
When are Two Rewrite Systems

More than None??

Nachum Dershowitz

Department of Computer Science, University of Illinois
Urbana, IL 61801, USA

nachum@uiuc.edu

Abstract. It is important for programs to have modular correctness
properties. We look at non-deterministic programs expressed as term-
rewriting systems (which compute normal forms of input terms) and
consider the case where individual systems share constructors, but not
de�ned symbols. We present some old and new su�cient conditions under
which termination (existence of normal forms, regardless of computation
strategy) and conuence (uniqueness) are preserved by such combina-
tions.

1 Introduction

Rewriting is an important model of computation, with its clean syntax and
simple semantics. Rewriting is also an important tool for equational reasoning in
automated theorem proving and symbolic computation systems. Recent surveys
of rewriting include [Avenhaus and Madlener, 1990; Dershowitz and Jouannaud,
1990; Klop, 1992; Plaisted, 1993].

A rewrite system is a set of oriented equations, called (rewrite) rules. We
use an arrow instead of an equal sign, as in append (nil ; x) ! x, to distinguish
the left side, append (nil ; x), from the right side, x. A rule l ! r is applied to
a term t by �nding a subterm s of t that matches the left side l (meaning that
there exists a substitution � of terms for variables in l such that s = l�) and
replacing s with the corresponding instance (r�) of the rule's right side. We
write t ! t0 to indicate that the result of the replacement is t0. One computes
with rewrite systems by repeatedly, and nondeterministically, applying rules to
rewrite an input term until a normal form (unrewritable term) is obtained. When
the normal form is unique, it can be taken as the value of the initial term.

Two of the most central properties of relevance for rewrite systems are conu-
ence (the Church-Rosser property; see Section 2)|which implies that there can
be at most one normal form for any term, and termination (strong normalization
in lambda calculus parlance; see Section 3)|which implies the existence of at
least one normal form. A conuent and terminating system is called convergent

? This research was supported in part by the National Science Foundation under grants
INT-95-07248 and CCR-97-00070 and was performed while on leave at the Hebrew
University, Jerusalem, Israel and at �Ecole Normale Sup�erieure de Cachan, France.

(or complete or canonical) and de�nes exactly one normal form for each input
term (see Section 4).

If rewriting is to be recommended as a practical programmingparadigm, then
it is important that one at least be able to combine two independent rewrite
systems into one, and still maintain the desired properties for the combined
system. Unfortunately, this is not always the case, but|as we will see|in certain
more or less reasonable situations one can obtain such modularity.

For example, suppose one has a red system (over a red alphabet consisting
of the de�ned symbol +)

x+ 0 ! x

x+ s(y) ! s(x + y)

for adding two numbers (in successor notation, with constructors s and 0) and
a blue system (with blue de�ned symbol append)

append (nil ; x) ! x

append (cons (x; y); z) ! cons(x; append (y; z))

for appending two lists (using the list constructors cons and nil). We would like
to be certain that the union of these two unrelated programs is terminating and
conuent, just as its constituent systems are. That way, we could be certain that
terms containing a mixture of red and blue symbols, such as

append (cons(s(0) + s(0); nil); cons(s(s(0)) + s(0); nil)

have unique normal forms. (For the purposes of this exposition, a de�ned symbol
is any function symbol or constant that appears at the head of a left side and a
constructor is any other non-variable symbol appearing in the rules.) We would
like modularity to hold even in the presence of additional rules, like

0 + x ! x

append (append (x; y); z) ! append (x; append (y; z))

The above red and blue systems have no symbols at all in common. In most
practical situations, one would want to be able to combine the blue system with
a system like:

interleave(nil ; x) ! x

interleave(cons (x; y); z) ! cons(y; interleave(x; z))

that interleaves, rather than concatenates, two lists. Here the two list construc-
tors appear in both programs.

In our de�nition of a rewrite rule we imposed no restrictions on the appear-
ance of variables: Both x � 0 ! 0 and 0 ! x � 0 are legitimate rewrite rules.
Applying the latter to a term containing the constant 0 results in the replace-
ment of that occurrence of 0 with any term of the form u � 0 (u can be any
term at all). A system having a rule with a variable on the right that is not also

on the left, is nonterminating and likely nonconuent. Similarly, a priori a rule
could have just a variable on the left (for example, x ! x� 1), in which case it
is nonterminating. Since we are interested here in combinations of conceptually
independent programs, we must rule out such cases from our discussions (as is
indeed the convention of some authors, including [Huet, 1980]): a rule with a
new variable on the right could introduce arbitrary nesting of variegated sym-
bols; a rule with a variable for left side would apply at all positions of all terms
and interfere with any other intended computation step. Accordingly, we de�ne
constructor-sharing pairs of rewrite systems as including only rules with nonvari-
able left sides and no new right side variables and for which all function symbols
that appear at the top of the left side of a rule of one system are prohibited from
also appearing at the top left of a rule in the conjoined system.

In the following sections, we summarize some of what is known about
constructor-sharing combinations, and sketch some new results. Properties other
than conuence and termination, as well as (hierarchical) combinations that
share more than constructors, lie beyond the scope of this paper.

2 Conuence

The rewrite relation on terms, for a given system, is denoted by!, its reexive-
transitive closure, called derivability, is !�, and $� is its reexive-symmetric-
transitive closure, called convertibility. A system (or indeed any binary relation)
is conuent if s; t!� v for some v, whenever if u !� s; t. Conuence is equivalent
to the Church-Rosser property: s; t!� v whenever s $� t.

The conuence of unions of conuent relations was considered early on in
[Hindley, 1964; Rosen, 1973; Staples, 1975].

In the following circumstances, it is known that the union of two conuent
systems is conuent:

(a) The systems are both left-linear (that is, no variable appears more than once
on the left side) [Raoult and Vuillemin, 1980].

(b) There are no shared constructors [Toyama, 1987b].
(c) Both systems are bright (meaning that the right-hand side of each rule is a

de�ned symbol, not a variable or constructor) [Ohlebusch, 1994a].
(d) Each system is normalizing (in the sense that every term has at least one

normal form) [Ohlebusch, 1994a].
(e) One system is terminating and left-linear and the other is bright [Dershowitz,

1997].

(This list and those in the sequel omit some known conditions that involve
undecidable properties of the union.)

The necessity of these conditions may be seen from the following standard
example [Huet, 1980]:

g(x; x) ! 0
g(x; c(x)) ! 1

a ! c(a)
(A)

The upper part is not left-linear; the lower is not normalizing; c is a shared
constructor; neither is bright.

A careful analysis of why modularity fails [Dershowitz et al., 1997] shows
that at the crux of the problem lie certain instances s� and t� of terms s and t

appearing in left sides of one system such that t� contains s� as a subterm, but
no other de�ned symbols. If s� $� t� holds in the union, but not in the one
system alone, then conuence is not guaranteed. The above results follow from
this observation.

3 Termination

A rewrite system (or any binary relation) is terminating if there are no in�nite
derivations t1 ! t2 ! � � �.

Modularity of termination was considered in [Dershowitz, 1981].

In the following circumstances, it is known that the union of two constructor-
sharing terminating systems is terminating:

(a) One system is left-linear; the other is right linear (no variable appears more
than once on the right side) and bright [Bachmair and Dershowitz, 1986].

(b) The systems are each �nitely-branching (no term rewrites in one step to in-
�nitely many terms) and remain terminating when combined with the (non-
conuent, nonbright) system fh(x; y) ! x; h(x; y) ! yg (for new function
symbol h) [Gramlich, 1994].

(c) The systems do not share constructors and each remains terminating when
combined with fh(x; y) ! x; h(x; y) ! yg (for new function symbol h)
[Ohlebusch, 1994b].

(d) Both systems bright [Gramlich, 1994; Ohlebusch, 1994b].

(e) The systems are both non-duplicating (that is, each rule's right side contains
no more occurrences of any variable than does the left) [Dershowitz, 1995;
Ohlebusch, 1994b].

(f) One of the systems is both bright and non-duplicating [Dershowitz, 1995;
Ohlebusch, 1994b].

The necessity of most of these conditions can be seen from the following
nonterminating union [Toyama, 1987a]:

g(x; y) ! x

g(x; y) ! y

f(0; 1; x) ! f(x; x; x)
(B)

Its upper half is not bright; its lower half duplicates x, is not right linear, and is
nonterminating when conjoined with the rules for h.

4 Convergence

A convergent system is one that is both terminating and conuent. Conuence
of the union follows from termination of the union by Knuth's Critical Pair
Lemma [Knuth and Bendix, 1970], so one needs to �nd conditions under which
termination is preserved for conuent systems. Modularity of convergence was
investigated in [Bidoit, 1981].

In the following circumstances, it is known that the union of two constructor-
sharing convergent systems is convergent:

(a) For each system no left side uni�es with a proper subterm of any left
side (with variables of the two sides considered disjoint) [Gramlich, 1992;
Dershowitz, 1995].

(b) They have no shared constructors and both are left-linear [Toyama et al.,
1995].

(c) One is constructor-based (proper subterms of left sides do not contain de�ned
symbols) and left-linear [Dershowitz, 1997].

The case when both are constructor-based [Middeldorp and Toyama, 1993] fol-
lows from (a).

Even without shared constructors, modularity fails in general (as seen, for
example, from the following nonterminating combination due to [Drosten, 1989]):

g(x; x; y) ! y

g(x; y; y) ! x

f(a; b; x) ! f(x; x; x)
f(x; y; z) ! 0

a ! 0
b ! 0

(C)

The upper part is not left-linear; the lower part is not constructor-based and a

and b appear as proper subterms on its left.

If the union is nonterminating, then there is an in�nite derivation with min-
imal rank (alternation of colors of symbols along a path from root to leaf) with
in�nitely many rewrites in the cap (topmost maximal monochrome context).
Thus, subterms of lesser rank are terminating. To show termination of the union,
we need to �nd a transformation of the alien terms (subterms below the cap)
such that a rewrite in the cap can be mirrored by a rewrite of transformed
terms and such that a rewrite below the cap does not a�ect the transformation.
Variations on this approach lead to the above results. Using the idea of [Mar-
chiori, 1995] for proving (b), one can extend the modularity of conuence to
some constructor-sharing unions of left-linear systems.

References

[Avenhaus and Madlener, 1990] J�urgen Avenhaus and Klaus Madlener. Term rewrit-
ing and equational reasoning. In R. B. Banerji, editor, Formal Techniques in Arti�cial
Intelligence: A Sourcebook, pages 1{41. Elsevier, Amsterdam, 1990.

[Bachmair and Dershowitz, 1986] Leo Bachmair and Nachum Dershowitz. Commuta-
tion, transformation, and termination. In J. H. Siekmann, editor, Proceedings of the
Eighth International Conference on Automated Deduction (Oxford, England), volume
230 of Lecture Notes in Computer Science, pages 5{20, Berlin, July 1986. Springer-
Verlag.

[Bidoit, 1981] Michel Bidoit. Une m�ethode de pr�esentation de types abstraits: Appli-
cations. PhD thesis, Universit�e de Paris-Sud, Orsay, France, June 1981. Rapport
3045.

[Dershowitz and Jouannaud, 1990] Nachum Dershowitz and Jean-Pierre Jouannaud.
Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, volume B: Formal Methods and Semantics, chapter 6, pages 243{320. North-
Holland, Amsterdam, 1990.

[Dershowitz et al., 1997] Nachum Dershowitz, Maribel Fern�andez, and Jean-Pierre
Jouannaud. Modular conuence revisited: The constructor-sharing case, 1997. In
preparation.

[Dershowitz, 1981] Nachum Dershowitz. Termination of linear rewriting systems (pre-
liminary version). In Proceedings of the Eighth International Colloquium on Au-
tomata, Languages and Programming (Acre, Israel), volume 115 of Lecture Notes in
Computer Science, pages 448{458, Berlin, July 1981. European Association of The-
oretical Computer Science, Springer-Verlag.

[Dershowitz, 1995] Nachum Dershowitz. Hierarchical termination. In N. Dershowitz
and N. Lindenstrauss, editors, Proceedings of the Fourth International Workshop on
Conditional and Typed Rewriting Systems (Jerusalem, Israel, July 1994), volume 968
of Lecture Notes in Computer Science, pages 89{105, Berlin, 1995. Springer-Verlag.

[Dershowitz, 1997] Nachum Dershowitz. Innocuous constructor-sharing combinations.
In H. Comon, editor, Proceedings of the Eighth International Conference on Rewrit-
ing Techniques and Applications (Sitges, Spain), number 1232 in Lecture Notes in
Computer Science, pages 203{216, Berlin, June 1997. Springer-Verlag.

[Drosten, 1989] K. Drosten. Termersetzungssysteme. PhD thesis, Universitat Passau,
Passau, Germany, 1989. Informatik Fachberichte 210, Springer-Verlag (Berlin).

[Gramlich, 1992] Bernhard Gramlich. Relating innermost, weak, uniform and modular
termination of term rewriting systems. In A. Voronkov, editor, Proceedings of the
Conference on Logic Programming and Automated Reasoning (St. Petersburg, Rus-
sia), volume 624 of Lecture Notes in Arti�cial Intelligence, pages 285{296, Berlin,
July 1992. Springer-Verlag.

[Gramlich, 1994] Bernhard Gramlich. Generalized su�cient conditions for modular
termination of rewriting. Applicable Algebra in Engineering, Communication and
Computing, 5:131{158, 1994.

[Hindley, 1964] J. Roger Hindley. The Church-Rosser Property and a Result in Com-
binatory Logic. PhD thesis, 1964.

[Huet, 1980] G�erard Huet. Conuent reductions: Abstract properties and applications
to term rewriting systems. J. of the Association for Computing Machinery, 27(4):797{
821, October 1980.

[Klop, 1992] Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, vol-
ume 2, chapter 1, pages 1{117. Oxford University Press, Oxford, 1992.

[Knuth and Bendix, 1970] Donald E. Knuth and P. B. Bendix. Simple word problems
in universal algebras. In J. Leech, editor, Computational Problems in Abstract Alge-
bra, pages 263{297. Pergamon Press, Oxford, U. K., 1970. Reprinted in Automation
of Reasoning 2, Springer-Verlag, Berlin, pp. 342{376 (1983).

[Marchiori, 1995] Massimo Marchiori. Modularity of completeness revisited. In Pro-
ceedings of the Sixth International Conference on Rewriting Techniques and Applica-
tions (Kaiserslautern, Germany), volume 914 of Lecture Notes in Computer Science,
pages 2{10, Berlin, April 1995. Springer-Verlag.

[Middeldorp and Toyama, 1993] Aart Middeldorp and Yoshihito Toyama. Complete-
ness of combinations of constructor systems. J. Symbolic Computation, 15:331{348,
1993.

[Ohlebusch, 1994a] Enno Ohlebusch. On the modularity of conuence of constructor-
sharing term rewriting systems. In S. Tison, editor, Proceedings of the Nineteenth
International Colloquium on Trees in Algebra and Programming (Edinburgh, UK),
volume 787 of Lecture Notes in Computer Science, pages 262{275, Berlin, April 1994.
Springer-Verlag.

[Ohlebusch, 1994b] Enno Ohlebusch. On the modularity of termination of term rewrit-
ing systems. Theoretical Computer Science, 136(2):333{360, December 1994.

[Plaisted, 1993] David A. Plaisted. Term rewriting systems. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence and
Logic Programming, volume 4, chapter 2. Oxford University Press, Oxford, 1993. To
appear.

[Raoult and Vuillemin, 1980] Jean-Claude Raoult and Jean Vuillemin. Operational
and semantic equivalence between recursive programs. J. of the Association for
Computing Machinery, 27(4):772{796, October 1980.

[Rosen, 1973] Barry K. Rosen. Tree-manipulating systems and Church-Rosser theo-
rems. J. of the Association for Computing Machinery, 20(1):160{187, January 1973.

[Staples, 1975] John Staples. Church-Rosser theorem for replacement systems. In J. N.
Crossley, editor, Algebra and Logic: 1974 Summer Research Institute of the Australian
Mathematical Society, volume 450 of Lecture Notes in Mathematics, pages 291{307,
Berlin, West Germany, 1975. Springer-Verlag.

[Toyama et al., 1995] Yoshihito Toyama, Jan Willem Klop, and Hendrik Pieter Baren-
dregt. Termination for direct sums of left-linear complete term rewriting systems. J.
of the Association for Computing Machinery, 42(6):1275{1304, November 1995.

[Toyama, 1987a] Yoshihito Toyama. Counterexamples to termination for the direct
sum of term rewriting systems. Information Processing Letters, 25:141{143, 1987.

[Toyama, 1987b] Yoshihito Toyama. On the Church-Rosser property for the direct
sum of term rewriting systems. J. of the Association for Computing Machinery,
34(1):128{143, January 1987.

