!
as n→∞,

uniformly in 1 ≤ i ≤ d+ 1, and

2d(n−r)/2e ∼ 2(n−r)/2 · γ(n− r) as n→∞,

where γ(k) := 1 if k is even and γ(k) :=
√

2 if k is odd. Denoting by J := A1 ∪ · · · ∪ A2d+1

the event that a jump occurs prior to vertex 2d+ 2, and recalling (22), we obtain

|{R = r} ∩ Jc| ∼ nr

r!
· 2n/2−(d+3/2)r · γ(n− r),

|{R = r} ∩A2i| ∼
nr

r!
· 2n/2−(d+3/2)r+1/2−i · γ(n− r − 1),

uniformly in 1 ≤ i ≤ d. Therefore, denoting λ′ := λ/(2
√

2), we have

|{R = r}| ∼ λ′r

r!
· 2n/2 ·

(
γ(n− r) +

√
2γ(n− r − 1)

)
,

where we have used the fact that
∑d

i=1 2−i → 1. Using the tightness of R, we see that

P(R = r) ∼ Z(n)−1 · λ
′r

r!
·
(
γ(n− r) +

√
2γ(n− r − 1)

)
,

where Z(n) is a normalizing constant. Therefore, recalling the parity-biased Poisson distri-

bution defined in (4) and the equation (5), we see that

R
(d)−−−−−→

n→∞
n is even

µ
(
λ′, 3/(2

√
2)
)

and R
(d)−−−−−→

n→∞
n is odd

µ
(
λ′, 2
√

2/3
)
, (37)

completing the first part of the proof.

We remark that it is also possible to obtain the limiting distribution of R conditioned on

whether or not a jump occurred at the first 2d + 1 vertices. We do not make use of this in
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our paper but we note the final result. A further calculation gives the following formula for

the asymptotic probability of J ,(√
2 · P(Jc)

P(J)

)(−1)n

−−−→
n→∞

cosh(λ′) +
√

2 sinh(λ′)

sinh(λ′) +
√

2 cosh(λ′)
,

and the following formula for the asymptotic distribution of R given 1J ,

P(R = r | 1J)− µ
(
λ′,
√

2
(−1)n+1+1J

)
(r) −−−→

n→∞
0.

We now proceed to analyze the range of a typical homomorphism in the critical regime.

We begin by showing that the jumps are sparse enough so that it is unlikely to have chains

of length greater than one. Let

B :=

n⋂
k=2d+2

(Ack ∪Ack−2d−1)

be the event that there are no two minimal-distance jumps (i.e. jumps at distance 2d + 1).

We wish to show that P(B) = 1− o(1). Indeed, by considering the first 2d+ 1 elements in the

intersection separately from the rest, Lemma 4.2 implies that P(Bc) ≤ (2d+ 1)2−d +n2−2d =

o(1) as required. Notice that 1B is determined by S. Let I denote the set of all feasible jump

structures I such that {S = I} ⊂ B. Observe that on the event B, C(S) = {(s, 1) | s ∈ S}.
Therefore, by Corollary 4.5, for any I ∈ I, conditioned on S = I, {∆(s) | s ∈ S} are

independent uniform signs and, by (27),

h′(k) =
∑

s∈S∩{2d+2,...,k}

∆(s).

In other words, for any I ∈ I, conditioned on S = I, (h′(s) | 2d + 1 < s ∈ S) is a simple

random walk of length R (without the leading zero). Since

{h′(s) | 2d+ 1 < s ∈ S} ∪ {0} = {h′(k) | 2d+ 1 ≤ k ≤ n},

for any I ∈ I,

|{h′(k) | 2d+ 1 ≤ k ≤ n}| d= |Rng(SR)| conditioned on S = I, (38)

where Si is an independent simple random walk run for i steps. Define the event

E := {|{f(k) | 0 ≤ k ≤ 2d}| > 2}.

It is not difficult to check that

|Rng(f)| = 2 + |{h′(k) | 2d+ 1 ≤ k ≤ n}| on E. (39)

We now show that P(E) = 1− o(1). Observe that Lemma 4.4 implies that

P(Ec | minS ≥ 4d+ 2) = 2 · 2−d.
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Hence, by Lemma 4.2, and since J ⊂ E, we have

P(Ec) = P(Ec ∩ {minS < 4d+ 2}) + P(Ec ∩ {minS ≥ 4d+ 2})
≤ P(2d+ 2 ≤ minS < 4d+ 2) + P(Ec | minS ≥ 4d+ 2)

≤ 2d2−d + 21−d = o(1).

Finally, Theorem 2.5 follows from (37), (38), (39) and the fact that P(E ∩B) = 1− o(1).
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Chapter 5

Homomorphisms on the Torus

In this section we prove the theorems regarding homomorphisms on the torus which were

stated in Section 2.2. The ideas and notions previously introduced in Section 4 to handle the

case of homomorphisms on the line will still prove to be effective on the torus, although some

of them will need to be adapted. For example, the notions of average height, jumps and chains

will still be used and they are defined in an analogous manner. One thing which must change,

for instance, is how we use these notions and the events that we condition on. Note that, if we

condition on the lengths and the positions of the chains, their signs will not be independent,

since they must add up correctly. This fact, which is inherently due to the topology of the

torus, makes the analysis slightly more complex. Instead, we will show that, conditioned on

the lengths and the signs of the chains (but not on their positions), their relative order is

uniform. This will allow us to reduce some of the analysis to a case of a uniformly chosen

reordering of a sequence of numbers. One aspect which is simpler for homomorphisms on the

torus is that there are no boundary effects, i.e., no need to consider the first 2d + 1 vertices

separately.

5.1 Definitions

We consider the graph Tn,d, n even, whose vertex set is V := {0, . . . , n − 1} and whose

edges are defined by i ∼ j if and only if ρ(i, j) = 1, 3, . . . , 2d+ 1, where we define the distance

ρ between x and y to be

ρ(x, y) := min{|x− y|, n− |x− y|}, x, y ∈ V.

We define also the clockwise distance ρ+ from x to y to be

ρ+(x, y) := y − x+ n1{x>y} = min{k ≥ 0 | x+ k = y mod n}, x, y ∈ V.

Note that ρ+(x, y) +ρ+(y, x) = n and that ρ(x, y) = min{ρ+(x, y), ρ+(y, x)} for any x, y ∈ V .

Throughout this section, Hom(Tn,d) := Hom(Tn,d, 0), f is a uniformly sampled homomor-

phism from Hom(Tn,d), the probability space is the uniform distribution on the set Hom(Tn,d),

and events are subsets of Hom(Tn,d). We also note that, in this section, addition and subtrac-

tion of elements in V are always modulo n.

35
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We would like to define the notion of the (local) average height of a homomorphism at a

vertex x ∈ V . To do so, we “look back” just enough in order to define this in a meaningful

way. Precisely, for x ∈ V , define the average height at x as the unique number h(x) satisfying

There exists a k ≥ 1 for which {f(x− i) | i = 0, 1, . . . , k} = {h(x)− 1, h(x), h(x) + 1}.

This is well defined for any homomorphism f which takes on at least 3 values. There are two

specific homomorphisms for which the size of the range is 2, and hence for which this is not

well defined. These are fflat
1 and fflat

−1 , where

fflat
i (x) :=

{
0 if x is even

i if x is odd
, x ∈ V, i ∈ {−1, 1}.

For these homomorphisms we define h(x) := 0 for all x ∈ V . For x ∈ V , define

∆(x) := h(x)− h(x− 1),

Ax := {∆(x) 6= 0}.

Observe that necessarily ∆(x) ∈ {−1, 0, 1}. When Ax occurs, we will say that a jump occurred

at vertex x. For x, y ∈ V , denote by

Ax,y := Ax ∩Ay ∩ {∆(x) = −∆(y)}

the event that there are jumps in opposite directions at x and y. Denote by

S+ := {x ∈ V | ∆(x) = 1} and S− := {x ∈ V | ∆(x) = −1}

the sets of vertices at which a positive or negative jump occurred, respectively. Let

S := S+ ∪ S− (40)

be the set of vertices at which we have a jump in either direction. Notice that necessarily

|S+| = |S−|, and define

R := |S+| = |S−| = |S|/2,

the number of jumps in a given direction. Notice that the clockwise distance between jumps

is at least 2d+ 1, as for homomorphisms on the line. For x ∈ V and t ≥ 1, let

Cx,t := Ax ∩Ax−2d−1 ∩ · · · ∩Ax−(t−1)(2d−1)

be the event that there is a chain of t minimal-distance jumps ending at vertex x.

We say that a subset I ⊂ V is a feasible jump structure if {S = I} 6= ∅, i.e. if P(S = I) > 0.

We would like to describe this condition solely in terms of the structure of I. To this end,

write I = {s1, . . . , st}, where 0 ≤ s1 < · · · < st < n and let s0 := st. Similarly to the case of

the line, see condition (13), the following conditions are necessary for I to be a feasible jump

structure.
ρ+(sj−1, sj) ≥ 2d+ 1, 1 ≤ j ≤ t,
ρ+(sj−1, sj) is odd, 1 ≤ j ≤ t.

(41)
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Figure 6: Given a subset I ⊂ V satisfying (41), we construct C(I), the chain

structure of I, by partitioning the elements of I according to the connected

components in the subgraph of Tn,d induced by I. The elements of I are denoted

by large vertices and the chain structure is denoted by blocks surrounding the

vertices. In the figure, n = 90, d = 2 and I = {0, 5, 12, 35, 54, 65, 70, 75}, and

hence, C(I) = {(5, 2), (12, 1), (35, 1), (54, 1), (75, 3)}.

In contrast to the case of the line, these conditions alone are not sufficient for I to be a

feasible jump structure. This is due to the fact that the torus imposes a topological constraint.

Namely, that at the end of the homomorphism the average height must “return” to its initial

value. This additional condition, whose precise description (43) we postpone to the next

section, along with condition (41), is necessary and sufficient for I to be a feasible jump

structure.

In addition, we say that a subset I ⊂ V is a feasible jump sub-structure if it is a subset of

a feasible jump structure, or equivalently, if {I ⊂ S} 6= ∅. Notice that the definition implies

that condition (41) is necessary for I to be a feasible jump sub-structure. For any I ⊂ V

satisfying (41), by considering the connected components of the subgraph of Tn,d induced by

I, one may see that the event {I ⊂ S} can be uniquely written as Ck1,t1 ∩ · · · ∩Ckm,tm , where

0 ≤ k1 < · · · < km < n,

t1 + · · ·+ tm = |I|,
ρ+(kj−1, kj) > (2d+ 1)tj , 1 ≤ j ≤ m,

(42)

and where we let k0 := km (see Figure 6). These conditions ensure that there is no overlap

between the different chains, and moreover, that there is some gap between them (since

otherwise they would merge into a larger chain). For a subset I ⊂ V satisfying (41), we define

C(I) := {(kj , tj) | 1 ≤ j ≤ m},

and refer to this as the chain structure of I.
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5.2 The structure of a homomorphism

In this section, our goal is to a give a useful description of the structure of a homomorphism

on the torus. Namely, that which is stated in Lemma 5.2 and Lemma 5.3 below. To this end,

we would like to decompose a homomorphism into two parts (see Figure 5 and Figure 7).

The first part, which we shall denote by X, constitutes the changes in average height (the

underlying bridge) of the homomorphism, while the second part, which we shall denote by

Y , constitutes the fluctuations around the average height (the segments of constant average

height).

We proceed first to define X. Given a subset I ⊂ V satisfying (41), denote the set of

feasible sign vectors for I by

B∗(I) :=

ε ∈ {−1, 1}C(I) |
∑

(k,t)∈C(I)

ε(k,t)t = 0

 .

When I = ∅, this set contains one element, the function with the empty domain. Note that

in order for a subset I ⊂ V to be a feasible jump structure, it is necessary and sufficient for

I to satisfy (41) and

B∗(I) 6= ∅. (43)

This last condition is the manifestation of the topological constraint imposed by the torus. It

says that the chain structure induced by the position of the jumps is such that it is possible

to assign signs to each chain so that the average height “returns” to its initial value when

completing an entire loop around the torus.

For a feasible jump structure I and a feasible sign vector ε ∈ B∗(I), define the signed chain

structure of (I, ε) by

C∗(I, ε) :=
{

(k, ε(k,t) · t) | (k, t) ∈ C(I)
}
. (44)

Recall the definition of S from (40). Define X ∈ {−1, 1}C(S) by

X(k,t) := f(k)− f(k − 1), (k, t) ∈ C(S),

and note that X ∈ B∗(S). This defines for us the random signed chain structure C∗(S,X).

This random variable contains in a fairly simple manner all the necessary information for

determining the range of f . Namely, it gives us the positions, lengths and signs of the chains

in f .

We now proceed to define Y . For a non-empty feasible jump structure I, define the

fluctuation points of I by

FP (I) :=
{
y ∈ V | ρ+(y, I) ∈ 2d+ 1 + 2N

}
,

where ρ+(y, I) := mins∈I ρ
+(y, s) and N := {1, 2, 3, . . .}. That is, a point is a fluctuation

point if its clockwise distance to the closest jump in the clockwise direction is odd and at least

2d+ 3. In particular, for any homomorphism f and any y ∈ FP (S(f)), f is not at its average

height at y. Now, for a homomorphism f having at least one jump, define Y ∈ {−1, 1}FP (S)

by

Yy := f(y)− f(y − 1), y ∈ FP (S).
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Figure 7: A homomorphism is broken up into sections of fluctuations and

chains. The positions, lengths and associated signs of each chain (denoted

by blocks with signs inside) make up the signed chain structure C∗(S,X) of

the homomorphism. This information, along with the independent fluctuation

values between the chains (denoted by wavy lines), uniquely determines the

homomorphism.

It will be useful to have the following formula for the number of fluctuation points.

Claim 5.1. For any non-empty feasible jump structure I, we have

|FP (I)| = n/2− (d+ 1/2)|I| − |C(I)|.

Proof. We have∣∣{y ∈ V | ρ+(y, I) < 2d+ 3
}∣∣ =

∑
(k,t)∈C(I)

((2d+ 1)t+ 2) = (2d+ 1)|I|+ 2|C(I)|.

Furthermore, the set {y ∈ V | ρ+(y, I) ≥ 2d+3} is a disjoint union of intervals of even length,

by (41), so that

|FP (I)| =
∣∣{y ∈ V | ρ+(y, I) ≥ 2d+ 3

}∣∣ /2
=
(
n−

∣∣{y ∈ V | ρ+(y, I) < 2d+ 3
}∣∣) /2

= n/2− (d+ 1/2)|I| − |C(I)|.

The final lemmas show that X,Y and the jump structure S exactly encode the homomor-

phism.
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Lemma 5.2. For any non-empty feasible jump structure I, the mapping f 7→ (X(f), Y (f))

is a bijection between {S = I} and B∗(I) × {−1, 1}FP (I). Also, the event {S = ∅} is of size

2n/2+1 − 2.

This is an immediate consequence of the following lemma.

Lemma 5.3. For any non-empty feasible jump structure I and any feasible sign vector ε ∈
B∗(I), the mapping f 7→ Y (f) is a bijection between {C∗(S,X) = C∗(I, ε)} and {−1, 1}FP (I).

Also, the event {C∗(S,X) = ∅} is of size 2n/2+1 − 2.

Proof. It is not hard to verify that this is indeed a bijection (see Figure 7 for a macroscopic

picture and Figure 5 for a microscopic picture). We omit the proof as it is very similar to

that of Lemma 4.4.

For the second statement, we note that {C∗(S,X) = ∅} = {S = ∅} = {h ≡ const}, and

hence by considering the events {h ≡ 0} and {|h| ≡ 1}, and recalling that we set h ≡ 0 when

f takes on only two values, the statement readily follows.

5.3 The range

In this section, our goal is to give a more explicit description of the distribution of the

range of a homomorphism. Namely, that which is stated in Proposition 5.4 below.

Recall the definition of the signed chain structure from (44). Let

W̄ := {w | (k,w) ∈ C∗(S,X)} , (45)

be the set of lengths and signs of the chains taken with multiplicities, i.e. W̄ is a multi-set.

For a vector of integers w = (w1, . . . , wm), denote by

|Rng(w)| := 1 + max
0≤j≤m

j∑
i=1

wi − min
0≤j≤m

j∑
i=1

wi, (46)

the size of the smallest interval in Z which contains all partial sums of w.

Proposition 5.4. Let m ≥ 1, let w̄ = {w1, . . . , wm} be a multi-set such that P(W̄ = w̄) > 0

and let π be a uniformly chosen permutation of {1, 2, . . . ,m}. Then,

(|Rng(f)| conditioned on W̄ = w̄)
d
= 2 + |Rng(wπ(1), . . . , wπ(m))|.

Proposition 5.4 is a direct consequence of the following two lemmas. The first of these,

Lemma 5.5, relates the range of f to a random variable W defined below. The second, Lemma

5.6, describes the distribution of W conditioned on W̄ .

Given a set X and a vector x ∈ Xm, define the period of x by

per(x) := min{1 ≤ k ≤ m | σk(x) = x},

where σ : Xm → Xm is the mapping (x1, . . . , xm) 7→ (x2, . . . , xm, x1) and σk is its iteration

k times, so that σm is the identity map. Define an equivalence relation on Xm by x ∼ y if
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and only if there exists a k such that σk(x) = y. Denote by [x] := {x, σ(x), . . . , σm−1(x)} the

equivalence class of x. Observe that |[x]| = per(x). For x, y ∈ X , define

x ∨ y :=
(
(x1, y1), . . . , (xm, ym)

)
,

and note that per(x ∨ y) = lcm(per(x), per(y)).

Write C∗(S,X) = {(ki, wi)}mi=1, where 0 ≤ k1 < · · · < km < n. Let k0 := km and define

W := [(w1, . . . , wm)] .

That is, W forgets the absolute position of the chains and remembers only their signed length

and relative ordering. Note that W̄ is determined by W .

We begin by showing that the random variable W governs the range of the homomorphism.

For a vector of integers w whose sum is zero, recalling (46), we define |Rng([w])| := |Rng(w)|,
and note that this is indeed well-defined by the equivalence class of w.

Lemma 5.5. We have

|Rng(f)| = 2 + |Rng(W )| on the event {W̄ 6= ∅}.

Proof. The partial sums of W correspond to differences in average height between two vertices.

Therefore, |Rng(W )| = 1 + maxx∈V h(x) − minx∈V h(x). By the definition of the average

height, we have |f(x) − h(x)| ≤ 1 and {h(x) − 1, h(x), h(x) + 1} ⊂ Rng(f) for any vertex

x ∈ V . Therefore, by considering vertices at which the average height is maximal or minimal,

we obtain the additional factor of 2 in the above equation.

Remark. On the event {W̄ = ∅}, the size of the range of f is either 2 or 3. However, Lemma

5.2 implies that, conditioned on W̄ = ∅, the probability that the size of the range is 2 is of

order 2−n/2.

The next lemma is the final ingredient in the proof of Proposition 5.4. The remaining part

of this section is devoted to its proof.

Lemma 5.6. Let m ≥ 1, let w̄ = {w1, . . . , wm} be a multi-set such that P(W̄ = w̄) > 0 and

let π be a uniformly chosen permutation of {1, 2, . . . ,m}. Then,

(W conditioned on W̄ = w̄)
d
= [wπ(1), . . . , wπ(m)].

Write C∗(S,X) = {(ki, wi)}mi=1, where 0 ≤ k1 < · · · < km < n. Let k0 := km and define

Z :=
[(
ρ+(ki−1, ki − (2d+ 1)|wi| − 2)/2, wi

)m
i=1

]
.

That is, Z forgets the absolute positions of the chains in C∗(S,X) and remembers only their

distances one to the other (precisely, half the distance from the last vertex of one chain to one

vertex before the beginning of the next chain). Note that the first coordinate of each element

in Z is necessarily a non-negative integer. Also note that W is determined by Z. The next

claim calculates the distribution of Z.



42 Homomorphisms on the Torus

Claim 5.7. Let m ≥ 1. Let w ∈ (Z \ {0})m be such that w1 + · · · + wm = 0 and let

x ∈ (N ∪ {0})m be such that

(2d+ 1)(|w1|+ · · ·+ |wm|) + 2m+ 2(x1 + · · ·+ xm) = n. (47)

Then

|{Z = [x ∨ w]}| = n · per(x ∨ w)

m
· 2x1+···+xm .

Proof. Recall conditions (41) and (43), and note that, together with the assumptions, they

imply that the event {Z = [x ∨ w]} is non-empty. We partition the event {Z = [x ∨ w]}
according to C∗(S,X). Let r ≥ 1 be the number of subsets in this partition, so that

{Z = [x ∨ w]} =
r⋃
i=1

{C∗(S,X) = C∗(Ii, εi)},

where the (Ii, εi) are distinct and feasible. By Lemma 5.3, Claim 5.1 and (47),

|{C∗(S,X) = C∗(Ii, εi)}| = 2n/2−(d+1/2)(|w1|+···+|wm|)−m = 2x1+···+xm ,

for any 1 ≤ i ≤ r, and therefore,

|{Z = [x ∨ w]}| = r · 2x1+···+xm .

Recalling the definition of Z, we see that {Z = [x ∨ w]} determines C∗(S,X) = {(ki, wi)}mi=1

up to a rotation of the torus. It is not hard to see that if l = per(x ∨ w) then r = nl/m.

Proof of Lemma 5.6. We show something stronger. Define

D := [(x1, . . . , xm)] where Z = [((xi, wi))
m
i=1].

Let m ≥ 1, let w̄ = {w1, . . . , wm} be a multi-set and let x = (x1, . . . , xm) be such that

P(W̄ = w̄,D = [x]) > 0. We shall show that

(W conditioned on W̄ = w̄ and D = [x])
d
= [wπ(1), . . . , wπ(m)],

where π is a uniformly chosen permutation of {1, 2, . . . ,m}.
Let w be an ordering of w̄. Define

Z(x,w) :=
{

[x′ ∨ w′] | x′ ∈ [x], w′ ∈ [w]
}
,

and note that |Z(x,w)| = gcd(per(x), per(w)). We have

P(W = [w] | W̄ = w̄, D = [x]) =
P(W = [w], D = [x])

P(W̄ = w̄, D = [x])
=

∑
z∈Z(x,w) |{Z = z}|∣∣{W̄ = w̄} ∩ {D = [x]}

∣∣ .
Let w′ ∈ [w] and x′ ∈ [x] be representatives of their equivalence classes. By Claim 5.7, we

have

|{Z = [x′ ∨ w′]}| = n · per(x′ ∨ w′)
m

· 2x1+···+xm .
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Since, per(x′ ∨ w′) = lcm(per(x′), per(w′)), per(x′) = per(x) and per(w′) = per(w), we see

that P(W = [w] | W̄ = w̄, D = [x]) is proportional to

|Z(x,w)| · lcm(per(x),per(w)) = per(x) · per(w).

That is, conditioned on W̄ = w̄ and D = [x], the probability that W equals [w] is proportional

to per(w). Finally, observe that the same is true for the probability that [wπ(1), . . . , wπ(m)]

equals [w]. Indeed, one may check that

P([wπ(1), . . . , wπ(m)] = [w]) =
per(w)

C(w̄)
,

where C(w̄) is a multinomial coefficient depending on w̄.

5.4 Proof of theorems

In this section, we are primarily concerned with homomorphisms on the graph Tn,d. How-

ever, we will occasionally also refer to homomorphisms on the graph Pn,d. We note that in ei-

ther case, such a homomorphism can be seen as an element of Z{0,1,...,n}, where f ∈ Hom(Tn,d)

is extended to {0, 1, . . . , n} by f(n) := 0. Therefore, the uniform distributions on Hom(Pn,d)

and Hom(Tn,d) can be seen as distributions on Z{0,1,...,n}. We shall denote the probability

and expectation with respect to each of these distributions by PP and EP and PT and ET ,

respectively. Throughout this section, we will frequently drop the subscript, in which case P
and E will refer to PT and ET .

We first state some technical lemmas and propositions whose proofs we defer to the next

section. Our first proposition is one which will allow us to transfer some results from the

line to the torus. This is an FKG-type inequality for the measure induced on non-negative

homomorphisms by taking pointwise absolute value.

Proposition 5.8. For any increasing function φ : Z{0,1,...,n} → [0,∞), we have

ET [φ(|f |)] ≤ 9 · EP [φ(|f |)].

The next two lemmas are concerned with the probability of jumps occurring at given

vertices. In the case of the line, we were able to obtain in Lemma 4.2 a good upper bound on

the probability of having t jumps at any given vertices. In the case of the torus, we are not

able to obtain such a general result. The main difficulty is due to the topological constraint

imposed by the torus. In particular, if a jump occurs at a given vertex then a jump in the

opposite direction must also occur at some other vertex. The next lemma shows that the

probability of a chain of consecutive jumps is still unlikely.

Lemma 5.9. For any vertex x ∈ V and any positive integer t, we have

P(Cx,t) ≤ C2−dt.

The following lemma shows that having jumps in opposing directions at given vertices is

also unlikely.
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Lemma 5.10. For I, J ⊂ V let AI,J :=
⋂
x∈I,y∈J Ax,y be the event that there are jumps in

one direction at all vertices in I and jumps in the opposite direction at all vertices in J . Then,

for any subsets I, J ⊂ V of size m each, we have

P(AI,J) ≤ 2−(2d−1)m.

The last lemma is the analog of Corollary 4.9 on the line. It will allow us to deduce the

typical order of magnitude of R.

Lemma 5.11. For any positive even integer n and any positive integers d and r such that

Cdr ≤ n, we have

P(R = r) ≥ n2

r222d+5
·
(

1− Cdr

n

)2

· P(R = r − 1).

As in the case of homomorphisms on the line, it is also possible to prove an inequality in

the opposite direction, showing that P(R = r) ≤ C n2

r222d
P(R = r − 1), but we neither use nor

prove this.

The supercritical regime. We prove Theorem 2.6 and Corollary 2.7. By Lemma 5.10 and

by the union bound, we have

P(R ≥ r) = P

 ⋃
I,J⊂V
|I|=|J |=r

AI,J

 ≤ (nr
)2

2−(2d−1)r, r ≥ 1.

One may easily check that |Rng(f)| ≤ R+ 3, so that

P
(
|Rng(f)| ≥ 3 + r

)
≤
(
n

r

)2

2−(2d−1)r, r ≥ 1. (48)

Moreover, it is easy to describe all homomorphisms which take on at most 3 values. Let Ω0

be the set of homomorphisms which are constant on the even vertices (having the value 0 on

the even vertices and 1 or −1 on the odd vertices), and let Ω1 be the set of homomorphisms

which are constant on the odd vertices (having the value ±1 on the odd vertices, and 0 or

±2, respectively, on the even vertices). Then {|Rng(f)| ≤ 3} = Ω0 ∪ Ω1, |Ω0 ∩ Ω1| = 2, and

|Ω0| = |Ω1| = 2n/2. Therefore,

P
(
|Rng(f)| < 3

)
= P(Ω0 ∩ Ω1) ≤ |Ω0 ∩ Ω1|

|Ω0 ∪ Ω1|
=

2

2n/2+1 − 2
≤ 21−n/2,

completing the proof of Theorem 2.6. To obtain Corollary 2.7, recall that |Ω0| = |Ω1| and

note that if d − log2 n → ∞ as n → ∞ then P(Ω0 ∪ Ω1) = P(|Rng(f)| ≤ 3) = 1 − o(1), by

Theorem 2.6.

We remark that the bound (48) obtained for the probability that the range is large con-

stitutes something of a compromise between two possibilities. With somewhat less work we

could have used the FKG-type inequality, Proposition 5.8, to obtain a weaker bound. With

somewhat more work we could make a finer analysis of the possible cases in the proof of



5.4 Proof of theorems 45

Lemma 5.10 and obtain a somewhat better bound, with 2d − 1 replaced by 2d + 1 or even

2d+ 2. The bound we chose to prove has the benefit that it is already rather good and has a

relatively simple proof.

The subcritical regime. We begin by proving the upper bound in Theorem 2.8. Since

max0≤k≤n |f(k)| is an increasing function in |f |, we have by Proposition 5.8,

ET
[

max
0≤k≤n

|f(k)|
]
≤ 9 · EP

[
max

0≤k≤n
|f(k)|

]
.

By our previous result on the line, Theorem 2.3, we have

EP
[

max
0≤k≤n

|f(k)|
]
≤ EP

[
|Rng(f)| − 1

]
≤ 2 + C

√
n2−d,

and then, using symmetry,

ET
[
|Rng(f)|

]
= ET

[
1 + max

0≤k≤n
f(k)− min

0≤k≤n
f(k)

]
≤ 1+2·ET

[
max

0≤k≤n
|f(k)|

]
≤ 37+C

√
n2−d.

We now prove the lower bound in Theorem 2.8. The proof is very similar to the proof of

the lower bound in Theorem 2.3 in Section 4, and so we only give an outline of the proof.

First, we show that for any ε > 0 there exists a δ > 0 such that

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ ε+ 21−n/2.

Let ε > 0. Note that, by Theorem 2.6, the statement is trivial when δ
√
n2−d < 1. Hence, we

may assume that n2−d ≥ C/ε. Mimicking the proof of Lemma 4.10 and its corollary, using

Lemma 5.11 in place of Lemma 4.8, we find that there exists a δ1 > 0 such that

P
(
R < δ1n2−d

)
≤ ε/4.

Continuing as in (32) - (34), using Lemma 5.9 in place of Lemma 4.2, we obtain

P
(
|C(S)| ≥ δ2n2−d

)
≥ 1− ε/2, (49)

for some δ2 > 0. Proposition 5.4 and Proposition 3.5 imply that

P
(
|Rng(f)| < r | |C(S)|

)
≤ Cr√

|C(S)|
, r ∈ N. (50)

Now, putting (49) and (50) together, we see that there exists a δ > 0 such that

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ P

(
|Rng(f)| <

⌊
4δ
√
n2−d

⌋)
≤ ε.

Finally, repeating the calculation in (36), where we use Theorem 2.6 in place of Theorem 2.1,

we obtain

E
[
|Rng(f)|

]
≥ 3 +

⌊
c
√
n2−d

⌋
− 21−n/2.
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The critical regime. Here we prove Theorem 2.9. Denote λ := limn2−d which exists and is

a positive number by assumption. We begin by showing that in the critical regime the jumps

are sparse enough so that it is unlikely to have chains of length greater than one. Let

B :=
⋂
x∈V

(Acx ∪Acx+2d+1)

be the event that there are no two minimal-distance jumps (i.e. jumps at distance 2d + 1).

We wish to show that P(B) = 1− o(1). Indeed, by Lemma 5.9, we have

P(Bc) ≤
∑
x∈V

P(Ax ∩Ax+2d+1) ≤ Cn2−2d = o(1).

We now find the limiting distribution of R as n tends to infinity. By Lemma 5.2 and Claim

5.1, we have that P(R = r | B) is proportional to{
c(n, d, r) ·

(
2r
r

)
· 2n/2−r(2d+3) if r ≥ 1

2n/2+1 − 2 if r = 0
, (51)

where c(n, d, r) is the number of feasible jump structures I having |I| = |C(I)| = 2r.

Claim 5.12. For any r ≥ 1, we have

c(n, d, r) =
n

2r
·
(
n/2− (2d+ 1)r − 1

2r − 1

)
.

Proof. Denote by I the set of all feasible jump structures I having |I| = |C(I)| = 2r. For

v ∈ V , let Iv := {I ∈ I | v ∈ I}. Then,

n|I0| =
∑
v∈V
|Iv| =

∑
v∈V

∑
I∈I

1I(v) =
∑
I∈I

∑
v∈V

1I(v) =
∑
I∈I
|I| = 2r|I| = 2r · c(n, d, r).

It remains to compute the size of I0. By considering the distances between consecutive

elements in any I ∈ I0, and recalling (41), (42) and (43), we see that |I0| is given by the

number of non-negative integer solutions to the equation

x1 + x2 + · · ·+ x2r = n,

under the additional constraint that, for 1 ≤ j ≤ 2r, xj is odd and at least 2d+ 3. Therefore,

after substituting xj = 2yj + 2d+ 3 for 1 ≤ j ≤ 2r, we see that |I0| is equal to the number of

non-negative integer solutions to the equation

y1 + · · · y2r = n/2− (2d+ 3)r,

from which the result now follows.

By (51) and Claim 5.12, for any fixed r ≥ 1, we have

P(R = r | B)

P(R = r − 1 | B)
=

n2

r222d+5
· (1 + o(1)) =

(λ′)2

r2
· (1 + o(1)),
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where λ′ := λ/(4
√

2). By Lemma 5.9 and since P(B) = 1− o(1), we have

E[R | B] =
1

2

∑
x∈V

P(Ax | B) ≤ 1

2P(B)

∑
x∈V

P(Ax) ≤ Cn2−d

P(B)
= O(1).

Therefore, conditioned on B, the expectation of R is uniformly bounded as n → ∞. Hence,

Markov’s inequality implies that, conditioned on B, R is tight as n→∞. Recall the definition

of the distribution ν(λ′) in (7). Let N(λ′) ∼ ν(λ′) and note that

P(N(λ′) = r)

P(N(λ′) = r − 1)
=

(λ′)2

r2
, r ≥ 1.

Thus, Lemma 3.6 implies that, conditioned on B, R converges in distribution to N(λ′).

Finally, since P(B) = 1− o(1), we conclude that R converges in distribution to ν(λ′).

It remains to understand the range of a homomorphism. Recalling the definition of W̄

given in (45), we observe that the event B is the same as the event {|W̄ | = |C(S)| = 2R}, which

is the same as the event that W̄ consists of R 1’s and R (−1)’s. Therefore, by Proposition

5.4, conditioned on B and on R, on the event {R > 0}, the range of a homomorphism is equal

in distribution to two plus the range of a random walk bridge of length 2R. By Theorem

2.6, conditioned on the event {R = 0}, the range of a homomorphism is 3 with probability

tending to one. This, together with our previous result on the convergence of R in distribution,

completes the proof of Theorem 2.9.

5.5 Proof of main lemmas

Proof of Proposition 5.8. Recall that a homomorphism on Pn,d or Tn,d can be seen as an ele-

ment of Z{0,1,...,n}, where f ∈ Hom(Tn,d) is extended to {0, 1, . . . , n} by f(n) := 0. Therefore,

the uniform distributions on Hom(Pn,d) and Hom(Tn,d) are distributions on Z{0,1,...,n}, which

we denote by PP and PT respectively. We also denote by Q := {f ∈ Hom(Tn,d)} the support

of PT , so that the measure PP (· | Q) is just the measure PT .

Let φ : Z{0,1,...,n} → [0,∞) be an increasing function. Note that the event {f(n) = 0}
is a decreasing event in |f |. Therefore, we can apply Theorem 3.3 for the functions φ and

ψ(f) := 1{f(n)=0}, to obtain

EP
[
φ(|f |) | f(n) = 0

]
≤ EP

[
φ(|f |)

]
. (52)

Notice that sampling a random homomorphism on Pn,d conditioned on {f(n) = 0} is not

equivalent to sampling a random homomorphism on Tn,d, which is just to say that Q 6=
{f(n) = 0}. However, it is equivalent to sampling a random homomorphism on another

graph. Namely, the graph P ′n,d obtained from Pn,d by identifying the vertex 0 with the vertex

n. In order to obtain Tn,d from P ′n,d, we must still add some edges which are missing, for

example, the edge between n − 1 and 2, and the edge between n − 2 and 1. Nonetheless,

this observation shows that the measure PP (· | f(n) = 0) also satisfies the FKG inequality in

Theorem 3.3, since it is equivalent to sampling a random homomorphism on P ′n,d. Define the
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events

J := {|f(k)| ≤ 1, k = 0, 1, . . . , 2d} and

J ′ := {|f(k)| ≤ 1, k = n, n− 1, . . . , n− 2d}.

Notice that

J ∩ J ′ ⊂ Q ⊂ {f(n) = 0}.

Thus, using (52) and the fact that φ is non-negative, we obtain

EP
[
φ(|f |) | Q

]
≤ EP

[
φ(|f |) | f(n) = 0

]
· PP (f(n) = 0)

PP (Q)
≤

EP
[
φ(|f |)

]
PP (J ∩ J ′ | f(n) = 0)

.

We now wish to bound P(J ∩ J ′ | f(n) = 0) from below. We first apply Theorem 3.3 to the

graph P ′n,d to get

PP (J ∩ J ′ | f(n) = 0) ≥ PP (J | f(n) = 0) · PP (J ′ | f(n) = 0) = PP (J | f(n) = 0)2,

where we have used symmetry in the second step. Next, we apply Theorem 3.3 again to the

graph Pn,d to get

PP (J | f(n) = 0) ≥ PP (J).

Finally, since J is just the event that no jump occurs at the first 2d+ 1 vertices, we have by

Lemma 4.1 that PP (J) ≥ 1/3. Therefore, we have shown that

ET
[
φ(|f |)

]
= EP

[
φ(|f |) | Q

]
≤ 9 · EP

[
φ(|f |)

]
.

For the proofs of the remaining lemmas, it is convenient to denote by [x, y] the vertices on

the arc going from x to y in the clockwise direction. That is, for x, y ∈ V , we define

[x, y] := {z ∈ V | ρ+(x, z) ≤ ρ+(x, y)}.

Also, for a set J ⊂ V and an integer t, we let

J + t := {j + t | j ∈ J}

where, as always, addition for vertices on the torus is taken modulo n.

Proof of Lemma 5.9. First, we partition Cx,t into two events C0
x,t and C1

x,t. Denote x′ :=

x− (2d+ 1)t− 1 and define

C0
x,t := Cx,t ∩

{
|f(x)− f(x′ − 1)| = 2 + t

}
,

C1
x,t := Cx,t ∩

{
|f(x)− f(x′ − 1)| = t

}
.

Note that since any f ∈ Cx,t has |f(x) − f(x′)| = 1 + t, we indeed have Cx,t = C0
x,t ∪ C1

x,t.

Also, observe that

C0
x,t = {|f(x)− f(x′ − 1)| ≥ 2 + t}, (53)

since for any f ∈ Hom(Tn,d), |f(x)−f(x′−1)| ≤ 2+t necessarily holds and |f(x)−f(x′−1)| =
2 + t holds only if there is a chain of length t at x.
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x′′ x′

x

Figure 8: A homomorphism f in C1
x,t. Modifying the value at x′ − 1 to be

f(x′′) injectively maps this homomorphism to C0
x,t. Here d = 2 and t = 3.

We now prove that

P(C1
x,t) ≤ P(C0

x,t). (54)

By rotating the torus if necessary, we note that it suffices to prove this under the assumption

that x′ 6= 1. This simplifies slightly the following discussion as it avoids issues stemming from

the fact that f(0) is normalized to be 0.

Consider the mapping f 7→ f0 from C1
x,t to C0

x,t defined by

f0(y) :=

{
f(y) if y 6= x′ − 1

2f(y + 1)− f(y) if y = x′ − 1
, y ∈ V.

Let f ∈ C1
x,t. Note that, by the definition of the jumps and the average height, there exists

a vertex x′′ ∈ V such that |f(x) − f(x′′)| = 2 + t and such that 1 ≤ |f(y) − f(x′′)| ≤ 2 for

any y ∈ [x′′ + 1, x′ + 2d + 1]. It is easy to see that the existence of such a x′′ implies that

f0 is well-defined (see Figure 8). Since the mapping is clearly injective, (54) follows, and so

P(Cx,t) ≤ 2P(C0
x,t).

It remains to bound the probability of the event C0
x,t. Due to rotation equivariance, the

probability of this event is independent of x. Thus, substituting x = (2d + 1)t + 2 so that

x′ = 1, and recalling (53), we have

P(C0
x,t) = P(C0

(2d+1)t+2,t) = P(|f((2d+ 1)t+ 2)| ≥ 2 + t).

Since this last event is clearly an increasing event in |f |, Proposition 5.8 and Lemma 4.2 now

yield

PT (C0
x,t) = PT (|f((2d+ 1)t+ 2))| ≥ 2 + t)

≤ 9 · PP (|f((2d+ 1)t+ 2))| ≥ 2 + t) = 9 · PP (C(2d+1)t+2,t+1) ≤ C2−dt.

Proof of Lemma 5.10. The idea of the proof is to remove jumps from the jump structure of

the given homomorphism and observe that this results in more fluctuation points. We shall

do so by removing the jumps two at a time. See Figure 9.

We begin with some notation. For a feasible jump structure I and a vertex x ∈ I, denote

by C(I, x) the chain in I containing x, i.e., C(I, x) is the unique element (k, t) ∈ C(I) satisfying

x ∈ [k− (2d+ 1)(t−1), k]. For a feasible jump structure I and two vertices x, y ∈ I belonging

to different chains, i.e. C(I, x) 6= C(I, y), denote

Ix,y := (I ∩ [y + 1, x− 1]) ∪ ((I ∩ [x+ 1, y − 1])− 1).
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x y

Figure 9: An illustration of the operation of “removing jumps” from a ho-

momorphism. Given a homomorphism having jumps at x and y in opposite

directions, we may remove these jumps and gain entropy in the newly formed

fluctuation points. Here d = 3.

Note that Ix,y satisfies condition (41). Moreover, it is easy to see that the chain structure of

Ix,y satisfies

C(Ix,y) = C(I ∩ [y + 1, x− 1]) ∪ C((I ∩ [x+ 1, y − 1])− 1).

In particular,

|C(I)| − 2 ≤ |C(Ix,y)| ≤ |C(I)|+ 2 (55)

and, denoting Dx,y := {x− 2d− 1, x+ 2d+ 1, y − 2d− 1, y + 2d+ 1},

|C(Ix,y)| = |C(I)| − 2, if I ∩Dx,y = ∅. (56)

Now, for a feasible sign vector ε ∈ B∗(I), define εx,y ∈ {−1, 1}C(Ix,y) by

εx,y(k, t) :=

{
ε(C(I, k)) if k ∈ I
ε(C(I, k + 1)) if k + 1 ∈ I

, (k, t) ∈ C(Ix,y).

That is, the sign of a chain in C(Ix,y) is inherited from its corresponding chain in C(I). Note

that, ∑
(k,t)∈C(Ix,y)

εx,y(k, t) · t = −ε(C(I, x))− ε(C(I, y)).

Hence, if ε(C(I, x)) 6= ε(C(I, y)) then εx,y ∈ B∗(Ix,y) and, by (43), Ix,y is a feasible jump

structure.

Denote by I the set of all feasible jump structures. For subsets J, J ′ ⊂ V , denote by

B(J, J ′) the set of all feasible signed jump structures containing J ∪ J ′ and having different

signs on J and J ′, i.e.,

B(J, J ′) :=
{

(I, ε) | I ∈ I, ε ∈ B∗(I), J ∪ J ′ ⊂ I, ε(C(I, x)) 6= ε(C(I, y)) ∀x ∈ J, y ∈ J ′
}
.

Then, we have the equality of events,

AJ,J ′ = {(S,X) ∈ B(J, J ′)}.
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Therefore, the lemma is equivalent to

P
(
(S,X) ∈ B(J, J ′)

)
≤ 2−(2d−1)m, m ≥ 0, J, J ′ ⊂ V, |J | = |J ′| = m. (57)

We prove this by induction on m. The induction base, m = 0, and the case when B(J, J ′) = ∅
are trivial. Suppose that m ≥ 1 and let J, J ′ ⊂ V be such that B(J, J ′) 6= ∅. We choose two

vertices x ∈ J and y ∈ J ′ such that [x, y] ∩ (J ∪ J ′) = {x, y} and define a mapping

T : B(J, J ′)→ B(J \ {x}, J ′ \ {y})

by

T (I, ε) := (Ix,y, εx,y).

Note that the mapping I 7→ Ix,y is injective on {I ∈ I | x, y ∈ I}. Thus, recalling that

jumps belonging to the same chain must have the same sign, it is not hard to see that, for

any (I ′, ε′) ∈ B(J \ {x}, J ′ \ {y}), we have

|T−1(I ′, ε′)| ≤

{
1 if I ′ ∩D′x,y 6= ∅
2 if I ′ ∩D′x,y = ∅

,

where D′x,y := {x− 2d− 1, x+ 2d, y− 2d− 2, y+ 2d+ 1}. Moreover, by Lemma 5.3 and Claim

5.1, for any (I, ε) ∈ B(J, J ′),

P
(
(S,X) = T (I, ε)

)
= P

(
(S,X) = (I, ε)

)
·

{
22d+1+|C(I)|−|C(Ix,y)| if Ix,y 6= ∅
22d+3(2− 21−n/2) if Ix,y = ∅

.

Thus, by (55) and (56), for any (I, ε) ∈ B(J, J ′),

P
(
(S,X) = T (I, ε)

)
≥ P

(
(S,X) = (I, ε)

)
· 22d−1 ·

{
1 if I ∩Dx,y 6= ∅
16 if I ∩Dx,y = ∅

.

Denote

B :=
{

(I, ε) ∈ B(J, J ′) | I ∩Dx,y = ∅
}
,

B′ :=
{

(I ′, ε′) ∈ B(J \ {x}, J ′ \ {y}) | I ′ ∩D′x,y = ∅
}
.

Note that T maps B into B′ and B(J, J ′)\B into B(J \{x}, J ′\{y})\B′. Therefore, applying

Lemma 3.1 to the restriction of T to B and separately to its restriction to B(J, J ′) \ B, we

obtain

P
(
(S,X) ∈ B(J, J ′)

)
= P

(
(S,X) ∈ B

)
+ P

(
(S,X) ∈ B(J, J ′) \B

)
≤ 2−(2d+2) · P

(
(S,X) ∈ B′

)
+ 2−(2d−1) · P

(
(S,X) ∈ B(J \ {x}, J ′ \ {y}) \B′

)
≤ 2−(2d−1) · P

(
(S,X) ∈ B(J \ {x}, J ′ \ {y})

)
.

Thus, (57) follows by induction, proving the lemma.
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Proof of Lemma 5.11. The proof utilizes a similar technique as the proof of Lemma 5.10,

where this time we aim to add jumps to the jump structure of the homomorphism rather

than remove jumps.

For a feasible jump structure I, denote

U(I) :=


{

(x, y) ∈ V 2 | ρ(x, y) ≥ 2d+ 3, ρ
+(I,x), ρ+(x,I)+1,
ρ+(y,I), ρ+(I,y)−1

∈ D
}

if I 6= ∅{
(x, y) ∈ V 2 | ρ(x, y) ∈ D, ρ(0, x) is even

}
if I = ∅

,

where ρ+(x, I) := mins∈I ρ
+(x, s), ρ+(I, x) := mins∈I ρ

+(s, x) and

D := {2d+ 3, 2d+ 5, . . . }.

For a feasible jump structure I and a pair (x, y) ∈ U(I), define

Ix,y := (I ∩ [y, x]) ∪ ((I ∩ [x, y]) + 1) ∪ {x, y}.

Note that Ix,y satisfies condition (41). Moreover, it is easy to see that the chain structure of

Ix,y satisfies

C(Ix,y) = C(I ∩ [y, x]) ∪ C((I ∩ [x, y]) + 1) ∪ {(x, 1), (y, 1)}.

Now, for a feasible sign vector ε ∈ B∗(I) and a sign i ∈ {−1, 1}, define εx,y,i ∈ B∗(Ix,y) by

εx,y,i(k, t) :=


ε(k, t) if k ∈ I
ε(k − 1, t) if k − 1 ∈ I
i if k = x

−i if k = y

, (k, t) ∈ C(Ix,y).

That is, the sign of a chain in C(Ix,y)\{(x, 1), (y, 1)} is inherited from its corresponding chain in

C(I) and the sign of the chain at x, which is opposite of that of y, is determined independently.

Note that, by (43), Ix,y is a feasible jump structure. Moreover, since |Ix,y| = |I| + 2 and

|C(Ix,y)| = |C(I)|+ 2, Lemma 5.3 and Claim 5.1 imply that

P
(
(S,X) = (Ix,y, εx,y,i)

)
= P

(
(S,X) = (I, ε)

)
· 2−2d−3 ·

{
1 if I 6= ∅
(2− 21−n/2)−1 if I = ∅

. (58)

Denote by I the set of all feasible jump structures. For r ≥ 0, let Br denote the set of

feasible signed jump structures having 2r jumps, i.e.,

Br := {(I, ε) | I ∈ I, ε ∈ B∗(I), |I| = 2r}.

For r ≥ 1, define the mapping

Tr : Br−1 → P(Br)

by

Tr(I, ε) :=
{

(Ix,y, εx,y,i) | (x, y) ∈ U(I), i ∈ {−1, 1}
}
.
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Assume henceforth that n ≥ Cdr. Then, since the mapping ((x, y), i) 7→ (Ix,y, εx,y,i) is

injective on U(I)× {−1, 1}, we have

|Tr(I, ε)| = 2|U(I)| ≥ 2(n/2− Cdr)2.

Therefore, by (58),

P
(
(S,X) ∈ Tr(I, ε)

)
≥ P

(
(S,X) = (I, ε)

)
· (n− Cdr)2

22d+5
·

{
2 if r ≥ 2

1 if r = 1
.

For (I ′, ε′) ∈ Br, denote

Nr(I
′, ε′) :=

{
(I, ε) ∈ Br−1 | (I ′, ε′) ∈ Tr(I, ε)

}
.

We have

|Nr(I
′, ε′)| ≤ r2 ·

{
2 if r ≥ 2

1 if r = 1
.

Thus, considering separately the case r = 1, Lemma 3.1 implies that for any r ≥ 1,

P(R = r−1) = P
(
(S,X) ∈ Br−1

)
≤ P

(
(S,X) ∈ Br

)
· r222d+5

(n− Cdr)2
= P(R = r)· r222d+5

(n− Cdr)2
.
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Chapter 6

Local limits on the line

In this section we prove the theorems which were stated in Section 2.3. Throughout

this section, the parameter d ≥ 1 is fixed, and so we drop the d from the notation when

convenient. On the other hand, the parameter n ≥ 1 is allowed to vary, and our main goal

is to understand Hom(Pn,d) := Hom(Pn,d, 0) as n grows larger. At first, in Section 6.2, we

investigate the asymptotic size of Hom(Pn,d) as n tends to infinity. Subsequently, in Sections

6.3 and 6.4, we describe the local limit of such homomorphisms as a probability measure on

infinite homomorphisms defined through a Markov chain (see Figure 12).

6.1 Definitions

Given a finite set Π, called an alphabet, we denote by Π∗ the set of all finite words on Π.

That is,

Π∗ :=
{

(a1, a2, . . . , at) | ai ∈ Π, t ≥ 0
}
.

For u, v ∈ Π∗, we denote the length of u by |u| and the concatenation of u and v by u ◦ v, i.e.,

u ◦ v := (u1, . . . , u|u|, v1, . . . , v|v|).

It is clear that concatenation is associative. For u ∈ Π∗ with |u| ≥ 1, let u− be the word

obtained from u by dropping the last element, i.e.,

u− := (u1, . . . , u|u|−1).

Define the derivative operator Dn : Hom(Pn,d)→ {−1, 1}n by

(Dn(f))k := f(k)− f(k − 1), 1 ≤ k ≤ n. (59)

Denote by D ⊂ {−1, 1}∗ the set of words on {−1, 1} which do not contain (−1,−1,−1)

or (1, 1, 1) as a subsequence, and note that Dn(Hom(Pn,d)) ⊂ D. Let Σ be the four letter

alphabet

Σ := {a, b, A,B},

55
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where

a := (1,−1),

b := (−1, 1),

A := (1, 1,−1),

B := (−1,−1, 1).

These basic sequences will serve as a means to encode homomorphisms into words (see Figure

10). Define T ′ : Σ∗ → {−1, 1}∗ by

T ′(x) := x1 ◦ x2 ◦ · · · ◦ x|x|.

For x ∈ Σ∗, define the weight of x by

w(x) := |T ′(x)| =
|x|∑
k=1

|xk|. (60)

Now, we define a mapping T : D → Σ∗ recursively by the relations

T (()) := (),

T ((1)) := (a),

T ((−1)) := (b),

T ((1, 1)) := (A),

T ((−1,−1)) := (B),

T (u ◦ v) := (u) ◦ T (v) for u ∈ Σ and v ∈ D.

(61)

It is not hard to see that T is indeed well-defined (see Figure 11), and that it maps a word

u ∈ D to the unique word x ∈ Σ∗ satisfying T ′(x) = u or T ′(x)− = u (in which case w(x) = |u|
or w(x) = |u| + 1, respectively). Also, one should note that T−1(x) = ∅ if x ∈ Σ∗ contains

(a,B) or (b, A) as a sub-word or if x = ∅, and that T−1(x) = {T ′(x), T ′(x)−} otherwise.

Another observation which will be useful later on is that the recursive relation in the last

line of (61) may be generalized to hold for certain u ∈ D.

Claim 6.1. We have

T (u ◦ v) = T (u) ◦ T (v) for u, v ∈ D such that |u| = w(T (u)). (62)

Proof. We prove the claim by induction on |u|. If |u| = 0 then there is nothing to prove.

Otherwise, |u| ≥ 1. By the assumption, we have |u| = w(T (u)), which implies that u may be

decomposed as u = u′ ◦ u′′, where u′ ∈ Σ. Note that this now implies that |u′′| = w(T (u′′)),

since T (u) = T (u′) ◦ T (u′′), by (61), and since |u′| = w(T (u′)) trivially. Therefore, by

induction,

T (u ◦ v) = T (u′ ◦ u′′ ◦ v) = T (u′) ◦ T (u′′ ◦ v)

= T (u′) ◦ T (u′′) ◦ T (v) = T (u′ ◦ u′′) ◦ T (v) = T (u) ◦ T (v).
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a := (1,−1) A := (1, 1,−1)

b := (−1, 1) B := (−1,−1, 1)

Figure 10: The basic building blocks for encoding a homomorphism into a

word on the alphabet Σ := {a, b, A,B}.

f =

u =

x =

-1 1︸ ︷︷ ︸
b

1 -1︸ ︷︷ ︸
a

1 -1︸ ︷︷ ︸
a

1 1 -1︸ ︷︷ ︸
A

1 -1︸ ︷︷ ︸
a

-1 1︸ ︷︷ ︸
b

1 -1︸ ︷︷ ︸
a

-1 1︸ ︷︷ ︸
b

-1 1︸ ︷︷ ︸
b

-1 -1 1︸ ︷︷ ︸
B

1 -1︸ ︷︷ ︸
a

1︸︷︷︸
a

Figure 11: A homomorphism f ∈ Hom(Pn,d) is first viewed as a word u :=

Dn(f) of length n on the alphabet {−1, 1}. Then, u is encoded into a word

x := T (u) on the alphabet Σ by sequentially reading off the letters from left

to right, as defined in the recursive formula in (61). If this process exhausts u

completely then we end up with a word x of weight exactly n. Otherwise, we

remain with a tail of u of length one or two (as is the case in this figure), which

is a prefix of at least one element in Σ. In this case, the last letter is chosen in

such a way that the weight of the resulting word x is n + 1, as defined by the

base cases in (61).

We say a word x ∈ Σ∗ is d-legal if it satisfies the conditions

xm = A ⇒ xm−i = a, ∀i ∈ {1, . . . , d− 1} such that i < m,

xm = B ⇒ xm−i = b, ∀i ∈ {1, . . . , d− 1} such that i < m,

xm = A, m > d ⇒ xm−d ∈ {a,A},
xm = B, m > d ⇒ xm−d ∈ {b, B}.

(63)

Denote by Ωn,d the set of d-legal words on Σ of weight n or n+ 1. That is,

Ωn,d := {x ∈ Σ∗ | x is d-legal, w(x) ∈ {n, n+ 1}}.

Define

Ln := (T ◦Dn)|Hom(Pn,d).

Claim 6.2. The mapping Ln is a bijection between Hom(Pn,d) and Ωn,d.
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Proof. It is clear from (60) and (61) that Ln injectively maps Hom(Pn,d) to words on Σ of

weight n or n+ 1. It remains to show that the image of Ln is precisely Ωn,d.

One may easily see that a homomorphism f ∈ Hom(Pn,1) is a homomorphism in Hom(Pn,d)

if and only if Dn(f) does not contain a sequence of the form

ul± := ±(1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
2l

, 1, 1),

with 1 ≤ l ≤ d − 1. Indeed, Dn(f) contains ul± if and only if there exist 0 ≤ i, j ≤ n such

that |i− j| = 2l + 3 and |f(i)− f(j)| = 3. Now, it is also not hard to check that ul+ appears

in Dn(f) if and only if Ln(f) contains a subword of the form

(A, a, . . . , a︸ ︷︷ ︸
l−1

, A) or (B, a, . . . , a︸ ︷︷ ︸
l

, A) or (b, a, . . . , a︸ ︷︷ ︸
l

, A),

depending on the position of ul+ in Dn(f). The same is true for ul− with {a,A} and {b, B}
interchanged. Therefore, by (63), we see that ul± appears in Dn(f), for some 1 ≤ l ≤ d − 1,

if and only if Ln(f) is not d-legal.

We have shown that for any f ∈ Hom(Pn,1), f ∈ Hom(Pn,d) if and only if Ln(f) ∈ Ωn,d.

In particular, since Hom(Pn,d) ⊂ Hom(Pn,1), we have Ln(Hom(Pn,d)) ⊂ Ωn,d. For the other

direction, let x ∈ Ωn,d. Either T ′(x) or T ′(x)− is of length n. Let u ∈ D be this sequence and

let f := D−1
n (u) ∈ Hom(Pn,1). Since Ln(f) = T (u) = x is d-legal, we see that f ∈ Hom(Pn,d).

Hence, Ωn,d ⊂ Ln(Hom(Pn,d)), completing the proof.

6.2 Counting the homomorphisms

In this section we prove Theorem 2.10. This is done by deriving a recursion formula and

investigating its characteristic polynomial.

For 0 ≤ k,m ≤ d, define

Ωn,d(k,m) := {x ∈ Ωn,d | x1, . . . , xk 6= A and x1, . . . , xm 6= B} .

By symmetry we have |Ωn,d(k,m)| = |Ωn,d(m, k)|, so we can define

cn(k) := |Ωn,d(k, d)| = |Ωn,d(d, k)|, 0 ≤ k ≤ d− 1.

This definition is motivated by the following two lemmas, which show that the cn(k) satisfy

some explicit recursion formulas and that they have a simple relation to |Hom(Pn,d)|.

Lemma 6.3. For any n ≥ 3, we have

|Hom(Pn,d)| = 2cn−2(0) + 2cn−3(d− 1).

Proof. Note that by (63), we have

{x ∈ Ωn,d | x1 = a} = {(a) ◦ x | x ∈ Ωn−2,d(0, d)},
{x ∈ Ωn,d | x1 = A} = {(A) ◦ x | x ∈ Ωn−3,d(d− 1, d)}.

(64)
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Therefore, by partitioning according to the first element and by the symmetry between {a,A}
and {b, B}, we obtain

|Ωn,d| = 2
∣∣{x ∈ Ωn,d | x1 = a}

∣∣+ 2
∣∣{x ∈ Ωn,d | x1 = A}

∣∣
= 2cn−2(0) + 2cn−3(d− 1).

The result now follows as |Ωn,d| = |Hom(Pn,d)|, by Claim 6.2.

Lemma 6.4. For any n ≥ 3, we have

cn(0) = cn−2(0) + cn−2(d− 1) + cn−3(d− 1), (65)

cn(k) = cn−2(k − 1) + cn−2(d− 1), 1 ≤ k ≤ d− 1. (66)

Proof. Note that by (63), similarly to (64), we have

{x ∈ Ωn,d(0, d) | x1 = a} = {(a) ◦ x | x ∈ Ωn−2,d(0, d)},
{x ∈ Ωn,d(0, d) | x1 = b} = {(b) ◦ x | x ∈ Ωn−2,d(d, d− 1)},
{x ∈ Ωn,d(0, d) | x1 = A} = {(A) ◦ x | x ∈ Ωn−3,d(d− 1, d)}.

Therefore, by partitioning according to the first element, we obtain

cn(0) = |Ωn,d(0, d)|
=
∣∣{x ∈ Ωn,d(0, d) | x1 = a}

∣∣+
∣∣{x ∈ Ωn,d(0, d) | x1 = b}

∣∣+
∣∣{x ∈ Ωn,d(0, d) | x1 = A}

∣∣
= |Ωn−2,d(0, d)|+ |Ωn−2,d(d, d− 1)|+ |Ωn−3,d(d− 1, d)|
= cn−2(0) + cn−2(d− 1) + cn−3(d− 1).

In a similar manner, for 1 ≤ k ≤ d− 1, we have

cn(k) = |Ωn,d(k, d)|
=
∣∣{x ∈ Ωn,d(k, d) | x1 = a}

∣∣+
∣∣{x ∈ Ωn,d(k, d) | x1 = b}

∣∣
=
∣∣{(a) ◦ x | x ∈ Ωn−2,d(k − 1, d)}

∣∣+
∣∣{(b) ◦ x | x ∈ Ωn−2,d(d, d− 1)}

∣∣
= cn−2(k − 1) + cn−2(d− 1).

We express all quantities cn(k) in terms of cn(d− 1). Substituting k = d− 1 in (66) yields

cn(d− 2) = cn+2(d− 1)− cn(d− 1).

Now substituting k = d− 2 in (66) gives

cn(d− 3) = cn+2(d− 2)− cn(d− 1) = cn+4(d− 1)− cn+2(d− 1)− cn(d− 1).

Continuing in this manner (by induction), we get for 1 ≤ m < d,

cn(d−m− 1) = cn+2m(d− 1)− cn+2m−2(d− 1)− · · · − cn+2(d− 1)− cn(d− 1). (67)

In particular, for m = d− 1 this gives,

cn(0) = cn+2d−2(d− 1)− cn+2d−4(d− 1)− · · · − cn+2(d− 1)− cn(d− 1).
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Substituting this in (65) gives

cn+2d−2(d− 1) = 2cn+2d−4(d− 1) + cn−3(d− 1), n ≥ 3.

The characteristic polynomial for this equation is

q(µ) := µ2d−1(µ2 − 2)− 1.

Claim 6.5. The polynomial q has 2d+1 distinct (complex) roots. Exactly one of these, which

we denote by µ0, is positive. Moreover, µ0 >
√

2, while all other roots have modulus less than√
2.

Proof. Assume that d ≥ 2 (the case d = 1 can be verified directly). It is easy to verify

that the derivative of q does not vanish at any zero, so that the roots are simple, and hence

there are 2d + 1 distinct roots. Since q(±
√

2) = −1, q(
√

3) > 0 and q(−2/
√

3) > 0, the

intermediate value theorem implies that there are roots
√

2 < µ0 <
√

3 and −
√

2 < µ1 <

−2/
√

3. Considering q as a real function, by differentiating, one finds that q has a single

minimum and a single maximum, and hence at most 3 real roots. Since q(−1) = 0, we see

that µ0 is indeed the unique positive root. For the last part, it suffices to show q has 2d− 1

roots of modulus at most 1. This is a consequence of Rouché’s theorem applied to q and

g(z) := 2z2d−1 on the disc D := {z ∈ C | |z| ≤ r} for any sufficiently small r > 1. Indeed, on

∂D, we have |g(z)| = 2r2d−1 and |q(z)+g(z)| ≤ r2d+1 +1, and since r2d+1 +1 < 2r2d−1 (using

our assumption that d ≥ 2), Rouché’s theorem implies that g and q have the same number of

zeros in D. As g clearly has 2d− 1 zeros in D, this completes the proof.

Let µ0 be the unique positive root of q. We denote λ := µ2
0. That is, λ is the unique

positive solution of the equation

λd−1/2(λ− 2) = 1. (68)

Claim 6.6. For any fixed 0 ≤ k ≤ d− 1, there exists a constant rk > 0, such that

cn(k) ∼ rkλn/2 as n→∞.

Proof. Denote by µ0 :=
√
λ, µ1, . . . , µ2d the roots of q. The roots µi are distinct, and therefore,

cn(k) = r0
kµ

n
0 + · · ·+ r2d

k µ
n
2d,

for some coefficients rik. Now, since any word x ∈ {a, b}∗ is d-legal and has w(x) = 2|x|, we

see that

cn(k) = |Ωn,d(k, d)| ≥
∣∣∣{a, b}dn/2e∣∣∣ = 2dn/2e ≥

√
2
n
.

Therefore, since |µi| <
√

2 for 1 ≤ i ≤ 2d, we must have r0
k > 0 for all 0 ≤ k ≤ d− 1, and then

cn(k) ∼ r0
kµ

n
0 = r0

kλ
n/2.

We now have all the ingredients to prove Theorem 2.10.
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Proof of Theorem 2.10. By Lemma 6.3 and Claim 6.6, we have

|Hom(Pn,d)| = 2cn−2(0) + 2cn−3(d− 1)

∼ 2r0λ
(n−2)/2 + 2rd−1λ

(n−3)/2 = C(d)λn/2(1 + o(1)) as n→∞.

Claim 6.6 gives the asymptotic behavior of cn(k) as n → ∞ for fixed d ≥ 1. Specifically,

it says that the order of magnitude of cn(k) is λn, where λ = λ(d) depends on d and is given

implicitly by (68). The next claim describes the dependence of the constant λ(d) on d as

d→∞.

Claim 6.7. The unique positive solution λ of (68) satisfies

λ = λ(d) = 2 + 2−d+1/2(1− o(1)) as d→∞.

Proof. Writing λ = 2 + δ, we have by (68) that

δ = (2 + δ)−d+1/2.

Thus, since δ > 0, we have

δ ≤ 2−d+1/2,

and therefore,

2d−1/2δ = (1 + δ/2)−d+1/2 → 1 as d→∞.

6.3 Infinite homomorphisms

Denote by P∞,d the graph on the vertex set {0, 1, 2, ...} with the edge set {(i, j) | |i− j| =
1, 3, ..., 2d+ 1}. Note that Hom(P∞,d) := Hom(P∞,d, 0) is an infinite set of homomorphisms.

For a homomorphism f ∈ Hom(Pn,d) (where possibly n =∞) and an integer r ≥ 0, we denote

by Br(f) the restriction of f to the first r + 1 vertices, so that

Br(f) := f |{0,1,...,min{r,n}} ∈ Hom(Pmin{r,n},d).

An infinite word x on Σ is d-legal if it satisfies (63), as for finite words. Denote by Ω∞,d
the set of infinite d-legal words on Σ. That is,

Ω∞,d := {x ∈ ΣN | x is d-legal}.

The mapping Dn defined in (59) extends to the case n =∞ in an obvious way. The mapping

T defined in (61) can also be extended to map the infinite words D∞(Hom(P∞,d)) to Ω∞,d
by the same recursion formula. Then, following the proof of Claim 6.2, we see that

L∞ := (T ◦D∞)|Hom(P∞,d)

is a bijection between Hom(P∞,d) and Ω∞,d.
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a1 a2 · · · ad

A

b1 b2 · · · bd

B

a1A

b1B

Figure 12: The Markov chains describing the local limit when d ≥ 2 (on

the left) and when d = 1 (on the right). The allowed transitions are those

determined by (63).

6.4 The local limit as a Markov chain

The main goal of this section is to prove Theorem 2.11. To this end, we will describe a

Markov chain (see Figure 12) on the state space

Σ̃ := {a1, . . . , ad, b1, . . . , bd, A,B},

which will allow us to generate words in Ω∞,d, and hence also homomorphisms in Hom(P∞,d)

through the bijection L∞. Loosely speaking, the idea of this Markov chain is that the state

ak (bk) represents the fact that a streak of k consecutive a’s (b’s) has been accumulated. Like-

wise, the state A (B) represents the fact that a jump has occurred in the positive (negative)

direction.

Consider the above Markov chain (see Figure 12) on the state space Σ̃ with the transition

probabilities p and the initial state distribution π as described below.

p(A, b1) = p(ad, ad) := λ−1,

p(A, a1) :=

{
0 if d ≥ 2

λ−1 if d = 1
,

p(ak, b1) :=
λ− 1

λk(λ− 2) + λ
, 1 ≤ k ≤ d,

(69)

where λ is the unique positive solution to (68). The analogous relations hold with the roles of

{a,A} and {b, B} interchanged. Figure 12 shows the legal transitions (i.e., transitions having

positive probability). The probability of unspecified legal transitions are determined by the
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b a . . . a︸ ︷︷ ︸
<d

−→
ba . . . aa

or
ba . . . ab

b a . . . a︸ ︷︷ ︸
≥d

−→
ba . . . aa

or
ba . . . ab

or

ba . . . aA

Figure 13: The possible transitions from state ak for 1 ≤ k < d (on the top)

and for k = d (on the bottom), as determined by (63). The transitions from

state A are analogous, and the transitions from states bk and B are symmetric.

condition
∑

s p(s
′, s) = 1. The initial state distribution π is given by

π(ad) = π(bd) :=
λ−1/2

2
and π(A) = π(B) :=

1− λ−1/2

2
.

It is interesting to note that, since λ > 2 and using (68), we have

1

2
> λ−1 = p(a1, b1) > p(a2, b1) > · · · > p(ad, b1) =

λ− 1

λ+
√
λ
>

1

2 +
√

2
,

which expresses the fact that there is a small but growing tendency to continue in the same

direction.

Running this chain for an infinite amount of time and considering its trajectory as an

infinite word on Σ̃, we may obtain an infinite word W∞ on Σ by dropping the subscripts of

the letters in Σ̃. More precisely, let W̃ (1), W̃ (2), . . . be a Markov chain on Σ̃ with transition

probabilities as in (69) and such that W̃ (1) ∼ π. Define φ : Σ̃ → Σ by φ(ai) := a, φ(bi) := b,

φ(A) := A and φ(B) := B. Then W∞ is defined by W∞(k) := φ(W̃ (k)) for k ≥ 1. Recalling

(63), it is clear that this process generates a d-legal word, i.e. that W∞ ∈ Ω∞,d. Denote by

f∞ := L−1
∞ (W∞)

the infinite homomorphism corresponding to this word. Let fn be a uniformly chosen homo-

morphism in Hom(Pn,d). Theorem 2.11 will follow when we show that

P(Br(fn) = f) −−−→
n→∞

P(Br(f∞) = f) for any r ≥ 1 and f ∈ Hom(Pr,d). (70)

For n ≥ 1, define

Wn := Ln(fn).

The following lemma links the uniform distribution on homomorphisms to the above Markov

chain. For any 1 ≤ n ≤ ∞ and any word x ∈ Ωn,d, there exists a unique trajectory

(s1, s2, . . . , s|x|) such that si ∈ Σ̃, s1 ∈ {ad, bd, A,B} and p(si, si+1) > 0, which generates



64 Local limits on the line

the word x by the process of dropping the subscripts of the symbols in Σ̃. For a finite word

x, define State(x) := s|x| to be the final state of this trajectory. Let Pk : Σ∗ → Σk denote the

truncation to length k.

Lemma 6.8. For any u ∈ Σ and x ∈ Σ∗ such that x and x ◦ (u) are d-legal, we have

P(Wn(1) = u) −−−→
n→∞

π(State(u))

P
(
Wn(|x|+ 1) = u | P|x|(Wn) = x

)
−−−→
n→∞

p(State(x),State(x ◦ (u)).
(71)

Proof. For a d-legal word x ∈ Σ∗, define M(x) := i− 1 if State(x) ∈ {ai, bi} for 1 ≤ i ≤ d and

M(x) := 0 if State(x) ∈ {A,B}. Then, using Claim 6.2, we have for any n ≥ w(x) that

|{P|x|(Wn) = x}| = cn−w(x)(d−M(x)− 1).

By Claim 6.6, we have cn(d− 1) ∼ aλn/2, for some constant a > 0, and then (67) gives

cn(d−m− 1) ∼ aλn/2+m − aλn/2+m−1 − · · · − aλn/2+1 − aλn/2, 1 ≤ m < d.

Thus,

cn(d−m− 1) ∼ aλn/2λ
m(λ− 2) + 1

λ− 1
, 0 ≤ m < d. (72)

Therefore, if State(x) = ai with 1 ≤ i ≤ d, then State(x ◦ (b)) = b1 and

P
(
Wn(|x|+ 1) = b | P|x|(Wn) = x

)
=
|{P|x|+1(Wn) = x ◦ (b)}|
|{P|x|(Wn) = x}|

=
cn−w(x)−2(d− 1)

cn−w(x)(d− i)
∼ λ− 1

λi(λ− 2) + λ
= p(ai, b1).

The remaining cases are handled similarly by taking the relevant ratios. This proves the

second part of (71). For the first part, we will also need to compute the size of Hom(Pn,d).

By Lemma 6.3, (72) and (68), we have

|Hom(Pn,d)| = 2cn−2(0) + 2cn−3(d− 1) ∼ 2aλn/2−1λ
1/2 + 1

λ− 1
. (73)

Therefore, since State((a)) = ad,

P(Wn(1) = a) =
|{P1(Wn) = (a)}|
|Hom(Pn,d)|

=
cn−2(0)

|Hom(Pn,d)|
∼ λ−1/2/2 = π(ad).

The remaining cases are again handled similarly. This proves the first part of (71).

We continue by observing, using Claim 6.1, that for any r ≥ 1 and f ∈ Hom(Pr,d) there

exists a k ≥ 1 and a set X(f) ⊂ Σk such that we have the equality of events,

{Br(fn) = f} = {Pk(Wn) ∈ X(f)}, r ≤ n ≤ ∞. (74)

For instance, one may takeX((0,−1, 0, 1, 0)) = {(b, a)} andX((0,−1, 0, 1, 0, 1)) = {(b, a, a), (b, a,A)}.
In addition, Lemma 6.8 implies that

P(Pk(Wn) = x) −−−→
n→∞

P(Pk(W∞) = x) for any k ≥ 0 and x ∈ Σk. (75)
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This follows directly from (71) when x is d-legal, and it follows trivially when x is not d-legal

since the probabilities involved are zero.

Finally, putting together (74) and (75), we conclude that for any r ≥ 1 and f ∈ Hom(Pr,d),

we have

lim
n→∞

P(Br(fn) = f) = lim
n→∞

∑
x∈X(f)

P(P|x|(Wn) = x) =
∑

x∈X(f)

P(P|x|(W∞) = x) = P(Br(f∞) = f),

proving (70), as required.

We remark that it is now simple to derive an exact formula for the probability that

Br(f∞) = f for certain homomorphisms f ∈ Hom(Pr,d). Specifically, let f ∈ Hom(Pr,d)

satisfy w(Lr(f)) = r. For such f , one may take X(f) = {Lr(f)}. Hence, denoting x := Lr(f)

and m := M(x) (defined in the proof of Lemma 6.8), we have using (72) and (73) that

P(Br(f∞) = f) = P(P|x|(W∞) = x) = lim
n→∞

P(P|x|(Wn) = x)

= lim
n→∞

cn−r(d−m− 1)

|Hom(Pn,d)|
=

1

2
λ1−r/2λ

m(λ− 2) + 1

λ1/2 + 1
.
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Chapter 7

Discussion and Open Problems

7.1 A continuous model

One may consider a continuous variant of the graph homomorphisms considered here.

Given a finite connected graph G = (V,E) and a vertex v0 ∈ V , let

Lip(G, v0) := {f : V → R | f(v0) = 0, |f(u)− f(v)| ≤ 1 when (u, v) ∈ E}.

Thus, elements of Lip(G, v0) may be regarded as real-valued Lipschitz functions on the graph,

normalized to equal 0 at v0. There is a natural uniform measure on Lip(G, v0) obtained by

regarding a function f ∈ Lip(G, v0) as a vector in RV \{v0} and using normalized Lebesgue

measure there. Hence, one may speak of a uniformly sampled function from Lip(G, v0). In

statistical physics terminology, this models a random surface whose energy is defined via the

Hammock potential (see, e.g., [3]).

Naively, one may expect the behavior of a uniformly chosen function f from Lip(Pn,d, 0)

to be rather similar, perhaps up to constants, to that of a uniformly chosen function from

Hom(Pn,d, 0). In particular, one may expect that Var(f(n)) ≈ n2−d when n2−d ≥ 1, say.

However, a different intuition comes from the following consideration. A standard heuristic

in statistical physics is that (continuous) models of random surfaces should behave similarly

to the Gaussian free field. The Gaussian free field is again a real-valued function g : V → R,

satisfying g(v0) = 0, and sampled from a distribution whose density is proportional to

exp

−β ∑
(u,v)∈E

(g(u)− g(v))2

 ,

with β ∈ (0,∞) a parameter. Analysis of the variance of the Gaussian free field on a graph

is made simple by the observation that its distribution is a multivariate Gaussian. When

G = Pn,d and v0 = 0 one obtains that Var(g(n)) ≈ nd−3/β. Thus it is not clear whether one

should expect a function f sampled uniformly from Lip(G, v0) to satisfy Var(f(n)) ≈ n2−d or

Var(f(n)) ≈ nd−α. We conjecture the latter to be the truth. Thus, we expect a significant

difference in behavior between the homomorphism model considered in this paper and its

continuous counterpart. Consideration of the complete graph suggests that, when comparing
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n = 500, d = 0

n = 500, d = 1

n = 500, d = 2

n = 500, d = 5

Figure 14: Uniformly sampled functions in Lip(Pn,d, 0). The case d = 0 is just

a random walk with independent uniform increments in [−1, 1]. The simulation

uses a Metropolis algorithm (see, e.g., [9, Chapter 3]) and coupling from the

past [12].

the Gaussian free field to the continuous Lipschitz model on a regular graph, one should take

β to be one over the degree. As Pn,d is nearly a (2d + 2)-regular graph, this leads to the

following conjecture.

Conjecture. There exist absolute constants C, c > 0 such that the following holds for any

positive integers n and d. If f is uniformly sampled from Lip(Pn,d, 0) then

c(nd−2 + 1) ≤ Var(f(n)) ≤ C(nd−2 + 1).

In particular, the threshold function d(n) separating the regime of localization from the

regime of delocalization is polynomial in n, rather than logarithmic in n as is the case for

the homomorphism model. Figure 14 shows a uniformly sampled function in Lip(Pn,d, 0). We

remark that when considering this model it is natural to consider the non-bipartite graph

P̃n,d, which is the discrete segment {0, 1, . . . , n} with edges between vertices at distance at

most d+ 1, regardless of their parity.
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7.2 The scaling limit

In this paper we explored the properties of a random homomorphism for given n and d,

and also the local limit of the homomorphism when d is fixed and n tends to infinity. Another

limit of interest is the scaling limit. As in many models of random walk, one may expect

that in the subcritical regime, when the range of a homomorphism in Hom(Pn,d, 0) tends to

infinity as n tends to infinity, the homomorphism has a Brownian motion scaling limit. This

is the content of the next conjecture.

Conjecture. There exists a function σ : N → (0,∞) such that the following holds. Let fn,d
be a uniformly chosen homomorphism in Hom(Pn,d, 0). Define Bn,d : [0, 1] → R to be the

continuous function defined by

Bn,d

(
i

n

)
:=

fn,d(i)

σ(d)
√
n

and interpolated linearly between these points. If d(n)− log2 n→ −∞ as n→∞, then Bn,d(n)

converges in distribution as n→∞ to a standard Brownian motion on [0, 1].

An educated guess for the function σ may be obtained as follows. Recall the local limit

f∞,d from Section 6. The fact that f∞,d may be described via a Markov chain simplifies the

analysis of its scaling limit. Define

σ′(d)2 :=
(λ(d)− 2)(λ(d)− 1)

4 + (2d+ 1)(λ(d)− 2)
,

where λ(d) is defined in Theorem 2.10. Observe that, by Claim 6.7,

σ′(d)2 = 2−d−3/2(1− o(1)) as d→∞.

Then, defining the continuous function

B′n,d

(
i

n

)
:=

f∞,d(i)

σ′(d)
√
n
,

interpolated linearly between these points, it may be shown that for any fixed d the process

B′n,d converges in distribution as n → ∞ to a standard Brownian motion on [0, 1]. Thus, it

seems plausible that the σ(d) of the above conjecture equals σ′(d).
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