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Abstract

Let H be a fixed directed graph on h vertices, let G be a directed graph on n vertices and
suppose that at least εn2 edges have to be deleted from it to make it H-free. We show that in this
case G contains at least f(ε,H)nh copies of H. This is proved by establishing a directed version
of Szemerédi’s regularity lemma, and implies that for every H there is a one-sided error property
tester whose query complexity is bounded by a function of ε only for testing the property PH of
being H-free.

As is common with applications of the undirected regularity lemma, here too the function
1/f(ε,H) is an extremely fast growing function in ε. We therefore further prove a precise char-
acterization of all the digraphs H, for which f(ε,H) has a polynomial dependency on ε. This
implies a characterization of all the digraphs H, for which the property of being H-free has a
one sided error property tester whose query complexity is polynomial in 1/ε. We further show
that the same characterization also applies to two-sided error property testers as well. A special
case of this result settles an open problem raised by the first author in [1]. Interestingly, it turns
out that if PH has a polynomial query complexity, then there is a two-sided ε-tester for PH that
samples only O(1/ε) vertices, whereas any one-sided tester for PH makes at least (1/ε)d/2 queries,
where d is the average degree of H. We also show that the complexity of deciding if for a given
directed graph H, PH has a polynomial query complexity, is NP -complete, marking an interesting
distinction from the case of undirected graphs.

For some special cases of directed graphs H, we describe very efficient one-sided error property-
testers for testing PH . As a consequence we conclude that when H is an undirected bipartite graph,
we can give a one-sided error property tester with query complexity O((1/ε)h/2), improving the
previously known upper bound of O((1/ε)h2

). The proofs combine combinatorial, graph theoretic
and probabilistic arguments with results from additive number theory.
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1 Preliminaries

1.1 Definitions

All directed graphs (=digraphs) considered here are finite and have no loops and no parallel directed
edges. They may have anti-parallel edges, i.e., directed cycles of length 2, or in short, 2-cycles. We
call a cycle obtained from an undirected cycle by directing its edges an oriented cycle. An oriented
cycle in which all edges point to the same direction is a directed cycle. Oriented paths and directed
paths are defined in an analogous manner. A digraph is an oriented tree if it does not contain any
oriented cycle. A digraph is bipartite if it does not contain any oriented cycle of odd length.

Let P be a property of digraphs, that is, a family of digraphs closed under isomorphism. A
digraph G with n vertices is ε-far from satisfying P if no digraph G̃ with the same vertex set, which
differs from G in at most εn2 places, (i.e., can be constructed from G by adding and removing at
most εn2 directed edges), satisfies P . An ε-tester, or property tester, for P is a randomized algorithm
which, given the quantity n and the ability to make queries whether a desired pair of vertices of an
input digraph G with n vertices are adjacent or not, distinguishes with probability at least 2

3 between
the case of G satisfying P and the case of G being ε-far from satisfying P . Such an ε-tester is a
one-sided ε-tester if when G satisfies P the ε-tester determines that this is the case (with probability
1). The ε-tester is a two-sided ε-tester if it may determine that G does not satisfy P even if G satisfies
it. Obviously, the probability 2

3 appearing above can be replaced by any constant larger than 1/2,
by repeating the algorithm an appropriate number of times.

The property P is called strongly-testable, if for every fixed ε > 0 there exists a one-sided ε-tester
for P whose total number of queries is bounded only by a function of ε, which is independent of the
size of the input digraph. This means that the running time of the algorithm is also bounded by a
function of ε only, and is independent of the input size.

1.2 Related work

The general notion of property testing was first formulated by Rubinfeld and Sudan [32], who were
motivated mainly by its connection to the study of program checking. The study of the notion of
testability for combinatorial objects, and mainly for labelled graphs, was introduced by Goldreich,
Goldwasser and Ron [24], who showed that all graph properties describable by the existence of a
partition of a certain type, and among them k-colorability, have efficient ε-testers. The fact that
k-colorability is strongly testable is, in fact, implicitly proven already in [16] for k = 2 and in [30] (see
also [2]) for general k, using the Regularity Lemma of Szemerédi [33], but in the context of property
testing it is first studied in [24], where far more efficient algorithms are described. These have been
further improved in [7].

In [5] it is shown that every first order graph property without a quantifier alternation of type
“∀∃” has ε-testers whose query complexity is independent of the size of the input graph (but has
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a huge dependence on ε). In [1] it is shown that there is a one-sided error ε-tester for checking
H-freeness for undirected graphs H, whose query complexity is polynomial in 1/ε, if and only
if H is bipartite.

The notion of property testing has been investigated in other areas as well, including the context
of regular languages, [6], functions [23], [9], [3], computational geometry [18], [4] as well as graph
and hypergraph coloring [17], [9], [15]. See [31] and [22] for surveys on the topic.

2 The Main Results

For a fixed connected digraph H (with at least one edge), let PH denote the property of being H-free.
Therefore, G satisfies PH if and only if it contains no (not necessarily induced) subgraph isomorphic
to H. Our first result is that for each fixed digraph H, the property PH is strongly-testable.

Theorem 1 For every fixed digraph H, the property PH is strongly-testable.

The proof relies on a variant of the regularity lemma of Szemérédi [33] adapted for directed
graphs, which we formulate and prove. This version of the regularity lemma might prove useful for
other problems. The application for getting the strong-testability of each property PH is similar to
the proof for the undirected case, given (implicitly) in [2], see also [5], [1].

The one-sided ε-tester for PH for arbitrary digraphs H, has query-complexly bounded by a
function which, though independent of the size of the input digraph G, has a huge dependency on ε

and the size of H. For some digraphs H, however, there are more efficient ε-testers; for example, if
H is a single directed edge, it is easy to see that there is a one-sided ε-tester for PH , which makes
only Θ(1/ε) queries. A natural question is therefore, to decide for which digraphs H can one design
a one-sided error property tester for PH , whose query complexity would be bounded by a polynomial
in 1/ε. In what follows we call PH easily testable if there is a one-sided error property-tester for PH

whose query complexity is polynomial in 1/ε. If such a property tester does not exist we say that
PH is hard to test.

Our main result here is a precise characterization of all digraphs H for which PH is easily testable.
We further show that the same characterization applies to two-sided error ε-testers as well. As a
special case of the argument we conclude that for an undirected graph H, PH has a two-sided ε-
tester whose query complexity is polynomial in 1/ε if and only if H is bipartite. This settles an open
problem raised in [1]. Somewhat surprisingly, it turns out that if PH is easily testable, then it has
a two-sided error property-tester that samples only Θ(1/ε) vertices, although any one-sided error
ε-tester for PH has to sample at least (1/ε)d/2 vertices, where d is the average degree of H.

The characterization of the digraphs H, for which PH is easily testable, relies on some properties of
digraph homomorphisms and cores of digraphs. Let H and K be two digraphs. A function ϕ mapping
vertices of H to vertices of K is a homomorphism if it satisfies (u, v) ∈ E(H) ⇒ (ϕ(u), ϕ(v)) ∈ E(K).
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The core of a digraph H is the subgraph K of H with the smallest number of edges, for which there
is a homomorphism from H to K. We can clearly assume that the core does not contain isolated
vertices. It is also easy to see that this notion is well defined in the sense that up to isomorphism the
core is unique. We refer the reader to [13] and [28] for more background and references on digraph
homomorphisms, and to [27] for more information and references on cores of graphs. Our main
result is the following precise characterization of the digraphs H for which testing PH with one-sided
error, has query complexity polynomial in 1/ε. Here, and throughout the paper, we measure query-
complexity by the number of vertices sampled, assuming we always examine all edges spanned by
them.

Theorem 2 Let H be a fixed connected digraph on h vertices, and let K be its core.
(i) If K is a 2-cycle, then for every ε > 0, there is a one-sided error ε-tester for PH whose query-
complexity is bounded by

O((1/ε)h/2).

(ii) If K is an oriented tree, then for every ε > 0 there is a one-sided error ε-tester for PH whose
query-complexity is bounded by

O((1/ε)h2
).

(iii) If H is not as in (i), (ii), then there exists a constant c = c(H) > 0 such that the query-complexity
of any one-sided error ε-tester for PH is at least

(
1
ε

)c log(1/ε)

.

A special case of the first part of the above theorem improves the previous result from [1] which
had query complexity O((1/ε)h2

).
We also prove the following theorem, that says that in case H is a tree, we can design an optimal

ε-tester for PH .

Theorem 3 If H is an oriented tree, then there is a one-sided error ε-tester for PH , with optimal
query complexity

Θ(1/ε).

The result in the last part of Theorem 2 can be extended to two-sided error ε-testers as well.

Theorem 4 Let H be a fixed digraph on h vertices, and let K be its core.
(i) If K is a 2-cycle or an oriented tree, then the property PH has a two-sided error ε-tester with
optimal query complexity

Θ(1/ε).
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(ii) If K is neither a directed 2-cycle, nor an oriented tree, then there exists a constant c = c(H) > 0
such that the query-complexity of any two-sided error ε-tester for PH is at least

(
1
ε

)c log(1/ε)

.

It is not difficult to show, by considering an appropriate random digraph, that the one-sided error
query complexity of PH for any digraph H with average degree d is at least (1

ε )
d/2. Therefore, the

first part of the theorem exhibits an interesting difference between the query complexity of the best
one-sided and the best two-sided error ε-testers of PH for many digraphs H. The second part of
Theorem 4 implies a similar result for undirected non bipartite graphs, thus solving a problem raised
in [1].

As is apparent from the statement of Theorem 2, the characterization of the digraphs H for which
PH is easily testable, is far more complicated than the characterization for undirected graphs, which
states that PH is easily testable if and only if H is bipartite. The characterization for undirected
graphs is also simple in the sense that one can check it in polynomial time. It turns out that the
characterization for digraphs is not complicated by chance, and in fact we show that the problem of
deciding whether for a given digraph H, the property PH is easily testable, is NP-complete. This
fact follows easily by combining Theorem 2 with a theorem of Hell, Nesetril, and Zhu [28] about
cores of digraphs.

Note, that although this implies that the problem of deciding if PH is easily testable is hard
for large digraphs H, this problem is interesting for small fixed digraphs as well, and for those the
decision is simple. Thus, for example, Theorem 2 implies that the property PC has a polynomial
query complexity in 1/ε for the oriented cycle C on the vertices v1, . . . , v2k, that consists of two
edge-disjoint directed paths from v1 to vk+1 (see Figure 1 (a)), as each path is a core of C. Theorem
2 also implies that the property PC′ has a non-polynomial query complexity in 1/ε for every oriented
cycle C ′ that is obtained from the above cycle C, by changing the direction of any single edge (see
Figure 1 (b)), because in this case the core of C ′ is the entire digraph. This example shows that
the testability of PH does not rely solely on the structure of H as an undirected graph. Additional
comments on this subject appear in Section 8.

2.1 Organization

The paper is organized as follows: In Section 3, we modify some of the ideas used in the proof of
Szemerédi’s regularity lemma for undirected graphs, in order to prove a more general result that
applies also to digraphs. In Section 4 we apply the above lemma in order to prove Theorem 1.

The main result consists of two parts. The first one (Theorem 2, parts (i),(ii)) appears in Section
5, and is proved using probabilistic arguments and tools from extremal graph theory. Unlike the
corresponding result for undirected graphs, the techniques required here are rather complicated, and
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(a) (b) (c)

Figure 1: (a) Core is a path (b) Core is the entire digraph (c) Core is a triangle (d) Core is the entire
digraph although the graph is balanced.

apply some delicate arguments. In this section we also prove Theorem 3. To prove the third part
of Theorem 2, we have to construct, for any digraph H as in (iii) and any small ε > 0, a digraph G

which is ε-far from being H-free and yet contains relatively few copies of H. The proof of this part,
described in Section 6, uses the approach of [1], but requires some additional ideas. It applies some
properties of digraph homomorphisms as well as certain constructions in additive number theory,
based on (simple variants of) the construction of Behrend [14] of dense subsets of the first n integers
without three-term arithmetic progressions. In Section 7 we describe the proof of Theorem 4. We
assume, throughout these three sections, that the underlying undirected graph of the digraph H

considered is connected. In the final section, Section 8, we observe that it is easy to extend the
results to the disconnected case and discuss the complexity of the problem of deciding whether for
a given input digraph H, PH is polynomially testable. This final section contains some concluding
remarks and open problems as well.

Throughout the paper we assume, whenever this is needed, that the number of vertices n of
the digraph G is sufficiently large, and that the error parameter ε, is sufficiently small. In order
to simplify the presentation, we omit all floor and ceiling signs whenever these are not crucial, and
make no attempt to optimize the absolute constants.

3 A Regularity Lemma for Digraphs

3.1 Statement of the Lemma

In this section we prove a regularity lemma for digraphs, by using some of the ideas in the proof of
Szemerédi’s regularity lemma for undirected graphs. For the proof of Szemerédi’s regularity lemma
the reader is referred to the original proof in [33], and to [19] which was used as a reference for the
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proof here. In order to state the lemma we need some definitions. Let G = (V, E) be a digraph, and
let X, Y ⊆ V be disjoint. Let −→E (X, Y ) denote the set of edges going from X to Y, and let ←−E (X, Y )
denote the set of edges going from Y to X. Let E(X, Y ) denote the set of pairs of edges that form
2-cycles between X and Y . Define

−→
d (X, Y ) :=

|−→E (X, Y )|
|X||Y | ,

←−
d (X,Y ) :=

|←−E (X, Y )|
|X||Y | , d(X, Y ) :=

|E(X, Y )|
|X||Y |

the directed densities of the pair (X, Y ). Observe that all three densities of any pair are real numbers
between 0 and 1. Given some ε > 0, we call a pair (A,B) of disjoint sets A,B ⊆ V ε-regular if all
X ⊆ A and Y ⊆ B with

|X| ≥ ε|A| and |Y | ≥ ε|B|,
satisfy

|−→d (X, Y )−−→d (A, B)| ≤ ε, |←−d (X, Y )−←−d (A,B)| ≤ ε, |d(X, Y )− d(A,B)| ≤ ε.

We will later need the following trivial claim about a regular pair (A,B). The claim simply says that
if we take a large enough subset Y ⊆ B, then for most vertices in the other side, Y behaves almost
like B. In order to state the claim we need the following notation which will be used later as well:
−→
N Y (v) is the set of vertices y ∈ Y for which (v, y) ∈ E, ←−N Y (v) is the set of vertices y ∈ Y for which
(y, v) ∈ E and NY (v) is the set of vertices y ∈ Y for which (v, y) is a 2-cycle.

Claim 3.1 Let (A, B) be an ε-regular pair with densities −→d ,
←−
d and d, and let Y ⊆ B be of size

at least ε|B|. Then for all but at most 3ε|A| vertices v ∈ A, the inequalities −→N Y (v) ≥ (−→d − ε)|Y |,
←−
N Y (v) ≥ (←−d − ε)|Y | and NY (v) ≥ (d− ε)|Y | hold.

Proof. Assume that for some X, such that |X| ≥ 3ε|A|, for all v ∈ X at least one of the inequalities
does not hold. Then for some Z ⊆ X, such that |Z| ≥ ε|A|, for all v ∈ Z the same inequality does
not hold. Hence, the pair (Z, Y ) contradicts the ε-regularity of the pair (A,B).

Consider a partition {V0, V1, . . . , Vk} of V in which one set V0 has been singled out as an excep-
tional set (V0 may be empty). We call such a partition an ε-regular partition of a digraph G if it
satisfies the following three conditions:

(i) |V0| ≤ ε|V |;

(ii) |V1| = . . . = |Vk|;

(iii) all but at most εk2 of the pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

Our objective is to prove the following generalization of Szemerédi’s regularity lemma.
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Lemma 3.1 For every ε > 0 and every m ≥ 1 there exists an integer DM = DM(m, ε) such that
every digraph of order at least m admits an ε-regular partition {V0, V1, . . . , Vk} with m ≤ k ≤ DM .

The statement of the lemma for symmetric digraphs, that is, digraphs in which (u, v) is a directed
edge if and only if (v, u) is a directed edge, is equivalent to the statement of the regularity lemma
for undirected graphs.

3.2 The Regularity Lemma for Undirected Graphs

We start with the regularity lemma for undirected graphs, and some of the definitions used in the
course of its proof. In the context of undirected graphs there is only one density between a pair of
disjoint subsets A,B ⊆ V , and it is defined as d(A,B) := |E(A, B)|/|A||B|, where E(A, B) is the
set of edges between A and B. A pair of disjoint sets A,B ⊆ V is ε-regular if all X ⊆ A and Y ⊆ B

with |X| ≥ ε|A| and |Y | ≥ ε|B|, satisfy |d(X,Y )− d(A,B)| ≤ ε.

An ε-regular partition is defined in a way analogous to the definition of a regular partition for
digraphs. The following is Szemerédi’s regularity lemma for undirected graphs

Lemma 3.2 [33] For every ε > 0 and every m ≥ 1 there exists an integer M = M(m, ε) such that
every graph of order at least m admits an ε-regular partition {V0, V1, . . . , Vk} with m ≤ k ≤ M .

The proof for undirected graphs uses the following definitions that will be used in our proof as
well. Let G = (V, E) be a graph and n = |V |. For disjoint sets A,B ⊆ V we define

q(A, B) =
|A||B|

n2
d2(A,B).

For a partition P = {C1, . . . , Ck} of V we let

q(P ) =
∑

i<j

q(Ci, Cj).

However, if P = {C0, C1, . . . , Ck} has an exceptional set C0, we treat C0 as a set of singletons and
define

q(P ) = q(P ′),

where P ′ = {C1, . . . , Ck} ∪ {{v} : v ∈ C0}.
It can be easily shown that for any partition P ,

q(P ) ≤ 1
2
. (1)

We say that a partition P ′ refines a partition P , if any (non exceptional) set in P is the union of
some sets in P ′. We will also need the following lemmas from [19] that establish relations between
partitions and their refinements.
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Lemma 3.3 If P and P ′ are partitions of V , and P ′ refines P , then q(P ′) ≥ q(P ).

Lemma 3.4 Let 0 ≤ ε ≤ 1/4 and let P = {C0, C1, . . . , Ck} be a partition of V , with exceptional
set C0, of size |C0| ≤ εn and |C1| = . . . = |Ck|. If P is not ε-regular, then there is a partition
P ′ = {C ′

0, C
′
1, . . . , C

′
`} of V with exceptional set C ′

0, where k ≤ ` ≤ k4k, such that |C ′
0| ≤ |C0| +

n/2k,C0 ⊆ C ′
0, all other sets C ′

i have equal size, and

q(P ′) ≥ q(P ) + ε5/2.

Comment: Although the above claim in [19] does not explicitly state it, the partition P ′ is a re-
finement of P .

Note that combining Lemma 3.4 with (1), the proof of the regularity lemma for undirected graphs
is immediate (up to some technicalities). We can apply Lemma 3.4 over and over again until we get
an ε-regular partition. This must happen after at most 1/ε5 iterations.

3.3 The Proof of Lemma 3.1

Given a digraph G = (V, E), and a partition of V , P = {C1, . . . , Ck}, consider a partition of E into
3 (not necessarily disjoint) sets

−→
E = {(u, v) ∈ E : u ∈ Ci, v ∈ Cj , i < j},
←−
E = {(u, v) ∈ E : u ∈ Ci, v ∈ Cj , i > j},

E = {(u, v) ∈ E : (v, u) ∈ E, u ∈ Ci, v ∈ Cj , i 6= j}.
Now we can view a partition P as three different partitions −→P ,

←−
P , P , of undirected graphs (all

three partition V in the same way, but the sets of edges among the partition sets are different). The
first is obtained by removing any edge that does not belong to −→E , and considering the directed edges
as undirected. The second is obtained by removing any edge that does not belong to ←−E , and again
considering the directed edges as undirected. The third is obtained by removing any edge that does
not belong to E, and considering each cycle of length 2 as an undirected edge. We can also define
the values q(−→P ), q(←−P ) and q(P ), as the function q(·) on a partition of V with edge sets −→E , ←−E and
E respectively, by considering the directed edges and cycles of length 2, as undirected edges.

The key observation now, is that if the above three partitions are ε-regular in the context of
undirected graphs, then P is an ε-regular partition in the context of directed graphs. Thus we can
view the task of obtaining an ε-regular partition in a digraph, as the task of obtaining a partition
that is ε-regular in the sense of undirected graphs, over three subsets of E. We next refer to −→P ,

←−
P

and P sometimes not as a specific partition, but as the set of partitions of −→E ,
←−
E and E respectively,
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obtained in the course of creating the ε-regular partition.

Proof (of Lemma 3.1): Let G = (V,E) be given. For any partition P of V , we can define the
partitions −→P ,

←−
P and P as described above. Also note that all three values q(−→P ), q(←−P ) and q(P ) are

always at most 1/2 by (1). Thus we can apply Lemma 3.4, circularly once for each partition until all
three are ε-regular. For example, when we apply Lemma 3.4 to −→E , we choose a new partition of V ,
according to the previous −→P , and this induces a new partition of ←−P and P as well. By the condition
of Lemma 3.4 and the comment following it, this cannot happen more than s = 3 ·1/ε5 = 3/ε5 times,
before we obtain an ε-regular partition of the digraph G. Observe that, for example, when we apply
Lemma 3.4 to −→P , we do not necessarily increase q(←−P ) by ε5/2 (In fact, it might even be the case
that ←−P was an ε-regular partition of ←−E and now it is not!), but by Lemma 3.3 and the comment
following Lemma 3.4, we also do not decrease its value. Hence, in each iteration one of the values
q(−→P ), q(←−P ), q(P ) is increased by at least ε5/2, while the other two do not decrease. An important
technicality is that as the definitions of the partitions −→P ,

←−
P and P depend on the serial numbers

given to the partition sets of V (G) (see beginning of the subsection), we must make sure that if, for
example, edge (u, v) was part of partition −→P then it does not ”move” to another partition, say, ←−P .
To this end, we can simply give consecutive serial numbers in the new partition, to all the subsets
of a set that belongs to the previous partition.

We are left only with the simple technicalities of making sure that C0 does not get too large, and
of defining the function DM(m, ε). These are straightforward, and are left to the reader. See ,e.g.,
[19] pages 159-160.

Note that our process for obtaining the regular partition does not apply the regularity lemma
for undirected graphs recursively, and that the bound for the function DM(ε, k) in the lemma for
digraphs is similar to the bound of the function M(ε, k) in the lemma for undirected graphs, that
is, both are towers of 2’s of height O(1/ε5). By a result of Gowers [26], both functions must grow at
least as fast as a tower of 2’s of height poly(1/ε).

4 Testing for Arbitrary Subgraphs

In this section we use our version of Szemerédi’s regularity lemma, Lemma 3.1 from the previous
section, in order to prove Theorem 1. To this end, we prove the following lemma, which is similar to
previously known results for undirected graphs. See, for example, Theorem 2.1 in [29], and Lemma
3.2 in [5].

Lemma 4.1 For every fixed ε and h, there is a positive constant c(h, ε) with the following property:
for every fixed digraph H of size h, and for every digraph G of a large enough size n that is ε-far
from being H-free, G contains at least c(h, ε)nh copies of H.
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Proof. Let ε1 be a constant whose value will be decided later. On inputs 1/ε1 and ε1, Lemma
3.1 returns an ε1-regular partition with |V0| ≤ ε1n and partition sets V1, . . . , Vt, |Vi| = k such that
1/ε1 ≤ t ≤ DM(1/ε1, ε1). Obtain from G the digraph G′ by removing the following sets of edges:

• Edges that touch V0. There are at most (ε1n)2 + 2ε1n
2 < 3ε1n

2 edges of this type.

• Edges within some set Vi. There are at most t(n/t)2 = n2/t ≤ ε1n
2 such edges.

• Edges between non ε1-regular sets. There are at most ε1t
2 · 2n2/t2 ≤ 2ε1n

2 such edges.

• If for some pair of partition sets, one of the densities −→d ,
←−
d , d is less than ε/4, remove all

corresponding edges (i.e. all edges that define that density). There are at most
(t
2

)
εn2/t2 ≤

εn2/2 such edges.

Altogether we have removed less than εn2/2+6ε1n
2 edges from G. Thus, as G is ε-far from being

H-free, for any ε1 ≤ ε/13 the digraph G′ is obtained from G by removing less that εn2 edges, and
therefore still contains a copy of H. Moreover, for each directed edge (u, v) in H, u and v belong
to an ε1-regular pair (U, V ), u ∈ U, v ∈ V , such that −→d (U, V ) ≥ ε/4. The same applies to a pair of
edges (u, v), (v, u) in H but this time with respect to the density d(U, V ).

Having established the existence of one such H, we show that there are actually many more
copies of H, provided that ε1 is sufficiently small. Let u1, . . . , uh be the vertices of the copy of H

in G, and assume that ui ∈ Vσ(i). We wish to show that for a small enough ε1 ≤ ε/13 we can build
c(h, ε1)nh copies of H, where for each copy, ui will belong to Vσ(i). This would imply the lemma.

For our scheme to work we need to take ε1 ≤ ε/13 small enough that it satisfies,

(3h + 1)ε1 ≤ (ε/4− ε1)h. (2)

Note, that we must also take ε1 ≤ ε/13 so that we will be able to assume the properties of G′

discussed above. Also, note that the value of ε1 is a function of ε and h only, and is independent of
n.

The idea is to build the copies iteratively, where in iteration 1 ≤ i ≤ h, we find many candidates
to play the role of ui. To this end, we keep a set Ci,j ⊆ Vσ(i), which includes the vertices that may
play the role of ui after we have already found vertices for u1, . . . , uj . Initially, Ci,0 = Vσ(i), |Ci,0| = k.
Consider the stage when we come to select the vertices that will play the role of uj . When we select
a vertex to be uj we have to update the sets Ci,j . For example, if for i > j (uj , ui) is an edge of H,
then after selecting v to be uj we have to update Ci,j = −→

N Ci,j−1(v). The updates are equivalent for
the other two cases where there is an edge (ui, uj) and when there are two edges (ui, uj), (uj , ui).

The crucial observation now, is that we made sure that all edges of H go between ε1-regular
pairs, and moreover we have a relatively high density in the direction of these edges. Therefore, if
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|Ci,j−1| ≥ ε1|Vσ(i)| then by Claim 3.1 all but at most 3ε1|Vσ(j)| vertices in Vσ(j) are such that the
three inequalities of Claim 3.1 hold (with d = ε/4 and ε = ε1). That is,

|Ci,j | ≥ (ε/4− ε1)|Ci,j−1|. (3)

As H contains h vertices, and each i > j excludes at most 3ε1|Vσ(j)| from being uj , then altogether
we have at least |Cj,j−1| − 3ε1h|Vσ(j)| candidates for the role of uj . For our scheme to work we must
make sure that |Ci,j | ≥ ε1|Vσ(i)| so that we may apply Lemma 3.1. But, by our previous assumptions
the following holds for any i > j,

|Ci,j | − 3ε1h|Vσ(j)| ≥ (ε/4− ε1)hk − 3ε1hk ≥ ε1k.

The first inequality follows from (3) and the second from (2). We thus get that |Ci,j | ≥ ε1k = ε1|Vσ(i)|
as needed. In particular |Cj,j−1| ≥ ε1k, thus we have ε1k choices when we come to choose uj . Finally
as Lemma 3.1 partitions V into a constant number of sets we get that,

k =
n− |V0|

t
≥ n(1− ε1)

DM(1/ε1, ε1)

Thus, for each iteration i, we have at least

ε1k =
ε1(1− ε1)n

DM(1/ε1, ε1)

choices for ui. Therefore, as ε1 is a function of ε and h only by (2), G′ contains at least

(
ε1(1− ε1)

DM(1/ε1, ε1)

)h

nh = c(h, ε)nh

copies of H. As G′ is a subgraph of G, G contains at least as many copies.

The proof of Theorem 1 now follows easily.

Proof (of Theorem 1): The tester simply picks, say, 4/c(h, ε) sets of vertices of G, where each set
consists of h vertices, at random. If at least one of these sets spans a copy of H, it reports that G is
not H-free, else, it declares that G is H-free. If G is H-free, then the algorithm will certainly report
that this is the case. If G is ε-far from being H-free then, by the above lemma, the algorithm will
find a copy of H with probability at least 2/3. .

5 Easily Testable Digraphs

In this section we prove parts (i) and (ii) of Theorem 2 as well as Theorem 3. We first show that the
property of being H-free is easily testable, whenever the core of H is a 2-cycle. We then prove the
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same for all digraphs H for which the core of H is a tree. In Section 6 we show that for any other
digraph H, the property of being H-free is hard to test.

We next prove that if the core of a digraph H is a 2-cycle, then testing H-freeness has query
complexity polynomial in 1/ε. Observe, that the core of a digraph cannot be a bipartite digraph with
at least one 2-cycle, and not be a 2-cycle, because there is a homomorphism from any such digraph
to a 2-cycle.

Proof of Theorem 2, part (i) Let H be a bipartite digraph with at least one 2-cycle, with color
classes of size s and t, and assume s ≤ t. Our tester samples some c/εs vertices, for an appropriate
c = c(s, t), and reports that G is not H-free if and only if there is a copy of H spanned by a subset
of these vertices. Clearly, if G is H-free, the algorithm will report this is the case. If G is ε-far from
being H-free it must contain at least εn2 cycles of length 2, as otherwise we can remove an edge from
each of these 2-cycles and obtain an H-free digraph (using the fact that H contains a 2-cycle), while
removing less than εn2 edges. Now, consider the undirected graph G′, obtained from G by putting
an edge (u, v) in G′ if and only if (u, v) is a 2-cycle in G. We show how to find in G′ a set of vertices
that spans a copy of Ks,t. From the definition of G′, it implies that in G the same set spans a copy
of H.

Randomly and independently, pick s vertices (with repetitions). The expected number of vertices
that are connected to all the chosen vertices is

∑
v

(
dv

n

)s

≥ n

(∑
v dv

n2

)s

≥ n(2ε)s,

where dv is the degree of v, the first inequality follows from convexity of the function xs, and the
second from our assumption that G′ contains at least εn2 edges.

It follows that with probability at least 1
2(2ε)s, at least 1

2(2ε)sn vertices are adjacent to all the s

chosen vertices, as otherwise the expectation would have been smaller than n(2ε)s. Therefore, after
10/(2ε)s rounds in which s vertices are chosen, with probability at least 15/16 at least 1

2(2ε)sn of
the vertices are adjacent to all the s vertices chosen in one of the rounds. Fix these s vertices. If we
now choose another vertex, it has probability at least 1

2(2ε)s of being adjacent to all these s vertices.
We conclude that the expected number of additional vertices that we need to sample, in order to
find t vertices that are connected to the s fixed ones, is at most 2t/(2ε)s. By Markov’s inequality,
after sampling 8t/(2ε)s vertices, the probability of not finding a set of t vertices that is connected
to all the s vertices is at most 1/4. The algorithm has probability at most 1/16 of failing to find
the s vertices in the first step, a probability of at most 1/4 of failing to find the t vertices in the
second step, and a probability of o(1) that in each of the two steps, the chosen set does not consist of
distinct vertices (notice that we sampled with repetitions). Altogether, the failure probability is at
most 1/3, hence, the algorithm finds a copy of Ks,t with probability at least 2/3. As for the sample
size, the first part uses a sample of size 10s/(2ε)s, while the second is of size 8t/(2ε)s. Altogether,
we use a sample of size O((1/ε)s) = O((1/ε)h/2). This completes the proof of Theorem 1, part (i).
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Comment: By the above proof, every digraph G on sufficiently many vertices with Ω(n2) 2-cycles,
contains a copy of every fixed bipartite digraph. Therefore there is a very simple and efficient two-
sided error algorithm for testing PH , for every H whose core is a 2-cycle, which simply samples
O(1/ε) pairs of vertices and accepts iff they span no edge.

We now proceed with the proof of Theorem 2 part (ii). In the proof we will use the following
construction of a digraph G′ obtained from a digraph G which is ε-far from being H-free. The process
is described with respect to some tree K, which is a connected subgraph of H. We therefore denote
G′ = G′(G,K). The reason to make the description general is that we will later use it with respect
to different trees. Let G be a digraph that is ε-far from being H-free, and let K be some subtree
of H. Let us also name the vertices of K as 1, . . . , t. We define the digraph G′ = G′(G,K) in the
following constructive manner with respect to K: assign each vertex v of G a list L(v) containing
the numbers 1, . . . , t. This list should eventually contain i ∈ {1, 2, . . . , t} if and only if there is a
homomorphism ϕ : K 7→ G′ in which ϕ(i) = v. We also define N+(v, i) to be the set of vertices u,
for which there is an edge (v, u), and i ∈ L(u). We define N−(v, i) analogously only with respect
to incoming edges into v. The process executes the following two operations while it can: (i) If for
some directed edge (i, j) in K, there is a vertex v in G, for which i ∈ L(v) and |N+(v, j)| < ε

2tn,
remove all edges {(v, u) : u ∈ N+(v, j)}, remove i from L(v), and update all the sets N−(·, i) of
vertices in G. (ii) If for some directed edge (i, j) in K, there is a vertex v in G, for which j ∈ L(v)
and |N−(v, i)| < ε

2tn, remove all edges {(u, v) : u ∈ N−(v, i)}, remove j from L(v), and update all
the sets N+(·, j) of vertices in G.

Lemma 5.1 If G is ε-far from being H-free, and K is a connected subgraph of H which is a tree,
then the digraph G′ = G′(G,K) described above satisfies the following properties: (1) It contains a
copy of K. (2) i ∈ L(v) if and only if there is a homomorphism ϕ : K 7→ G′ for which ϕ(i) = v.

Proof. As K is a subgraph of H, and G is ε-far from being H-free, we may show that G′ satisfies
(1), simply by showing that the above process for obtaining G′, does so by removing less than εn2

edges. To this end, consider any vertex v. Each execution of items (i) and (ii) removes an element
from L(v), therefore we can execute them at most t times on v. As in each execution we remove less
than ε

2tn edges, it follows that the process removes less than εn edges that touch v, and altogether
less than εn2 edges.

To prove (2) we first prove the implication that asserts that if i /∈ L(v) then there is no homo-
morphism ϕ : K 7→ G′ for which ϕ(i) = v. We proceed by induction on m, the number of steps of the
process. At the beginning, all the lists are full, therefore the desired property trivially holds. Assume
it holds for m steps and consider step m + 1: if we execute (i), then some i was removed from some
L(v), after removing all edges that go from v to vertices N+(v, j) for some j that is a neighbor of i in
K. It follows from the induction hypothesis, that no homomorphism can map j to an out-neighbor

14



of v, and therefore, as i and j are neighbours in K, no homomorphism can map i to v. The case of
executing (ii) is identical. To prove the second implication, assume that at the end of the process,
for some vertex v, we have i ∈ L(v) but there is no homomorphism ϕ : K 7→ G′ for which ϕ(i) = v.
Let K ′ be the largest connected subgraph of K that contains i, for which there is a homomorphism
ϕ : K ′ 7→ G′ that satisfies ϕ(i) = v and for all j ∈ K ′ j ∈ L(ϕ(j)). As K is connected, there is some
vertex i′ ∈ K ′ that is connected by an edge to j′ ∈ K \K ′ in K. By the maximality of K ′, there is
no edge connecting ϕ(i′) to a vertex q for which j′ ∈ L(q). This is impossible, as it means that the
process should have removed i′ from L(ϕ(i′)).

We now turn to the proof of Theorem 2, part (ii). The proof is based on a variant of a powerful
probabilistic technique, which may be called dependent random choice, and which has already found
several recent combinatorial applications. See, e.g., [8] and some of its references. Given a subset of
vertices Vi ⊆ V (G) and a vertex v ∈ V (G), let N(v, i) denote the set of neighbors of v within Vi. We
need the following lemma.

Lemma 5.2 Let G = (V,E) be an undirected graph on n vertices, and let V1, V2, . . . , Vd+1 be (not
necessarily disjoint) subsets of V . Put α = |V1|/n. Assume that for every vertex v ∈ V1 and for
every 2 ≤ k ≤ d + 1, |N(v, k)| ≥ ε|Vk|. Then, sampling 32h log(1/δ)/(αεd) vertices from G, finds
with probability at least 1− δ, an h-tuple of distinct vertices s = {v1, . . . , vh} ⊆ V1, that satisfies

∣∣∣∣∣
h⋂

i=1

N(vi, k)

∣∣∣∣∣ ≥
1
4
εdh|Vk|, ∀ 2 ≤ k ≤ d + 1. (4)

Proof. The result is trivial for h = 1, and we thus assume that h ≥ 2. For 2 ≤ k ≤ d + 1, choose
uniformly and independently a vertex tk from each set Vk. Let X be the set of vertices v ∈ V1, for
which tk ∈ N(v, k) for all 2 ≤ k ≤ d + 1. For each v ∈ V1, let Xv be an indicator random variable
for the event that v ∈ X. It follows from the assumption on the large number of neighbours of each
vertex of V1 in each set Vk, that

E(|X|) =
∑

v∈V1

E(Xv) ≥ εd|V1|.

By Jensen’s inequality, it follows that

E(|X|h) ≥ E(|X|)h ≥ εdh|V1|h.

Therefore, there is an expected number of at least εdh|V1|h h-tuples s = (v1, . . . , vh) (where the
vertices vi are not necessarily distinct) of vertices in V1, with the property that tk ∈ N(vi, k), for all
2 ≤ k ≤ d+1 and 1 ≤ i ≤ h. We now turn to show, that the expected number of these h-tuples that
violate (4) is small. To this end, define Z to be the set of all h-tuples s ∈ V h

1 , that do not satisfy (4),
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and let Y be the set of all members of Z that lie in Xh. For each s ∈ Z let Ys denote the indicator
random variable for the event that s ∈ Xh. Note that |Y | = ∑

s∈Z Ys. Thus

E(|Y |) =
∑

s=(v1,...,vh)∈Z

E(Ys) =
∑

s∈Z

d+1∏

k=2

∣∣∣⋂h
i=1 N(vi, k)

∣∣∣
|Vk| ≤

∑

s∈V h
1

1
4
εdh ≤ 1

4
εdh|V1|h,

where the first inequality follows from our assumption that for some k,
∣∣∣⋂h

i=1 N(vi, k)
∣∣∣ < 1

4εdh|Vk|.
We conclude that,

E(
1
2
|X|h − |Y |) =

1
2
E(|X|h)− E(|Y |) ≥ 1

2
εdh|V1|h − 1

4
εdh|V1|h =

1
4
εdh|V1|h.

Therefore, there is some choice of t2, . . . , td+1, for which the sets X and Y satisfy,

|X|h − |Y | ≥ 1
2
|X|h +

1
4
εdh|V1|h.

Fix one such choice of t2, . . . , td+1. The above inequality implies that more than half of the h-tuples
in Xh satisfy (4), and that X is of size at least 1

41/h εd|V1| ≥ α
2 εdn. Therefore, a randomly chosen

vertex from G, has probability at least α
2 εd to lie in X. It follows that the expected number of

samples needed to find an h-tuple from X is at most 2h/(αεd). Hence, by Markov’s inequality,
choosing 8h/(αεd) random vertices, finds an h-tuple from X with probability at least 3

4 . As at least
half of the h-tuples in Xh satisfy (4), it follows that with probability at least 3

8 we find an h-tuple
satisfying (4). This is not necessarily an h-tuple of distinct vertices. But the probability of finding
an h-tuple with non distinct vertices is o(1), as |X| = Ω(n). Therefore with probability at least 1

4 we
find an h-tuple of distinct vertices satisfying (4). Thus, choosing 32h log(1/δ)/(αεd) vertices finds
such an h-tuple with probability at least 1− δ as needed.

Proof of Theorem 2, part (ii) As in the proof of part (i), (and as can be done for any one-sided
property tester for a problem which is closed under taking induced subgraphs), the algorithm simply
samples the stated number of vertices randomly and reports that G is H-free if and only if it finds no
copy of H on them. Clearly, if G is H-free, the answer is correct. Let G be ε-far from being H-free,
and let K denote the core of H which is, by assumption, a tree. Number the vertices of K by 1, . . . , k
in a BFS order, and let hi be the number of vertices of H that are mapped to i ∈ {1, 2, . . . , k}. Note
that if i and j are neighbors in K, it does not necessarily hold, that all the vertices of H that are
mapped to i, are adjacent to all the vertices of H that are mapped to j, but it does hold, that all
existing edges are in the same direction. We will show however, that we can find a subgraph of G

whose vertex set consists of subsets |U1| = h1, . . . , |Uk| = hk such that if (i, j) ∈ E(K) then all the
vertices of Ui are connected to all the vertices of Uj . Such a subgraph clearly contains a copy of H.

Let N(i) be the neighbours of vertex i in K, that appear after it in the BFS order, and di = |N(i)|.
Apply the process described before the proof of Lemma 5.1 with respect to K, that is, obtain
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G′ = G′(G,K). It follows from Lemma 5.1 that G′ contains a copy of K. Let v1, . . . , vk be such
a copy. By Lemma 5.1, for all 1 ≤ i ≤ k, i ∈ L(vi). Denote by Vi the set of vertices ui for which
i ∈ L(ui). Clearly vi ∈ Vi. In order to make the presentation simple, from now until the end of the
proof, we will not specify the direction of an edge between ui ∈ Vi and uj ∈ Vj , although we will
always be speaking about an edge that is directed as the direction of an edge between i and j in K.

Let N(1) = {2, . . . , d1 + 1} be the d1 neighbors of vertex 1 in K, hence, G′ contains the edges
(v1, v2), . . . , (v1, vd1+1). From the definition of the process for obtaining G′, it follows that for every
2 ≤ i ≤ d1 + 1, there are at least ε

2hn vertices u1 ∈ V1, for which there is an edge (u1, vi) and
1 ∈ L(u1), and in particular, |V1| ≥ ε

2hn. It follows again from the definition of the process, that
for every u1 ∈ V1, and for every 2 ≤ i ≤ d1 + 1, u1 has at least ε

2hn neighbors in Vi, implying that
|Vi| ≥ ε

2hn. As |Vi| ≤ n, it follows that, each vertex in V1 has at least ε
2h |Vi| neighbours in each Vi.

We can continue this way to conclude that for 1 ≤ i ≤ k, |Vi| ≥ ε
2hn, and that every ui ∈ Vi has at

least ε
2h |Vj | neighbors in Vj , for every j ∈ N(i). Finally note that as G′ is a subgraph of G, all of the

above applies also to G.
The previous paragraph implies, that we can apply Lemma 5.2 on the sets V1, . . . , Vd1+1, with

δ = 1
4h , α = ε

2h , h = h1 and ε being ε/(2h), to conclude that sampling some c1(h)/(εd1+1) vertices of
G, finds, with probability at least 1− 1

4h , an h1-tuple s1, of distinct vertices from V1, such that for
2 ≤ j ≤ d1+1 they have at least c′1(h)εh1d1 |Vj | ≥ c”1(h)εh1d1+1n common neighbors in Vj . The actual
constants c1(h), c′1(h), c′′1(h) as well as the constants that will appear at the rest of this proof can be
derived from the statement of Lemma 5.2 and are omitted in order to keep the presentation simple.
For 2 ≤ j ≤ d1 +1, denote by V ′

j this set of common neighbors of the vertices of s1. Now each V ′
j is of

size at least c”1(h)εh1d1+1n. By construction of G′, every vertex in Vj , has at least ε
2h |Vt| neighbours

in Vt, for every t ∈ N(j). As V ′
j ⊆ Vj , the same also applies to the vertices of V ′

j . For 2 ≤ j ≤ d1 +1,
we can now apply Lemma 5.2 to V ′

j as follows. Take δ = 1
4h , α = |V ′

j |/n ≥ c”1(h)εh1d1+1 , h = hj ,
d = dj and ε as before. We conclude that sampling c2(h)/(εdj+d1h1+1) finds, with probability at least
1 − 1

4h , an hj-tuple sj of distinct vertices from V ′
j , with the property, that all the vertices of s1 are

adjacent to all the vertices of sj , and the vertices of sj have at least c′2(h)εdjhj |Vt| common neighbors
in Vt, for every t ∈ N(j).

We now turn to generalizing the above for all 1 ≤ i ≤ k, but before doing so we must take care
of the following minor technicality; we must make sure that we do not sample the same vertex twice
when we look for the copy of H, as it must consist of distinct vertices. We therefore remove from
each V ′

j the previously used vertices. As H is of fixed size, each V ′
j is still of essentially its previous

size.
Observe, that as each vertex in Vi has at least ε

2h |Vt| neighbours in Vt, for every required t, and we
made sure that we do not sample the same vertex twice, we can safely generalize the above sampling
technique as follows. For every 2 ≤ i ≤ k, let pi be the (single) neighbor of i in K that precedes it in
the BFS order. Therefore, for every 2 ≤ i ≤ k we can sample some c3(h)/(εdi+dpihpi+1) vertices, to
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find, with probability at least 1− 1
4h , an hi-tuple si, with the properties, that every member in spi is

adjacent to every member of si, and the vertices of si have at least c′3(h)εdihi |Vt| common neighbors
in Vt for every t ∈ N(i). Observe, that as k ≤ h, the probability that at least one of these k samples
failed is at most k/4h ≤ 1/4. Therefore, with probability at least 3/4 we have found k sets s1, . . . , sk

of sizes h1, . . . , hk, respectively, such that for every edge (i, j) in K, we have all the edges going from
si to sj . This digraph clearly contains a copy of H, as needed. As for the total number of vertices
sampled, note that we do not sample more than h times the size of the largest sample we use. The
first sample, the one used to find s1 is of size c1(h)/(εd1+1) = O((1/ε)d1+1). For 2 ≤ i ≤ k, we use a
sample of size O((1/ε)di+dpihpi+1). If we define h = max2≤i≤k{di +dpihpi +1}, then the total sample
size is O((1/ε)h). As it is clear that for every tree of size h, h ≤ h2, we conclude that our ε-tester
has indeed a query complexity of O((1/ε)h2

).

It is worth observing that in the proof of Theorem 2 part (ii), we did not explicitly use the fact
that the core of the considered digraph H is a tree. Rather, we only needed the fact that V (H) can
be homomorphically mapped to some subgraph which is a tree. However, one can easily see that if
such a homomorphism exists, then the core of H must also be a tree. We now turn to prove Theorem
3, that states that in case H is an oriented tree, we can design an optimal one-sided error ε-tester
that simply samples a subset of O(1/ε) vertices, and checks if they span a copy of H.

Proof of Theorem 3 If G is H-free, the algorithm clearly reports it. Let G be ε-far from being
H-free. Consider a DFS ordering of the vertices of H, and number the vertices of H accordingly
1, . . . , h. It follows that vertex i has exactly one neighbor from 1, . . . , i − 1. Apply the process
described before the proof of Lemma 5.1 with respect to H itself, that is, obtain G′ = G′(G,H). It
follows from Lemma 5.1 that G′ contains a copy of H. Let v1, . . . , vh be such a copy. By Lemma 5.1,
for all 1 ≤ i ≤ h, i ∈ L(vi). Without loss of generality, assume H contains the edge (1, 2). Therefore
G′ contains an edge (v1, v2), and by Lemma 5.1 1 ∈ L(v1) and 2 ∈ L(v2). From the definition of the
process for obtaining G′, it follows that there are at least ε

2hn vertices u1, for which there is an edge
(u1, v2) and 1 ∈ L(u1). It follows again from the definition of the process, that for each such u1,
there are at least ε

2hn vertices u2 for which there is an edge (u1, u2) and 2 ∈ L(u1). We can continue
this way inductively to conclude that for every homomorphism mapping the subgraph of H spanned
by the vertices 1, . . . , i into G′, there are at least ε

2hn possibilities for extending this homomorphism,
to a homomorphism from the subgraph of H spanned by 1, . . . , i + 1 into G′. As H is of fixed size,
and n is assumed to be large enough, it follows that for each injective homomorphism mapping the
subgraph of H spanned by the vertices 1, . . . , i into G′, there are at least ε

2hn−i ≥ ε
3hn possibilities for

extending this injective homomorphism, to an injective homomorphism from the subgraph spanned
by 1, . . . , i + 1 into G′. Finally, observe that as G′ is a subgraph of G, all the above applies also to
G.

We now turn to the actual proof. We show that a random subset of 9h2/ε vertices, contains a

18



copy of H with probability at least 2/3. We choose this set one vertex at a time (with repetitions).
From the above discussion, it follows that each randomly chosen vertex v, has probability at least
ε/3h of having the property that there is a copy of H in G in which v plays the role of vertex 1.
More generally, it follows from the above discussion, that for every 1 ≤ i ≤ h − 1, if we have found
vertices v1, . . . , vi−1 having the property that there is a copy of H in G in which v1, . . . , vi−1 play
the role of vertices 1, . . . , i− 1, then there are at least ε

3hn vertices u in G, such that there is a copy
of H in G, in which v1, . . . , vi−1 play the role of 1, . . . , i− 1 respectively, and u plays the role of vi.
Therefore, each randomly chosen vertex has probability at least ε/3h of decreasing the number of
vertices that are required in order to complete a copy of H, regardless of any history. By linearity
of expectation, and the fact that the expected number of trials needed to find each new vertex is
geometrically distributed, it follows that the expected number of trials needed to find a copy of H is
3h2/ε. By Markov’s inequality, it follows that the probability of not finding a copy of H after 9h2/ε

trials, is at most 1/3, as needed. Note, that the failure probability is in fact exponentially small in
h/ε, but we do not need this stronger estimate here.

To show that the result is optimal, we show how to construct, for every tree H, a digraph GH ,
that is ε-far from being H-free, yet in order to find a copy of H, one must sample Ω(1/ε) vertices of
GH . Given a tree H of size h, construct a digraph GH as follows: Let K be the core of H (which
is obviously a tree), and let k denote its size. We also denote by t the number of vertices that are
mapped to vertex k of K in a homomorphism from H to K. The digraph GH contains k − 1 sets
of vertices V1, . . . , Vk−1 of size n−ε2kn

k−1 each, and one subset Vk of size ε2kn. For each edge (i, j) in
K, GH contains an edge (vi, vj) for every vi ∈ Vi and vj ∈ Vj . To show that GH is ε-far from being
H-free, observe that there are

(ε2kn)t
(

n− ε2kn

k − 1

)h−t

natural homomorphisms from H into GH , and at least half of them are injective (there are o(nh)
homomorphisms that are not injective), that is, at least half of them define a copy of H. On the
other hand, each edge e in GH , is in the image of at most

(ε2kn)t−1
(

n− ε2kn

k − 1

)h−t−1

of these homomorphisms from H to K. Therefore, for a large enough n, one must remove at least

1
2

(ε2kn)t
(

n− ε2kn

k − 1

)h−t

· (ε2kn)1−t
(

n− ε2kn

k − 1

)1−h+t

≥ εkn
n− ε2kn

k − 1
≥ εn2

edges, in order to make GH H-free, and hence GH is ε-far from being H-free. The first multiplicand
comes from the number of copies of H in GH which is at least half of the number of homomorphisms
from H to GH , while the second comes from the number of copies of H which share a given edge.
In order to establish that a digraph is not H-free, a one-sided error property-tester must find a copy
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of H. Now, by the minimality of K, each copy of H in GH must have a vertex from Vk. Therefore,
in order to find a copy of H with probability 2/3, one must find a vertex in Vk with at least this
probability. As proved by Goldreich and Trevisan in [25], we may assume without loss of generality
that any one sided error property tester for PH samples uniformly at random a subset of vertices,
and answers by only inspecting edges spanned by this set. Finally, to find a vertex from Vk with
probability at least 2/3, one must sample uniformly at random at least Ω(1/ε) vertices. Thus, we
obtain a lower bound of Ω(1/ε) as required.

6 Hard to Test Digraphs

In this section we apply the approach used in [1], together with some additional ideas, in order to
prove Theorem 2 part (iii). This approach uses techniques from additive number theory, based on
the construction of Behrend [14] of dense sets of integers with no three-term arithmetic progressions,
together with some properties of homomorphisms of digraphs.

A linear equation with integer coefficients

∑
aixi = 0 (5)

in the unknowns xi is homogeneous if
∑

ai = 0. If X ⊆ M = {1, 2, . . . , m}, we say that X has no
non-trivial solution to (5), if whenever xi ∈ X and

∑
aixi = 0, it follows that all xi are equal. Thus,

for example, X has no nontrivial solution to the equation x1− 2x2 + x3 = 0 if and only if it contains
no three-term arithmetic progression. The following lemma is proved in [1] (Lemma 3.1), following
the method of [14]:

Lemma 6.1 For every fixed integer r ≥ 2 and every positive integer m, there exists a subset X ⊂
M = {1, 2, . . . , m} of size at least

|X| ≥ m

e10
√

log m log r

with no non-trivial solution to the equation

x1 + x2 + . . . + xr = rxr+1. (6)

Let C = (v1, . . . , vr+1, v1) be an arbitrary oriented cycle of length r + 1. We next apply the
construction in the above lemma to construct, for every integer r + 1 ≥ 3, a relatively dense digraph
consisting of pairwise edge disjoint copies of C, which does not contain too many copies of C of a
special structure (see statement of lemma below). Let m be an integer, let X ⊂ {1, 2, . . .m} be a
set satisfying the assertion of Lemma 6.1, and define, for each 1 ≤ i ≤ r + 1, the set Vi to consist
of the vertices {1, 2, . . . im} where, with a slight abuse of notation, we think on the sets V1, . . . , Vr+1

as being pairwise disjoint. The reason we use this notation is that we will next refer to the vertices
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of these sets as integers. In order to avoid confusion, when we will later on refer to a vertex we will
always state to which of the sets V1, . . . , Vr+1 it belongs.

Let T = T (X, C) be the family of all r+1-partite digraphs on the classes of vertices V1, V2, . . . , Vr+1,
whose edges are defined as follows: For each j, 1 ≤ j ≤ m, and for each x ∈ X the vertices
j ∈ V1, j + x ∈ V2, j + 2x ∈ V3, . . . , j + rx ∈ Vr+1 form an oriented cycle of length r + 1 in this order,
whose edges are directed as the edges of C. Therefore, if C contains the directed edge (vi, vi+1),
then (j + (i − 1)x, j + ix) is an edge from Vi to Vi+1 for all 1 ≤ j ≤ m,x ∈ X, in any member of
T . If C contains the reverse edge (vi+1, vi), then (j + ix, j + (i− 1)x) is an edge from Vi+1 to Vi for
all 1 ≤ j ≤ m,x ∈ X in any member of T . The same applies to the edges between V1 and Vr+1. If
(vi, vi+1) is an edges in C, then any digraph in T does not contain any additional edges going from
Vi to Vi+1. If (vi+1, vi) is an edge in C, then any digraph in T does not contain any additional edges
going from Vi+1 to Vi. The same applies to V1, Vr+1. Besides the above set of edges and restrictions,
the members of T may contain any other edges between Vi, Vj .

Lemma 6.2 For every integer r ≥ 2, and every m, any member of T (X,C) defined above has
precisely m|X| ( < m2) copies of the cycle C, such that the vertex that plays the role of vi in the
copy of C, belongs to Vi.

Proof: We only have to show that any member of T does not contain any additional copies of C, for
which the vertex that plays the role of vi in the copy of C, belongs to Vi. Let C ′ be such a copy of C.
Therefore, there are j ≤ m and elements x1, x2, . . . , xr+1 ∈ X, such that the vertices of the cycle are
j ∈ V1, j + x1 ∈ V2, j + x1 + x2 ∈ V3, . . . , j + x1 + x2 + . . . + xr ∈ Vr+1 and x1 + x2 + . . . + xr = rxr+1

(remember that all edges between V1 and Vr+1 are of the form (j, j + rx) or (j + rx, j)). However,
by the definition of X this implies that x1 = x2 = . . . = xr+1, implying the desired result.

Comment: Note that the members of T (X, C) may contain many additional copies of C, which do
not satisfy the restriction described in the statement of the lemma.

An s-blow-up of a digraph K = (V (K), E(K)) is the digraph obtained from K by replacing each
vertex of K by an independent set of size s, and each edge e of K by a complete bipartite directed
subgraph whose vertex classes are the independent sets corresponding to the ends of the edge, and
whose edges are directed according to the direction of e.

Lemma 6.3 Let H = (V (H), E(H)) be a digraph with h vertices, let K = (V (K), E(K)) be another
digraph on at most h vertices, and let T = (V (T ), E(T )) be an s-blow-up of K. Suppose there is a
homomorphism

ϕ : V (H) 7→ V (K)
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from H to K and suppose s ≥ h. Let R ⊂ E(T ) be a subset of the set of edges of T , and suppose
that each copy of H in T contains at least one edge of R. Then

|R| ≥ |E(T )|
|E(K)||E(H)| >

|E(T )|
h4

.

Proof: Let g : V (H) 7→ V (T ) be a random injective mapping obtained by defining, for each vertex
v ∈ V (K), the images of the vertices in ϕ−1(v) ∈ V (H) randomly, in a one-to-one fashion, among all
s vertices of T in the independent set that corresponds to the vertex v. Obviously, g maps adjacent
vertices of H into adjacent vertices of T , and hence the image of g contains a copy of H in T . Each
edge of H is mapped to one of the corresponding s2 edges of T according to a uniform distribution,
and hence the probability it is mapped onto a member of R does not exceed |R|/s2. It follows
that the expected number of edges of H mapped to members of R is at most |R||E(H)|

s2 , and as, by
assumption, this random variable is always at least 1, we conclude that |R||E(H)|

s2 ≥ 1. The desired
result follows, since s2 = |E(T )|/|E(K)|.

Claim 6.1 If K, the core of H, is neither a tree nor a 2-cycle, then K contains an oriented cycle
C of length at least 3. Moreover, any homomorphism from H to K, maps a copy of C from H to
the copy of C in K.

Proof: Let k denote the number of vertices of K, and let us number its vertices {v1, v2, . . . , vk} such
that the first r + 1 ≥ 3 vertices v1, v2, . . . vr+1 form an oriented cycle C in this order. One such cycle
must exist as K is by assumption neither a tree nor a 2-cycle. Remember, that as was explained in the
discussion before the proof of Theorem 2, part (i), the core cannot have only 2-cycles, and not be a
2-cycle. By the minimality of K, every homomorphism ϕ of K into itself must be an automorphism,
that is (u, v) ∈ E(K) ⇔ (ϕ(u), ϕ(v)) ∈ E(K) (otherwise H would have a homomorphism into a
subgraph with a smaller number of edges). We claim that any homomorphism of H into K maps
a copy of C from H to the vertices v1, v2, . . . vr+1 of K. Indeed, any homomorphism of H into K,
induces also a homomorphism of K into K. Therefore, some r + 1 vertices of K are mapped to
v1, v2, . . . , vr+1, and these vertices must span a cycle in K and therefore in H, as this homomorphism
is an automorphism from K to K by the previous argument.

Lemma 6.4 For every fixed digraph H = (V (H), E(H)) on h vertices whose core is neither an
oriented tree nor a 2-cycle, there is a constant c = c(H) > 0, such that for every positive ε < ε0(H)
and every integer n > n0(ε), there is a digraph G on n vertices which is ε-far from being H-free, and
yet contains at most εc log (1/ε)nh copies of H.

Proof: Let K be the core of H, and let k denote the number of vertices of K. Also, let us number its
vertices {v1, v2, . . . , vk} such that the first r + 1 ≥ 3 vertices v1, v2, . . . vr+1 form an oriented cycle C

22



in this order as guaranteed by Claim 6.1. Given a small ε > 0, let m be the largest integer satisfying

ε ≤ 1

h8e10
√

log m log h
. (7)

It is easy to check that this m satisfies

m ≥
(

1
ε

)c log(1/ε)

(8)

for an appropriate c = c(h) > 0. Let X ⊂ {1, 2, . . . , m} be as in Lemma 6.1. We next define a
digraph F from K in a way similar to the one described in the paragraph preceding Lemma 6.2.
Let V1, V2, . . . Vk be pairwise disjoint sets of vertices, where |Vi| = im and we denote the vertices of
Vi by {1, 2, . . . , im}. For each j, 1 ≤ j ≤ m, for each x ∈ X and for each directed edge (vp, vq) of
K, let j + (p − 1)x ∈ Vp have an outgoing edge pointed to j + (q − 1)x ∈ Vq. In other words, F

consists of m|X| copies of K, where the vertices of each copy form an arithmetic progression whose
first element is j and whose difference is x. It follows that each pair of these copies shares at most
one vertex in F . In particular, these copies are edge disjoint. It thus follows that the number of
edges in F satisfies

|E(F )| = m|X||E(K)|.
Note that the induced subgraph of F on the union of the first (r + 1) vertex classes, belongs to the
family of digraphs T (X,C) considered in Lemma 6.2, where C = (v1, . . . , vr+1, v1) is the oriented
cycle on the first r + 1 vertices of K, which was defined above. Finally, define

s =
⌊

n

|V (F )|
⌋

=
⌊

2n

k(k + 1)m

⌋

and let G be the s-blow-up of F (together with some isolated vertices, if needed, to make sure that
the number of vertices is precisely n). Note that the number of edges of G satisfies,

|E(G)| = 4n2|E(F )|
k2(k + 1)2m2

=
4n2|X||E(K)|
k2(k + 1)2m

≥ n2|X||E(K)|
k4m

≥ n2|E(K)|
k4e10

√
log m log r

(9)

where the last inequality follows from the lower bound on |X| that is guaranteed by Lemma 6.1.
Since F consists of m|X| edge disjoint copies of K, G consists of pairwise edge disjoint s-blow-ups

of K, hence, by Lemma 6.3, one has to delete at least a fraction of 1/h4 of its edges to destroy all
copies of H in it. Therefore, one must delete at least

1
h4
· |E(G)| ≥ n2|E(K)|

h4k4e10
√

log m log r
≥ n2|E(K)|

h8e10
√

log m log h
≥ εn2 (10)

edges in order to destroy all copies of H. The first inequality follows from (9), the second from the
fact that r ≤ h and k ≤ h and the third from (7). We conclude that G is ε-far from being H-free.

23



We next claim that any copy of H in G must contain a copy of C such that for 1 ≤ i ≤ r +1, the
vertex that plays the role of vi belongs to the blow-up of the vertices of Vi. To see this, note that
there is a natural homomorphism of G onto K, obtained by first mapping G homomorphically onto
F (by mapping each class of s vertices into the vertex of F to which it corresponds), and then by
mapping all vertices of Vi to vi. This homomorphism maps each copy of H in G homomorphically
into K, and hence, by Claim 6.1, maps a copy of C that belongs to the considered digraph H, to
the first r + 1 vertices of K. The definition of the homomorphism thus implies the assertion of the
claim.

As the vertex that plays the role of vi in the copy of C must belong to the blow-up of the vertices
of Vi for 1 ≤ i ≤ r + 1, it follows from Lemma 6.2 that the number of such cycles is at most

m2sr+1 = m2
(

2n

k(k + 1)m

)r+1

≤ nr+1/m,

and this implies that the total number of copies of H in G does not exceed nh/m = εc log(1/ε)nh,
implying the desired result.

Proof of Theorem 2, part (iii): Let H be a digraph on h vertices whose core is neither an
oriented tree nor a 2-cycle, and suppose ε > 0. Given a one-sided error ε-tester for testing H-freeness
we may assume, without loss of generality, that it queries all pairs of a uniformly at random chosen
set of vertices (otherwise, as explained in [5], every time the algorithm queries about a vertex pair
we make it query also about all pairs containing a vertex of the new pair and a vertex from previous
queries. See also [25] for a more detailed proof of this statement.) As the algorithm is a one-sided-
error algorithm, it can report that G is not H-free only if it finds a copy of H in it. By Lemma
6.4 there is a digraph G on n vertices which is ε-far from being H-free and yet contains at most
εc log (1/ε)nh copies of H. The expected number of copies of H inside a uniformly at random chosen
set of x vertices in such a digraph is at most xhεc log (1/ε), which is far smaller than 1 unless x exceeds
(1/ε)c′ log(1/ε) for some c′ = c′(H) > 0, implying the desired result.

7 Two-Sided Error ε-Testers

In this section we present the proof of Theorem 4. Applying the second part of the theorem for the
case of undirected graphs, shows that if H is an undirected, non-bipartite graph, then there is no
two-sided ε-tester for testing H-freeness whose query complexity is smaller than (1/ε)c log 1/ε for an
appropriate c = c(H) > 0. This settles an open problem raised in [1]. For the proof we need the
following easy application of a theorem of Erdős from [20].

Lemma 7.1 Let H be a fixed digraph on h vertices, let K be its core, and denote by k the size of
K. For every constant 0 < γ < 1 and for every sufficiently large n, every digraph G on n vertices
that contains γnk copies of K, contains also a copy of H.
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Proof: Let ϕ be a homomorphism from V (H) to V (K), denote by t1, . . . , tk the vertices of K,
and let S1, . . . , Sk be the sets ϕ−1(t1), . . . , ϕ−1(tk), respectively. Define a k-uniform hypergraph T

as follows: take a random partition of V (G) into k subsets, V1, . . . , Vk, where each vertex of G

is chosen uniformly and independently to be in one of the groups. For each copy of K in G, in
which the vertices ui1 , . . . , uik play the role of t1, . . . , tk respectively, put an edge in T that contains
ui1 , . . . , uik if and only if ui1 ∈ V1, . . . , uik ∈ Vk. Observe, that by linearity of expectation, if G

contains γnk copies of K, the expected number of edges in T is γk−knk. Therefore, one partition
which defines at least this many edges must exist. Fix one such partition, and the hypergraph T ′

which it defines. In [20] it is proved that any k-uniform hypergraph on n vertices with at least
nk−h1−k

edges, contains a copy of a complete k-partite k-uniform hypergraph, where each partition
class is of size h. It follows that for large enough n, T ′ contains a copy of such hypergraph on some
hk vertices {v1

1, . . . , v
1
h} ⊆ V1, . . . , {vk

1 , . . . , vk
h} ⊆ Vk. It is now easy to see that G must contain a

copy of H where for the role of the vertices of Si we can choose any |Si| vertices from {vi
1, . . . , v

i
h}.

Proof of Theorem 4, part (i): Let H be a fixed digraph with core K, and let k be the size of
K. If K is a 2-cycle, then a two-sided error ε-tester for testing PH with query complexity O(1/ε)
was described in the comment following the proof of Theorem 2 part (i). Assume now that K is an
oriented tree. Our two-sided error ε-tester for PH works as follows: Given a digraph G, the algorithm
samples c/ε vertices, for an appropriate c, and reports that the digraph is not H-free if and only
if they span a copy of K. We turn to show that the algorithm answers correctly with probability
at least 2/3. Assume G is ε-far from being H-free. Then it is clearly also ε-far from being K-free,
therefore applying Theorem 3 to PK , we conclude that a randomly chosen set of c/ε vertices, with
an appropriate c, finds a copy of K with probability at least 2/3. Assume G does not contain a copy
of H. It follows from Lemma 7.1 that it contains o(nk) copies of K, and therefore a randomly chosen
set of any constant size (independent of n), and in particular of size O(1/ε), has probability o(1) of
finding a copy of K.

To show that the result is optimal, we apply Yao’s principle [34]. We first prove the case of K

being an oriented tree. Applying Yao’s principle to our setting, we first have to define for every
n, two distributions of digraphs D1, D2, where all the digraphs in D1 are ε-far from being H-free,
and all the digraphs in D2 are H-free. In order to define the two distributions we use the digraph
GH whose description appears at the end of the proof of Theorem 3. Note that this digraph is
constructed using the core K, which is a tree. D1 is a uniform distribution on all the n! digraphs
that are obtained from GH by a permutation of its vertices. By the computation at the end of the
proof of Theorem 3 it follows that all the digraphs in D1 are ε-far from being H-free. To define
D2 we first define G′

H to be the digraph that is obtained from GH by removing all the edges that
touch Vk (see the definition of GH). D2 is now a uniform distribution on all the n! digraphs that are
obtained from G′

H by a permutation of its vertices. As G′
H is clearly H-free, all the digraphs in D2
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are H-free. To finish the proof we must show that no deterministic algorithm that samples less than
Ω(1/ε) vertices (adaptively) can tell the difference between these two distributions with probability
that exceeds, say, 1/3. Recall that by the definition of GH and G′

H , as long as the algorithm does
not look at a vertex from Vk, it sees the same digraph. As Vk is of size ε2kn, the probability that
a deterministic algorithm that samples less than, say, 1/(10εk) vertices finds a vertex from Vk is
smaller than 1/3. Therefore, with probability at least 2/3 the two distributions D1, D2 will look
identical to any deterministic algorithm sampling less than Ω(1/ε) vertices, as needed.

The proof for the case of K being a 2-cycle is analogous, and involves taking a permutation of a
complete bi-directed bipartite graph on vertex sets of sizes ε4n and n− ε4n, and a digraph with no
edges. The rest of the details are left to the reader.

A close inspection at the proofs of Theorem 3 and Theorem 2 part (i), shows that if G is ε-far
from being H-free, and the core of H, K, is either a 2-cycle or an oriented tree, then sampling O(1/ε)
vertices finds a copy of K with probability 1−o(1) where the o(1) term tends to 0 as ε tends to zero.
On the other, the proof of Theorem 4, part (i), shows that if G is H-free, then the algorithm does
not find a copy of K with probability 1− o(1) where the o(1) term tends to 0 as n tends to infinity
(even if ε > 0 is relatively large). Therefore, in some sense the test has ”almost” one-sided error, as
even for large values of ε the failure probability in case G is H-free is still o(1), as n tends to infinity.

Proof of Theorem 4, part (ii): Let H be a fixed digraph whose core K is neither a directed
2-cycle nor an oriented tree. We apply Yao’s principle again in order to prove the lower bound.

Given n and ε, let X, m and the sets Vi be as in the proof of Lemma 6.4. Construct the digraph
F just as in the proof of Lemma 6.4, and remember that it consists of m|X| pairwise edge disjoint
copies of K (though it may well contain additional copies of K). Recall, also, that K contains a
cycle C of length r + 1 ≥ 3, and that each copy of K in F contains a copy of this cycle in which the
i-th vertex lies in Vi for all 1 ≤ i ≤ r + 1. Let C denote the set of these edge disjoint copies of C,
and note that by Lemma 6.2 there are no other copies of C in F , in which the i-th vertex lies in Vi,
besides the m|X| members of C.

To construct D1 which consists of digraphs that are ε-far from being H-free with probability
1 − o(1), we first construct F ′

1 by removing each of the m|X| edge disjoint cycles that belong to C
with probability 1

r+1 . We then create G1 by taking an s blow up of F ′
1 adding isolated vertices, if

needed. Finally, D1 consists of all randomly permuted copies of such digraphs G1. It follows from
a standard Chernoff bound, that with probability 1− o(1), at least m|X|(1− 2/(r + 1)) copies of C

are left in F ′
1, where the o(1) term tends to 0, as ε tends to 0. Similar to the derivation of (10), it is

easy to show that if m|X|/2(r + 1) of these copies of C are left in F ′
1, the digraph G1 is ε-far from

being H-free. It follows that with probability 1− o(1), a member of D1 is ε-far from being H-free.
The distribution D2 of digraphs that are H-free, is defined by first constructing F ′

2 by removing
from each member C ∈ C one randomly chosen edge (out of the r + 1 edges of the cycle). We then
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create G2 by taking an s blow up of F ′
2 adding isolated vertices, if needed. Finally, D2 consists of all

randomly permuted copies of such digraphs G2, which are clearly H-free.
Now consider a set of vertices S in G1 (or G2) and its natural projection to a subset of V (F ),

which we also denote by S with a slight abuse of notation. Suppose S has the property that it does
not contain more than two vertices from any one of the copies of C that belong to C.

If this property holds, then each edge spanned by S is contained in a different copy of C ∈ C (if
it is contained in such a cycle at all). Therefore, each edge that lies in such a cycle, has probability
1− 1

r+1 of being in F ′
1, and these probabilities are mutually independent. Similarly, each such edge

has probability 1 − 1
r+1 of being in F ′

2 and these probabilities are also mutually independent. It
follows that sampling a digraph G from D1, and looking at the induced digraph on a set S with the
above property, has exactly the same distribution as sampling a digraph G from D2, and looking at
the induced digraph on S.

To complete the proof we have to show that no deterministic algorithm can distinguish between
the distributions D1 and D2 with constant probability. To this end, it is clearly enough to show that
any deterministic algorithm that looks at a digraph spanned by less than (1/ε)c′ log 1/ε vertices, has
essentially the same probability of seeing any digraph regardless of the distribution from which the
digraph was chosen. By the discussion in the previous paragraph, this can be proved by establishing
that, with high probability, a small set of vertices does not contain three vertices from the same copy
of C. For a fixed ordered set of three vertices in S, consider the event that they all belong to the same
copy of C. The first two vertices determine all the vertices of one of these copies uniquely. Now, the
conditional probability that the third vertex is also a vertex of the same copy is (r+1)/|V (F )| ≤ r/m.
By the union bound, the probability that the required property is violated is at most

r|S|3/m ≤ r|S|3εc log 1/ε.

This quantity is o(1) as long as |S| = o((1/ε)
c
3

log 1/ε), where here we applied the lower bound on
the size of m given in (8). Therefore, if the algorithm has query complexity o((1/ε)c′ log 1/ε) for
some absolute positive constant c′, it has probability 1 − o(1) of looking at a subset on which the
distributions D1 and D2 are identical, thus, the probability that it distinguishes between D1 and D2

is o(1).

A slightly more complicated argument than the above can give two distributions D1 and D2,
such that the digraphs in D1 are always ε-far from being H-free, while the digraphs in D2 are always
H-free. The idea is to first partition the m|X| copies of C into pairs, assuming for simplicity that
m|X| is even. To create D1, we randomly pick from each pair of copies of C a single copy, and
delete two randomly chosen edges from this copy. To create D2, we do exactly the same as we did
in the proof above. It is easy to appropriately modify the proof above in order to show that any
deterministic algorithm with query complexity o((1/ε)c log 1/ε) cannot distinguish between D1 and D2
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(see [10] for more details). As this argument has no qualitative advantage, we described the simpler
one given above.

Observe that for digraphs H whose core K is neither an oriented tree nor a 2-cycle, we can give
the above lower bound for testing PH , but no better upper bound than the one given by Theorem 1.
However, following the arguments in the proof of Theorem 4 (i), it follows that the query complexity
of testing PH with two-sided error is at most the query complexity of testing PK with two-sided
error. Thus, for example, the query complexity of testing the digraph in Figure 1 (c) with two-sided
error, is at most the query complexity of testing its induced oriented triangle with two-sided error.

8 Concluding Remarks and Open Problems

• We have shown that for any digraph H, the property PH of being H-free is strongly testable. In
order to prove this result we have first proved a regularity lemma for digraphs, which generalizes
Szemerédi’s regularity lemma for undirected graphs. This lemma might prove useful for tackling
other problems as well. We also gave a precise characterization of all digraphs H for which PH

is easily testable, and showed that the same characterization applies to two-sided error ε-testers
as well, where here the complexity is polynomial in 1/ε if and only if it is Θ(1/ε). We have
addressed the case when H is an oriented tree, and gave an optimal one-sided error ε-tester
with query complexity Θ(1/ε) for this case.

• It is not difficult to generalize Theorem 2 to the case of disconnected digraphs. Let H be a
disconnected graph whose components we denote by H1, . . . ,Ht, and whose cores we denote by
K1, . . . , Kt. Note that if G is ε-far from being H-free, then for all i, it is also ε-far from being
Hi-free. If K1, . . . , Kt are all either trees or 2-cycles, then running the testers for H1, . . . , Ht

will find disconnected copies of each of H1, . . . ,Ht, and therefore a copy of H. This test will
obviously have query complexity polynomial in 1/ε, and therefore in this case PH is easily
testable. If at least one of the cores is neither a tree nor a 2-cycle then the core of H is neither
a tree nor a 2-cycle, hence, it follows directly from the proof of Theorem 2 part (iii) (note that
Lemma 6.4 and the proof of Theorem 2 part (iii) do not assume that H is connected) that PH

is not easily testable. Note finally that the above applies also to the case of two-sided error,
thus Theorem 4 can also be extended to the case of disconnected digraphs.

• An intriguing problem is that of estimating the best possible (one-sided and two-sided) query
complexity of the property P ∗

H of not containing any induced copy of a fixed digraph H. Very
recently we have proved that for any fixed H with at least 5 vertices, the query complexity of
any one-sided or two-sided ε-tester for P ∗

H is not polynomial in 1/ε. The details appear in a
subsequent paper [11]. These results have been further extended to hypergraphs is [12].
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• Hell, Nesetril and Zhu proved in [28] that the problem of deciding if the core of a given input
digraph is a tree is NP -complete. This, together with Theorem 2 imply the following.

Proposition 8.1 The problem of deciding whether for a given digraph H, the property PH is
easily testable, is NP -complete.

Therefore, there is no polynomially testable characterization of the digraphs H for which PH

is easily testable (though for every small, fixed H, Theorem 2 can be easily used to decide if
H is such a digraph). One interesting class of digraphs for which the problem is solvable in
polynomial time, is the class of oriented cycles. An oriented cycle is balanced if the number
of forward edges is equal to the number of backward edges. It is not difficult to see that if
an oriented cycle C is not balanced, then the core of C is C itself, (see, e.g., Figure 1 (b)).
However the converse is not true, and while there are balanced cycles whose core is a path,
(see, e.g., Figure 1 (a)), there are also balanced cycles C whose core is C itself, (see, e.g., Figure
1 (d)). It is therefore interesting to observe that the problem of deciding whether the core of
a given cycle C is C itself or an induced path in it, can be solved in polynomial time using
dynamic programming. The details are left to the reader.

A digraph H is balanced iff every oriented cycle in it is balanced. It is not difficult to see that
a digraph H is balanced iff there is a homomorphism mapping H into an oriented tree, and
this happens iff there is a homomorphism mapping H into a directed path. It thus follows, by
Theorem 2, that if H is not balanced then PH cannot be tested by a polynomial number of
queries (but the converse is not true in general.)

• Lemma 5.1 implies that if G is ε-far from satisfying PH , and the core of H is a tree K of size k,
then G contains Ω(εknk) copies of K. Having this, we could have used results from the theory
of supersaturated graphs and hypergraphs (see [21]) to conclude that there exists a one-sided
error ε-tester for PH which uses a sample of size O((1/ε)O(hk)). (An alternative way to deduce
this, is to change the statement of Lemma 7.1 and prove that G contains c(γ)nh copies of H for
some constant c(γ), and not just one). However, our proof of Theorem 2 part (ii) given here
provides a far more efficient ε-tester that uses a sample of size only O((1/ε)h2

). By applying
the techniques of [21] we can show that for every fixed digraph H with h vertices whose core
K (which is not necessarily a tree) has k vertices, any digraph on n vertices containing at least
δnk copies of the core K, contains at least Ω(δO(hk)nh) copies of H.

• Lemma 5.1 implies that if G is ε-far from satisfying PH , and H is a tree of size h, then G

contains Ω(εhnh) copies of H. This can be seen to be essentially optimal by considering an
appropriate random digraph. We omit the details.

As there are many copies of H, we conclude that sampling h vertices finds a copy of H with
probability Ω(εh). It follows that one can test PH simply by sampling Θ((1/ε)h) samples of
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h vertices each. However, in Theorem 3 we show that a sample of size O(1/ε) suffices. The
reason is that sampling h vertices in O((1/ε)h) rounds fails to take into account all the h-tuples
that lie in the sample. In a sample of size Θ(1/ε) there are Θ((1/ε)h) subsets of size h, and
it turns out that if we consider all of them, we get essentially the same result as sampling
Θ((1/ε)h) subsets of size h. In general, showing that if G is ε-far from being H-free then it
contains f(ε)nh copies of H, and then designing a ε-tester that samples 1/f(ε) subsets of size
h, usually fails to achieve the query complexity of more efficient ε-testers. In many cases, the
difference can be substantial, as in our case. In addition, our proof of a test that uses a sample
of size O(1/ε) gives a somewhat different proof that for any oriented tree H with h vertices, a
digraph that is ε-far from being H-free, contains Ω(εhnh) copies of H.

• Testing H-freeness for H being the complete bipartite undirected graph Ks,t, is another ex-
ample of the above mentioned phenomenon. In [1], an ε-tester for Ks,t-freeness which uses a
sample of size O((1/ε)st) has been established, simply by showing that the graph must contain
Ω(εstns+t) copies of Ks,t. Our method here improves this result and shows that a sample of size
O((1/ε)min(s,t)) suffices. This nearly matches a lower bound of Ω((1/ε)min(s,t)/2) which follows
by considering an appropriate random graph (see the full version of [9].)

Acknowledgements: We would like to thank one of the referees for a thorough and careful reading
of this paper, as well as for valuable comments which significantly improved the presentation of our
results.
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