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1 INTRODUCTION

Equations are ubiquitous in mathematics and the sciences. Sometimes one tries to determine if an identity
follows logically from given axioms; other times, one looks for solutions to a given equation. These reason-
ing abilities are also important in many computer applications, including symbolic algebraic computation,
automated theorem proving, program speci�cation and veri�cation, and high-level programming languages
and environments.

Rewrite systems are directed equations used to compute by repeatedly replacing subterms of a given
formula with equal terms until the simplest form possible is obtained. The idea of simplifying expressions
has been around as long as algebra has. As a form of computer program, rewrite systems made their
debut in [Gorn, 1967]; many modern programs for symbolic manipulation continue to use rewrite rules for
simpli�cation in an ad hoc manner. As a formalism, rewrite systems have the full power of Turing machines
and may be thought of as non-deterministic Markov algorithms over terms, rather than strings. (Regarding
Markov algorithms, see, e.g. [Tourlakis, 1984].) The theory of rewriting is in essence a theory of normal
forms; to some extent it is an outgrowth of the study of Church's Lambda Calculus and Curry's Combinatory
Logic.

To introduce some of the central ideas in rewriting, we consider several variations on the \Co�ee Can
Problem" (attributed to Carel Scholten in [Gries, 1981]). Imagine a can containing co�ee beans of two
varieties, white and black, arranged in some order. Representing the contents of the can as a sequence of
bean colors, e.g.

white white black black white white black black;

the rules of our �rst game are as follows:

black white ! black
white black ! black
black black ! white

This set of rules is an example of a rewrite system. Each rule describes a legal move: the �rst two state
that, at any stage of the game, the white bean of any adjacent pair of di�erent beans may be discarded; the
last rule states that two adjacent black beans may be replaced by one white one (an unlimited supply of
white beans is on hand). For example, the following is a possible sequence of moves (the underlined beans
participate in the current move):

white white black black white white black black
white white black black white black black

white white white white black black
white white white black black

white white black black
white black black

black black
white

The object of this game is to end up with as few beans as possible. It is not hard to see that with an odd
number of black beans the game will always end with one black bean, since the \parity" of black beans is
unchanging. Played right (always keeping at least one black bean around), an even (non-zero) number of
black beans leads to one white bean, but other pure-white results are also possible. For instance, applying
the third rule right o� to both pairs of black beans leaves six white beans.

By adding an additional rule, the above game may be modi�ed to always end in a single bean:

black white ! black
white black ! black
black black ! white
white white ! white
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What is di�erent about this new game is that one of the rules applies to any can containing more than one
bean. What is interesting is that the outcome of the game is completely independent of the choice of which
move is made when. To establish this, an analysis of the di�erent possible divergences helps. The order
in which moves at non-overlapping locations are made is immaterial, since whichever moves were not taken
can still be taken later. The critical cases occur when the possible moves overlap and making one precludes
making the other. For example, from white black black, either black black or white white can result. The
point is that these two situations can both lead to the same single-white state. The same is true for other
overlapping divergences. With this independence in mind, it is a trivial matter to predict the deterministic
outcome of any game, by picking a sequence amenable to a simple analysis. Indeed, any initial state with
an even number of black beans must now end in one white one. (The \semantic" argument given in [Gries,
1981], based on the invarying parity of black beans, requires some insight, whereas the above analysis is
entirely mechanical, as we will see later in this chapter.)

It is obvious that neither of the above games can go on forever, since the number of beans is reduced
with each move. A potentially much longer, but still �nite, game is:

black white ! white white white black
white black ! black
black black ! white white white white
white white ! white

The new rules have the same end-e�ect as the original ones: no matter how often a bean-increasing move is
made, in the �nal analysis the can must be emptied down to one bean.

Finally, we consider a variant (Gries' original problem) in which the rules apply to any two (not necessarily
adjacent) beans. The new rules are

black : : : white ! black : : :
white : : : black ! black : : :
black : : : black ! white : : :
white : : : white ! white : : :

where the ellipsis on the right refers to the same beans as covered by its counterpart on the left. The new
rules, in e�ect, allow a player to \shake" the can prior to making a move. Again, it can be shown that the
outcome is uniquely determined by the initial setup and is, consequently, the same as that of the previous
two games.

The �nal result of an unextendible sequence of rule applications is called a \normal form." Rewrite
systems de�ning at most one normal form for any input term can serve as functional programs or as inter-
preters for equational programs [O'Donnell, 1977a]. When computations for equal terms always terminate
in a unique normal form, a rewrite system may be used as a non-deterministic functional program [Goguen-
Tardo, 1979]. Such a system also serves as a procedure for deciding whether two terms are equal in the
equational theory de�ned by the rules, and, in particular, solves the \word problem" for that theory. Knuth
[Knuth-Bendix, 1970] devised an e�ective test (based on critical overlaps) to determine for any given termi-
nating system if, in fact, all computations converge to a canonical form, regardless of the non-deterministic
choices made. In that seminal paper, it was also demonstrated how failure of the test (as transpires for
the �rst Co�ee Can game) often suggests additional rules that can be used to \complete" a non-convergent
system into a convergent one. The discovery [Fay, 1979] that convergent rewrite systems can also be used
to enumerate answers to satis�ability questions for equational theories led to their application [Dershowitz,
1984] within the logic programming paradigm.

Rewriting methods have turned out to be among the more successful approaches to equational theorem
proving. In this context, completion is used for \forward reasoning," while rewriting is a form of \backward
reasoning." Completion utilizes an ordering on terms to provide strong guidance during forward reasoning
and to direct the simpli�cation of equations. Besides the use of convergent systems as decision procedures,
Lankford [1975] proposed that completion-like methods supplant paramodulation for equational deduction
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within resolution-based theorem provers; later, Hsiang [1982] showed how a variant of completion can be
used in place of resolution for (refutational) theorem proving in �rst-order predicate calculus. Although
completion often generates an in�nite number of additional rules, and|at the same time|deletes many old
rules, Huet [1981] demonstrated that \fairly" implemented completion serves as a semi-decision procedure
for the equational theory de�ned by the given equations when it does not abort (something it might be forced
to do on account of equations that cannot be directed without loss of termination). Lankford's procedure
paramodulates to circumvent failure of completion. Rewriting techniques have also been applied [Musser,
1980] to proving inductive theorems by showing that no contradiction can result from assuming the validity
of the theorem in question.

In the next two sections, we take a brief look at the syntax and semantics of equations from the algebraic,
logical, and operational points of view. To use a rewrite system as a decision procedure, it must be convergent;
this fundamental concept is studied in Section 4 as an abstract property of binary relations. To use a rewrite
system for computation or as a decision procedure for validity of identities, the termination property is
crucial; basic methods for proving termination are presented in Section 5. Section 6 is devoted to the
question of satis�ability of equations. Then, in Section 7, we return to the convergence property as applied
to rewriting. The completion procedure, its extensions, re�nements, and main uses, are examined in Section
8. Brief mention of variations on the rewriting theme is made in the �nal section.

1.1 Further Reading

Previous surveys of term rewriting include [Huet-Oppen, 1980; Buchberger-Loos, 1982; Jouannaud-Lescanne,
1987; Klop, 1987].

2 SYNTAX

Algebraic data types are an important application area for rewrite-based equational reasoning. In the
abstract approach to data speci�cation, data are treated as abstract objects and the semantics of functions
operating on data are described by a set of constraints. When constraints are given in the form of equations,
a speci�cation is called algebraic [Guttag, 1976]. In this section, we talk about the syntax of equations and of
equational proofs. As we will see, by turning equations into left-to-right \rules", a useful concept of \direct"
proof is obtained.

2.1 Terms

Suppose we wish to de�ne the standard stack operations, top and pop, as well as an operation alternate
that combines two stacks. Stacks of natural numbers can be represented by terms of the form
push(s1; push(s2; : : : ; push(sn;�) : : :)), where � is the empty stack and the si denote representations of
natural numbers, 0, succ(0), succ(succ(0)), and so on. The precise syntax of these representations can be
given in the following way:

Zero = f0g
Nat = Zero [ succ(Nat)

Empty = f�g
Stack = Empty [ push(Nat; Stack)

The left sides of these equations name sets of di�erent kinds of terms. An expression like succ(Nat) denotes
the set of all terms succ(s), with s 2 Nat. The symbols 0, succ, �, and push, used to build data, are called
\constructors;" any term built according to these rules is a constructor term.

To specify the desired stack operations, we must also de�ne the syntax of non-constructor terms:
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top : Stack ! Nat
pop : Stack ! Stack

alternate : Stack � Stack ! Stack

Then we give semantics to the new functions by constraining them to satisfy the following set of equations:

top(push(x; y)) = x
pop(push(x; y)) = y
alternate(�; z) = z

alternate(push(x; y); z) = push(x; alternate(z; y))

(where x, y, and z are variables ranging over all data of the appropriate type). Inverses of constructors, like
top and pop, are called selectors. With these equations, it can be shown, for example, that

alternate(push(top(push(0;�));�); pop(push(succ(0);�))) = push(0;�):

A speci�cation is said to be \su�ciently complete" if, according to the semantics, every term is equal to a
term built only from constructors; the above operations are not well-de�ned in this sense, since terms like
pop(�) are not equal to any constructor term. (See Section 3.2.)

In general, given a (denumerable) set F = [n�0Fn of function symbols|called a (�nitary) vocabulary or
signature|and a (denumerable) set X of variable symbols, the set of (�rst-order) terms T (F ;X ) over F and
X is the smallest set containing X such that f(t1; : : : ; tn) is in T (F ;X ) whenever f 2 Fn and ti 2 T (F ;X )
for i = 1; : : : ; n. The stack example uses F0 = f0;�g, F1 = ftop; pop; succg, F2 = fpush; alternateg, and
X = fx; y; zg. The syntax of the stack example also di�erentiates between terms of type Nat and of type
Stack. Categorizing function symbols, variables, and terms into classes, called sorts, can be very helpful
in practice; from now on, however, we will suppose that there is only one, all-inclusive sort. All concepts
developed here can be carried over to the many-sorted case, as will be sketched in the Section 9.

Each symbol f in F has an arity (rank) which is the index n of the set Fn to which it belongs. (We
will assume that the Fn are disjoint, though \varyadic" vocabularies pose little problem.) In a well-formed
term, each symbol of arity n has n immediate subterms. Elements of arity zero are called constants, of
which we will always make the (sometimes critical) assumption that there is at least one constant. Terms in
T (F0 [F1;X ) are called monadic; they are \words" spelled with unary symbols (from F1) and ending in a
constant (from F0) or variable (from X ). Variable-free terms are called ground (or closed); the set T (F ; ;)
of ground terms will be denoted by G(F). Note that G(F) is non-empty by the previous assumption. We
will often use T to refer to a set of terms T (F ;X ), with F and X left unspeci�ed, and G to refer to the
corresponding set of ground terms. Occasionally, we use pre�x or post�x notation for F1 and in�x for F2.

A term t in T (F ;X ) may be viewed as a �nite ordered tree, the leaves of which are labeled with variables
(from X ) or constants (from F0) and the internal nodes of which are labeled with function symbols (from
F1 [F2 [ � � �) of positive arity, with outdegree equal to the arity of the label. A position within a term may
be represented|in Dewey decimal notation|as a sequence of positive integers, describing the path from the
outermost, \root" symbol to the head of the subterm at that position. By tjp, we denote the subterm of t
rooted at position p. For example, if t = push(0; pop(push(y; z))), then tj2:1 is the �rst subterm of t's second
subterm, which is push(y; z). Positions are often called occurrences; we will use this latter denomination
to refer, instead, to the subterm tjp. We write t � s to mean that s is a subterm of t and also write t[s]
to indicate that s occurs within t. We speak of position p as being above position q in some term t if p
(represented as a sequence of numbers) is a pre�x of q, i.e. if occurrence tjq is within tjp. A subterm of t is
called proper if it is distinct from t.

Reasoning with equations requires replacing subterms by other terms. The term t with its subterm tjp
replaced by a term s is denoted by t[s]p. We refer to any term u that is the same as t everywhere except
below p, i.e. such that u[s]p = t, as the context within which the replacement takes place; more precisely, a
context is a term u with a distinguished position p.

A substitution is a special kind of replacement operation, uniquely de�ned by a mapping from variables
to terms, and written out as fx1 7! s1; : : : ; xm 7! smg when there are only �nitely many variables xi not
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mapped to themselves. Formally, a substitution � is a function from X to T (F ;X ), extended to a function
from T to itself (also denoted � and for which we use post�x notation) in such a way that f(t1; : : : ; tn)�
= f(t1�; : : : ; tn�), for each f (of arity n) in F and for all terms ti 2 T . A term t matches a term s if
s� = t for some substitution �; in that case we write s �� t and also say that t is an instance of s or that
s subsumes t. The relation �� is a quasi-ordering on terms, called subsumption.1 For example, f(z) �� f(a),
and f(z) �� f(f(a)), since z is \less speci�c" than a or f(a). On the other hand, f(x) and f(z) are equally
general; we write f(x)

�

= f(z), where
�

= is the equivalence relation associated with ��, called literal similarity
(�-conversion in �-calculus parlance; renaming, in other circles). Subsumption and the subterm ordering
are special cases of the encompassment quasi-ordering, in which s �� t if a subterm of t is an instance of s.
(Encompassment is called \containment" in [Huet, 1981].) For example, f(z) �� g(f(a)), since f(a) is an
instance of f(z).

The composition of two substitutions, denoted by juxtaposition, is just the composition of the two
functions; thus, if x� = s for some variable x, then x�� = s� . We say that substitution � is at least as
general as substitution �, or that � is an instance of � if there exists a substitution � such that �� = �; we
use the same symbols to denote this quasi-ordering on substitutions, as we used for subsumption of terms.
For example, fx 7! a; y 7! f(a)g �� fx 7! y; y 7! f(z)g

�

= fx 7! z; y 7! f(x)g. Here, and everywhere, we use
the mirror image of a binary relation symbol like �� for its inverse.

In this survey, we will mainly be dealing with binary relations on terms that possess the following
fundamental properties:

De�nition 1. A binary relation! over a set of terms T is a rewrite relation if it is closed both under context
application (the \replacement" or \monotonicity" property) and under substitutions (the \fully invariant
property"). A transitive and irreexive rewrite relation will be called a rewrite ordering.

In other words,! is a rewrite relation if s ! t implies u[s�]p ! u[t�]p, for all terms s and t in T , contexts
u, positions p, and substitutions �. The inverse, symmetric closure, reexive closure, and transitive closure
of any rewrite relation are also rewrite relations.

To �x nomenclature, the letters a through h will be used for function symbols; l, r, and s through w will
denote arbitrary terms; x, y, and z will be reserved for variables; p and q, for positions; lower case Greek
letters, for substitutions. Binary relations will frequently be denoted by arrows of one kind or another. If!
is a binary relation, then  is its inverse, $ is its symmetric closure ( [ !), != is its reexive closure
(! [ =), !� is its reexive-transitive closure (! � � � �� !) and !+ is its transitive closure (! � !�).

2.2 Equations

Replacement leads to the important notion of \congruence:" an equivalence relation � on a set of terms is
a congruence if f(s1; : : : ; sn) � f(t1; : : : ; tn) whenever si � ti for i = 1; : : : ; n. In particular, the reexive-
symmetric-transitive closure $� of any rewrite relation ! is a congruence. Note that rewrite relations and
congruences form a complete lattice with respect to intersection.

Our primary interest is in congruences generated by instances of equations. For our purposes, an equation
is an unordered pair fs; tg of terms. (For other purposes, it is preferable to regard equations as ordered pairs.)
Equations will be written in the form s = t.2 The two terms may contain variables; these are understood
as being universally quanti�ed. Given a (�nite or in�nite) set of equations E over a set of terms T , the
equational theory of E, T h(E), is the set of equations that can be obtained by taking reexivity, symmetry,
transitivity, and context application (or functional reexivity) as inference rules and all instances of equations
in E as axioms. Thus, if E is recursively-enumerable, so are its theorems T h(E). We write E ` s = t if s = t
2 T h(E).

1A quasi-ordering ��_ is any reexive and transitive binary relation; the associated equivalence relation � is the intersection

of ��_ with its inverse; the associated \strict" (i.e. irreexive) partial order � is their di�erence.
2To avoid confusion, authors are frequently forced to use a di�erent symbol in the syntax of equations, instead of the heavily

overloaded \equals sign"|a precaution we choose not to take in this survey.
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A more compact inference system is based on the familiar notion of \replacement of equals for equals"
(a.k.a. Leibniz's Law). We write s $E t, for terms s and t in T , if s has a subterm that is an instance of
one side of an equation in E and t is the result of replacing that subterm with the corresponding instance of
the other side of the equation. Formally, s $E t if s = u[l�]p and t = u[r�]p for some context u, position
p in u, equation l = r (or r = l) in E, and substitution �. It is folk knowledge that E ` s = t i� s $�

E

t, where $�
E is the reexive-transitive closure of $E ; in other words, two terms are provably equal if one

may be obtained from the other by a �nite number of replacements of equal subterms. The relation $E is
the \rewrite" closure of E, when the latter is viewed as a symmetric relation, and $�

E is the congruence
closure of $E , i.e. $�

E is the smallest congruence over T such that l� $�
E r� for all equations l = r in E

and substitutions � over T . We will write [[s]]E for the congruence class of a term s, and denote by T =E the
set of all congruence classes, i.e. the quotient of the set T (F ;X ) of terms and the provability relation $�

E .
A derivation in E is any sequence s0 $E s1 $E � � � $E si $E � � � of applications of equational axioms

in E. A proof in E of an equation s = t is a \justi�ed" �nite derivation s = s0 $E � � � $E sn = t (n �
0), each step si $E si+1 of which is justi�ed by reference to an axiom l = r in E, a position pi in si, and a
substitution �i, such that sijpi = l�i and si+1 = si[r�i]pi . Returning to our stack speci�cation, and letting
E be its axioms, the following is an example of a derivation:

alternate(push(top(push(0; z)); z);�)
$E alternate(push(0; z);�) $E

alternate(push(0; pop(push(succ(y); z)));�)

The �rst step may be justi�ed by the axiom top(push(x; y)) = x, position 1:1, and substitution fx 7! 0; y 7!
zg; the second step, by the axiom pop(push(x; y)) = y (used from right to left), position 1:2, and substitution
fx 7! succ(y); y 7! zg.

2.3 Rewrite Rules

The central idea of rewriting is to impose directionality on the use of equations in proofs. Unlike equations
which are unordered, a rule over a set of terms T is an ordered pair hl; ri of terms, which we write as
l! r. Rules di�er from equations by their use. Like equations, rules are used to replace instances of l by
corresponding instances of r; unlike equations, rules are not used to replace instances of the right-hand side
r. A (�nite or in�nite) set of rules R over T is called a rewrite system, or (more speci�cally) a term-rewriting
system. A system R may be thought of as a (non-symmetric) binary relation on T ; the rewrite closure !R

of this relation describes the e�ect of a left-to-right application of a rule in R.

De�nition 2. For given rewrite system R, a term s in T rewrites to a term t in T , written s !R t, if sjp
= l� and t = s[r�]p, for some rule l! r in R, position p in s, and substitution �.

This is the same as saying that s = u[l�]p and t = u[r�]p, for some context u and position p in u. A subterm
sjp at which a rewrite can take place is called a redex ; we say that s is irreducible, or in normal form, if it
has no redex, i.e. if there is no t in T such that s !R t.

Systems of rules are used to compute by rewriting repeatedly, until, perhaps, a normal form is reached.
A derivation in R is any (�nite or in�nite) sequence t0 !R t1 !R � � � !R ti !R � � � of applications of rewrite
rules in R. The reducibility, or derivability, relation is the quasi-ordering !�

R, i.e. the reexive-transitive
closure of !R. We write s !!

R t if s !�
R t and t is irreducible, in which case we say that t is a normal form

of s. This normalizability relation !!
R is not a rewrite relation, since normalizing a subterm does not mean

that its superterm is in normal form. One says that a rewrite system is normalizing if every term has at
least one normal form.

A ground rewriting-system is one all the rules of which are ground (i.e. elements of G �G); an important
early paper on ground rewriting is [Rosen, 1973]. A string-rewriting system, or semi-Thue system, is one
that has monadic words ending in the same variable (i.e. strings of elements of T (F1; fxg)) as left- and
right-hand side terms; [Book, 1987] is a survey of string rewriting. The (�rst three) Co�ee Can Games can
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be formulated as string-rewriting systems, with white and black as monadic symbols. A left-linear system
is one in which no variable occurs more than once on any left-hand side. (Ground- and string-rewriting
systems are special cases of left-linear systems, with no variable and one variable per term, respectively.)

For our purposes, one of the most essential properties a rewrite system R can enjoy is unique normal-
ization, by which is meant that every term t in T possesses exactly one normal form. The normalizability
relation !!

R for uniquely-normalizing systems de�nes a function, and we denote by R(t) the value of that
function for a term t in T . If all sequences of rewrites lead to a unique normal form, the system will be
called convergent. A rewrite system R is said to be (inter-)reduced if, for each rule l! r in R, the right-hand
side r is irreducible under R and no term s less than l in the encompassment ordering �� is reducible. (For
convergent R, this is equivalent to the standard de�nition [Huet, 1981] which requires that the left-hand side
l not be rewritable by any other rule.) As we will see this, too, is a convenient property. We will reserve
the adjective canonical for reduced convergent systems, though, in the literature, \canonical" is usually
synonymous with \convergent".

Orienting the equations of the stack example gives a canonical rewrite system R:

top(push(x; y)) ! x
pop(push(x; y)) ! y
alternate(�; z) ! z

alternate(push(x; y); z) ! push(x; alternate(z; y))

(That every term has at least one normal form will be shown in Section 5.3; that there can be no more than
one normal form will be shown in Section 7.2.) A derivation is any (�nite or in�nite) chain t1 !R t2 !R

� � � of rewrite steps. An example is:

alternate(push(top(push(0; z)); z);�) !R alternate(push(0; z);�)
!R push(0; alternate(�; z)) !R push(0; z).

The �rst step is an application of the top-push rule at the occurrence top(push(0; z)); the second is an
application of the alternate-push rule, with 0 for x, z for y, and � for z; the third, of alternate(�; z)! z.
Note that an alternative derivation is possible, leading to the same normal form:

alternate(push(top(push(0; z)); z);�) !R push(top(push(0; z)); alternate(�; z))
!R push(top(push(0; z)); z) !R push(0; z).

Operationally, then, rewriting is a non-deterministic computation, with the choice of rule and position left
open. For convergent systems, the choice among possible rewrites at each step does not a�ect the normal
form computed for any given input term.

De�nition 3. A binary relation ! on a set T is terminating if there exists no endless chain t1 ! t2 ! t3
! � � � of elements of T .

(Such relations have sometimes been called Noetherian in the term-rewriting literature|after the alge-
braicist, Emily Noether|though the adjective is ordinarily used to exclude in�nite ascending chains.) Ter-
mination is more than being normalizing, since the latter allows some derivations to be in�nite. A partial
(irreexive) ordering � of a set T is well-founded if there exists no in�nite descending chain t1 � t2 � � � �
of elements of T . Thus, a relation ! is terminating i� its transitive closure !+ is a well-founded ordering.
The importance of terminating relations lies in the possibility of inductive proofs in which the hypothesis is
assumed to hold for all elements t such that s !+ t when proving it for arbitrary s. Induction on terminat-
ing relations, sometimes called \Noetherian induction," is essentially well-founded induction (i.e. trans�nite
induction extended to partial orderings); see, for example, [Cohn, 1981]. We will have occasion to employ
this technique in Sections 4.1 and 8.2.

A rewrite system R is terminating for a set of terms T if the rewrite relation !R over T is terminating,
i.e. if there are no in�nite derivations t1 !R t2 !R � � � of terms in T . When a system is terminating,

7



Figure 1: Joinability properties of relations.

every term has at least one normal form. Note that a terminating system cannot have any rule, like
alternate(y;�)! pop(push(x; y)), with a variable on the right that is not also on the left (since x could, for
example, be top(alternate(y;�))), nor can a left-hand side be just a variable, like z! alternate(�; z). These
two restrictions are often placed a priori on rewrite rules (cf. [Huet, 1980]), something we prefer not to do.
Methods for establishing termination are described in Section 5.

A valley, or rewrite, proof for a system R of an equation s = t takes the form s !�
R v  �

R t, in which
the same term v is reached by rewriting s and t. Here is an example, using the above system:

alternate(push(top(push(0; z)); z);�) alternate(push(0; pop(push(y; z)));�)
!R alternate(push(0; z);�) push(0; alternate(�; pop(push(y; z))))  R

!R push(0; alternate(�; z))  R

With a terminating system of only a �nite number of rules, the search space for rewrite proofs is �nite. Of
course, there is|in general|no guarantee that such a \direct" proof exists for a particular consequence of
the equations represented by R. When that is the case, i.e. when the relation$�

R is contained in!�
R � 

�
R,

the system is called Church-Rosser , after a property in [Church-Rosser, 1936]. See Figure 1(a). Equivalent
properties are de�ned in Section 4 and methods of establishing them are described in Section 7.

2.4 Decision Procedures

One of our main concerns is in decision procedures for equational theories; an early example of such a
procedure for groups is [Dehn, 1911]. Terminating, Church-Rosser rewrite systems are convergent and de�ne
unique normal forms. For a convergent system R to determine provability in its underlying equational theory
(treating its rules as equational axioms), it should have only a �nite number of rules. Then, to decide if s = R
t, one can test if computing the normal forms R(s) and R(t) results in the same term. The Church-Rosser
property means that$�

R =!�
R � 

�
R; termination ensures that!�

R � 
�
R =!!

R � 
!
R; �niteness of R makes

!!
R decidable; and Church-Rosser implies that !!

R de�nes a function R(�). Thus, a system R provides a
decision procedure for the equational theory of a set of axioms E if R is (a) �nite, (b) terminating, (c)
Church-Rosser, and (d) sound and adequate for E. Here, soundness means that the rules of R are contained
in the relation $�

E , and adequacy means that E is contained in $�
R; together, they imply that $�

E = $�
R.
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In our stack example, R is sound and adequate for E; hence, R decides equality in E. In general, a system
R with the properties (a-d) is said to be complete for E.

Given a set of equations E, its word problem is the question whether an arbitrary equation s = t between
two ground terms follows from E. The word problem is, thus, a special case of provability in E for arbitrary
equations. If R is a convergent system for E, its word problem is decidable by reducing s and t to their
R-normal form. Actually, it is enough if R is ground-convergent , that is, if every ground term has a unique
normal form. Many rewriting-system decision procedures are known; perhaps the �rst rewriting-based
decision procedure for a word problem is the one in [Evans, 1951] for \loops". When a rewriting decision
procedure exists, it can be very e�ective. In Section 8, we will elaborate on systematic methods used to
generate convergent systems from given equational axioms.

Of course, not all equational theories can be decided by rewriting|for a variety of reasons. First, some
theories (classes of equations) are not �nitely based ; for such theories there exists no �nite set of axioms from
which all other equations in the theory follow. An example [Taylor, 1979] is the intersection of the theories
(consequences) of the following two semigroups (abbreviating products by juxtaposition and exponentiation):

x(yz) = (xy)z x(yz) = (xy)z
(xyz)2 = x2y2z2 x3y3 = y3x3

x3y3z21z
3
2 = y3x3z21z

3
2

Nor are all �nitely-based equational theories decidable, the �rst counter-examples having been given by
Markov [1947] and Post [1947], in a slightly di�erent context. (See the interesting historical comments at the
end of [Tarski-Givant, 1985].) A prime example of an undecidable equational theory is Combinatory Logic
(with binary in�x symbol \�" and constants S, K, and I):

I � x = x
(K � x) � y = x

((S � x) � y) � z = (x � z) � (y � z)

(see [Curry-Feys, 1958]). Most disconcertingly, there are �nitely-based, decidable theories for which there
can be no rewriting-system decision procedure. For example, no �nite system|even over an enlarged
vocabulary|can rewrite any two terms, equal by commutativity, to the same term [Dershowitz-etal, 1988].
In other words, no term-rewriting system can decide validity in the decidable theory de�ned by the commu-
tativity axiom, x � y = y �x, since that equation, oriented in either direction, gives a non-terminating rewrite
system. Deciding word problems is a somewhat di�erent question, since then one looks only at ground
equations over a �nite vocabulary. But this same example (let F = f0; succ; �g) demonstrates that not all
decidable word problems can be decided by a �nite rewrite system over the same vocabulary; cf. [Klop,
1987]. The following is one of the simple (semigroup) theories with an undecidable word problem given in
[Matijasevic, 1967] (F0 = fa; bg, F2 = f�g, and products are abbreviated as before):

x(yz) = (xy)z
aba2b2 = b2a2ba
a2bab2a = b2a3ba
aba3b2 = ab2aba2

b3a2b2a2ba = b3a2b2a4

a4b2a2ba = b2a4

2.5 Extensions

Happily, rewriting techniques can be adapted to handle some of the more important cases, in which any
orientation of the axioms yields a non-terminating system. The simplest example of a \structural" axiom
requiring special treatment is commutativity: any system containing either x � y ! y � x or y � x ! x � y is
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perforce non-terminating. We describe two techniques for dealing with such axioms, \class rewriting" and
\ordered rewriting."

A (congruence-) class-rewriting system comes in two parts: rules and equations. By R=S we denote the
class system composed of a set R = fli! rig of rewrite rules and a set S = fui$ vig of equations, the
latter written with double-headed arrows to stress their symmetrical usage. Generalizing the notion of term
rewriting, we say that s rewrites to t modulo S, denoted s !R=S t, if s $�

S u[l�]p and u[r�]p $�
S t, for

some context u, position p in u, rule l! r in R, and substitution �. Thus, R is essentially computing in the
quotient set T =S = f[[t]]Sjt 2 T g of S-congruence classes (more precisely,$�

S-congruence classes), rewriting a
term by rewriting any S-equivalent term. Class-rewriting systems were introduced in [Lankford-Ballantyne,
1977a] for permutative congruences, that is, congruences for which each congruence class is �nite. Of great
practical importance are associative-commutative (AC) rewrite systems, where S is an equational system
consisting of associativity and commutativity axioms for a subset of the binary symbols (in F2). The last
Co�ee Can Game can be formulated as an AC system, by using an associative-commutative operator for
adjacency with the four rules of the second game. Then, black white black can rewrite directly to black black
or, via black black white, to white white.

The notions of derivation and normal form extend naturally to class-rewriting systems. We say that
R=S is terminating if !R=S is terminating and that it is Church-Rosser modulo S if $�

R=S is contained
in !�

R=S �$
�
S � 

�
R=S . More generally, any rewrite relation !T is Church-Rosser modulo S if $�

S[T �

!�
T �$

�
S � 

�
T ; see Figure 1(f). For instance, let BA=AC be the following class system (over vocabulary F2

= fand ; xorg and F0 = fF; Tg):

BA AC

and (x; T ) ! x
and (x; F ) ! F and (x; y) $ and (y; x)
and (x; x) ! x and (x; and (y; z)) $ and (and (x; y); z)
xor (x; F ) ! x xor(x; y) $ xor(y; x)
xor (x; x) ! F xor (x; xor(y; z)) $ xor(xor (x; y); z)

and (xor (x; y); z) ! xor(and (x; z); and(y; z))

This system is convergent, i.e. terminating and Church-Rosser modulo AC [Hsiang, 1982]; it computes normal
forms of Boolean-ring expressions that are unique up to permutations under associativity and commutativity.
(The exclusive-or normal form is due to [Zhegalkin, 1927; Stone, 1936].)

The idea, then, is to put equations that cannot be handled by rewriting into S, placing in R only rules
that preserve termination. If R=S is also Church-Rosser modulo S, then s$�

R[S t i� their normal forms are
S-equivalent. For this to work, there are two additional considerations: S-equivalence must be decidable,
and R=S normal forms must be e�ectively computable. The latter requirement does not, however, come
automatically, even if R is �nite and S-equivalence is decidable, since a rule in R is applicable to a term
when any S-equivalent term contains an instance of a left-hand side, whereas S-equivalence classes need be
neither �nite nor computable. Note that a class system R=S cannot be terminating if (R is non-empty and)
S contains an equation with a variable on one side not also on the other, or if it contains an axiom like
idempotency, x � x = x, with a lone variable on one side and more than one occurrence of it on the other.

Even if S-equivalence classes are computable, they may be impractically large, making class-rewriting
prohibitively expensive. These di�culties with R=S are usually circumvented by using a weaker rewrite
relation, introduced in [Peterson-Stickel, 1981]. We denote this relation by!SnR (others have used �!R;S);
under it, a term is rewritten only if it has a subterm that is equivalent to an instance of a left-hand side.
We call !SnR the \extended" rewrite relation for R; our notation is meant to suggest that S-steps are not
applied above the R-step. Formally:

De�nition 4. For given rewrite system R and congruence relation S, the S-extended rewrite relation!SnR

is de�ned by s!SnR t, for two terms s, t in T , i� sjp $�
S l� and t = s[r�]p, for some rule l! r in R, position
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p in s, and substitution �.

The notions of normal-form, etc., are analogous to the previous de�nitions. We say that SnR is Church-
Rosser modulo S if if !SnR is, i.e. any two terms, equal in R [ S, lead to S-equivalent terms via extended
rewriting with SnR.

S-extended rewriting avoids the need to compute S-congruence classes, requiring instead an S-matching
algorithm: We say that a term t S-matches l, if there exists a substitution � such that l� $�

S t. Match-
ing algorithms are known for many theories, including associativity, commutativity, and associativity with
commutativity; see Section 6.2. If R is �nite and S-matching substitutions are computable, then !SnR is
computable, too.

The relation!SnR is a subset of!R=S , and hence does not necessarily render the same normal forms. For
the above system BA=AC, we have and (a; and (a; b)) �!BA=AC and (a; b), but and (a; and(a; b)) 6�!BAnAC

and (a; b). However, it is often the case that by adding certain consequences as new rules, the two relations
can be made to coincide, as shown in [Peterson-Stickel, 1981] for AC, and in [Jouannaud-Kirchner, 1986] for
the general case. When R=S is terminating and SnR is Church-Rosser modulo S, the theory R [ S can be
decided by computing SnR-normal forms and testing for S-equivalence. For example, if BA is augmented
with the two rules, and (x; and(x; y)) ! and (x; y) and xor (x; xor(x; y)) ! y, then AC-extended rewriting
su�ces to compute the normal forms of BA=AC. In Section 4.2, conditions for equivalence of normal forms
are discussed.

An ordered-rewriting systems also comes in two parts: a set of equations and an ordering. Ordered
rewriting does not require that a particular equation always be used from left-to-right. Instead, an equation
may be used in whichever direction agrees with the given ordering on terms. Suppose, for example, that x �y
= y � x is an equation and that a � b is greater than b � a in the ordering. Then, we would use commutativity
to rewrite a � b to the normal form b � a, but not vice-versa.

De�nition 5. Given a set E of equations over a set of terms T and a rewrite ordering (transitive and
irreexive rewrite relation) � over T , a term s in T rewrites to a term t in T according to �, denoted s
!E� t, or just s !� t, if s = u[l�]p, t = u[l�]p and l� � r�, for some context u, position p in u, equation
l = r in E, and substitution �.

This corresponds to considering each instance l� = r� of an equation as a rewrite rule going one way or
the other. Thus, the ordered-rewriting relation !�, is contained in the rewrite relation obtained from the
intersection of the two rewrite relations, $E and �; in particular, s � t if s !� t. The relation !� is
equivalent to the intersection when � is total.

2.6 Further Reading

The standard work on the Lambda Calculus is [Barendregt, 1984]; its role in the semantics of functional
programming is discussed in [Barendregt, 1989]. Evans [1951] and Knuth [Knuth-Bendix, 1970] pioneered
the use of rewrite systems as decision procedures for validity in equational theories. Bledsoe [1977] was an
early advocate of incorporating rewriting techniques in general-purpose theorem provers.

3 SEMANTICS

As is usual in logic, models givemeaning to syntactic constructs. In our case, the models of equational theories
are just algebras, that is, sets with operations on their elements, and provability by equational reasoning
coincides with truth in all algebras. When a rewrite system has the unique normalization (convergence)
property, a term's normal form can be its \meaning". It turns out that the set of irreducible terms of a
convergent system yields an algebra that is \free" among all the algebras satisfying the axioms expressed by
its rules. The free algebra is that model in which the only equalities are those that are valid in all models.
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3.1 Algebras

Let F = [nFn be a signature. An F-algebra A consists of a non-empty domain of values, called the universe
(or carrier, or underlying set), which we also denote A (when feasible, we will use boldface for the algebra
and italics for the corresponding universe), and a familyFA of F-indexed (�nitary) fundamental operations,
such that for every symbol f of arity n in Fn, the corresponding operation fA in FA maps An to A. Since
we presume the existence of at least one constant (in F0), universes will always be non-empty. Given an
assignment � : X !A of values to each of the variables in X , the F-algebra A attaches a meaning to each
term t of T (F ;X ), which is the result of applying the operations corresponding to each function symbol in
t using the values assigned by � for the variables. Let E be a set of equations; an algebra A is a model of
E if, for every equation s = t in E, and for every assignment of values to variables in s and t, the meanings
of s and t are identical. (From now on, we generally omit reference to F and just speak of \algebras".) By
Mod(E) we denote the class of all models of E, each of which is an algebra.

Consider the algebra A whose universe contains two elements, a black co�ee bean and a white one: A
= fblack; whiteg. The algebra has two operations: a unary operation \invert" which turns a white bean
into a black one and vice-versa, and a binary operation \move" which takes two beans and returns a bean
according to the rules of the second Co�ee Can Game of Section 1. It is easy to see that this algebra is a
model of the associative axiom (x � y) � z = x � (y � z), interpreting \�" as \move," since the result of a game
does not depend upon the order of moves. However, interpreting the unary symbol \�" as \invert" and the
identity constant 1 as white does not yield a group, since a black white move gives a black bean, and not
the identity element. To obtain a group (as might be preferred by some mathematicians), we must change
the rules of the game slightly:

black white ! black
white black ! black
black black ! white
white white ! white

This algebra is a model of all three group axioms.
A class K of algebras is a variety if there exists a set E of equations such that K =Mod(E). For example,

though groups are axiomatizable non-equationally by giving one associative operator \�" and a constant 1
satisfying 8x9y(x � y = 1), they may also be axiomatized in the following way:

1 � x = x
x� � x = 1

(x � y) � z = x � (y � z)

Groups are actually \one-based," with the following axiom providing a basis:

x=(((x=x)=y)=z)=(((x=x)=x)=z)) = y

[Higman-Neumann, 1952]. Note that groups de�ned in the latter way give a di�erent variety than the
previous axiomatization, since their signatures di�er; nevertheless, the two equational theories are essentially
the same, since the operations of one are de�nable in terms of the other (in particular, x=y = x�y� and x�y =
x=((x=x)=y)). Rings, commutative rings, and lattices are also varieties; �elds are not. Tarski has endeavored
to equationally axiomatize the foundations of mathematics; see [Tarski-Givant, 1985]. Huet [1985] has shown
that much of category theory is equational.

A mapping� is a homomorphism fromalgebraA to algebraB, if fA(a1; : : : ; an)�= fB(a1�; : : : ; an�), for
all f 2 Fn and ai 2 A. An isomorphism is a bijective homomorphism. Any assignment � : X !B of values
to variables extends in this way to a homomorphism � : T !B by letting f(t1; : : : ; tn)� = fB(t1�; : : : ; tn�).
An equation s = t is valid (or true) in a speci�c algebra B if, for all assignments � of values in B to variables
in s and t, s� and t� represent the same element of B. \Satis�ability" is the dual of validity: an equation
is satis�able in an algebra if it has a solution in that algebra, that is, if there is an assignment of values to
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variables for which both sides yield the same value. Validity of an equation s = t (that is, validity in all
models) is expressed asMod(E) j= s = t, or s =E t for short.

Varieties are characterized in the following algebraic way [Birkho�, 1935]: A class of algebras K is a
variety i� it is closed under Cartesian products, subalgebras, and homomorphic images. That is, a class
K of algebras is a variety if (a) for any A1, : : : , An in K (n � 0), their product A1 � � � � � An is also
in K, where fA1�����An

(: : : ha1; : : : ; ani : : :) = hfA1
(: : : a1 : : :); : : : ; fAn

(: : :an : : :)i; (b) for any subset B of
A for algebra A in K, the subalgebra obtained by restricting fA to B for each f in F is also in K; and
(c) for any homomorphism � : A!B between universes, if A is in K, then so is the algebra B wherein
fB(: : : ai� : : :) = fA(: : : ai : : :)�. This result of Birkho�'s can be used to show that an operation is not
equationally axiomatizable. For instance, the models of strict3 if � then � else � are not closed under
products, hence, no set of equations can characterize that operation. Still, it is remarkable that equational
axioms E can be given for if � then � else � such that an equation is valid forMod(E) i� it is valid in the
\if-then-else" models [Bloom-Tindell, 1983; Guessarian-Meseguer, 1987].

Let E be a set of equations. Clearly, replacement of equals for equals is sound, i.e. E ` s = t implies
Mod(E) j= s = t for all s and t. For the other direction, consider the quotient algebra T =E (described in
Section 2.2). It is one of the models of E. Since classes T =E are de�ned by the congruence $�

E , which is
just replacement of equals, we have T =E j= s = t implies E ` s = t. Together, we get the following:

Completeness Theorem (Birkho�-1935). For any set of equations E and terms s and t in T ,Mod(E)
j= s = t i� T =E j= s = t i� E ` s = t.

Accordingly, we may use the semantic notion =E and syntactic notion $�
E interchangeably. It follows that

a convergent rewrite system R decides validity for the models of its rules, since s $�
R t i� R(s) = R(t).

A substitution is a homomorphism from T to itself. If there exists a substitution � : T !T such that s�
and t� are identical, then for any algebra B there exists a homomorphism � : T !B such that s� = t�. In
other words, if an equation is satis�able in the term algebra T , then it is satis�able in all algebras. Similarly,
any equation satis�able in the quotient algebra T =E is satis�able in all algebras inMod(E). Satis�ability in
T is called uni�ability ; satis�ability in T =E is called E-uni�ability. The uni�cation problem is the subject
of Section 6.

3.2 Initial Algebras

For many purposes, not all models are of equal interest. One generally asks whether an equation is valid
in a speci�c model. For example, one might ask whether the equation alternate(y;�) = y is true for all
stacks y. (Of course, all equations are valid, let alone satis�able, in a trivial algebra having only one element
in its domain.) For applications like abstract data types, attention is often focused on those \standard"
models that are (�nitely) generated from the signature itself, in which every element of the domain is the
interpretation of some term.

An algebra A in a class K of algebras is free over a set X of variables if X is a subset of A and, for
any algebra B 2 K and assignment � : X !B, there exists a unique homomorphism � : A!B such that �
and � agree on X . A free algebra is unique up to isomorphism, whenever it exists. The free algebra over X
among all algebras is just (isomorphic to) the term algebra T (F ;X ) with the the symbol f 2 F itself as the
operator fT . An algebra A in a class K of algebras is initial if, for any algebra B in K there exists a unique
homomorphism � : A!B. The initial object among all F-algebras is (isomorphic to) the ground-term
algebra G(F), again with the function symbol itself as operator, and corresponds to the Herbrand universe
over the symbols in F . The importance of the initial algebra lies in its uniqueness (it is the free algebra
for empty X ), and in the fact that the class K consists of its homomorphic images, making it the most
\abstract" among them.

Among all models of a set of equations E, the prototypical one is the initial algebra I(E) of E. Its universe
consists of one element for each E-congruence class of ground terms. In other words, I(E) is (isomorphic

3An operation is strict, or naturally extended, if it yields the unde�ned value whenever one of its arguments is unde�ned.
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to) the quotient G=E of the ground-term algebra G and the congruence $�
E (restricted to G). This algebra

can be realized if R is a ground-convergent rewrite system for E, since, then, E-equivalent ground terms
have the same R-normal form. Accordingly, the normal-form algebra of R has the set of ground R-normal
forms as its universe and operations fR de�ned by fR(t1; : : : ; tn) = R(f(t1; : : : ; tn)) for all normal forms ti.
This algebra is (isomorphic to) the initial algebra I(R) of the variety de�ned by the rules in R (considered
as equations) [Goguen, 1980]. Thus, rewriting computes ground normal forms that are representatives of
their congruence classes. It is in this sense that rewriting is a \correct" implementation of initial-algebra
semantics. Speci�cation languages based on abstract data types, such as OBJ [Futatsugi-etal, 1985], follow
this implementation scheme: equations are used as rewrite rules, and unique normalization is needed for the
operational and initial algebra semantics to coincide.

Exactly those variable-free equations that follow necessarily from E hold in the initial algebra. Thus,
the word problem for E, i.e. deciding, for ground terms s and t, whether s = t holds in every model of E,
is the same as determining if I(E) j= s = t. More generally, one may ask if an equation s = t (possibly
containing variables) is valid in the initial algebra I(E), which is the case i� all of its ground instances
hold for Mod(E). We will write s =I(E) t as an abbreviation for I(E) j= s = t and call the class Ind(E)
of equations s = t valid in I(E) the inductive theory of E. It is easy to verify that the relation =I(E) is
a congruence over T (F ;X ). Unlike equational theories, inductive theories are not necessarily recursively
enumerable (even for �nite E). The inductive theory includes all the equations in the equational theory; on
the other hand, an equation that holds in the initial model need not hold in all models, i.e. the inclusion
T h(E) � Ind(E) may be strict. Tarski [1968] dubbed !-complete those equational theories that coincide
with the associated inductive theory, but !-completeness is not possible, in general [Henkin, 1977]. Finally,
note that if an equation s = t is not valid in I(E), that means that some ground equation u = v which does
not hold forMod(E) does hold forMod(E [ fs = tg).

For example, let F = f0; succ;�; push; alternateg and let E be

alternate(�; z) = z
alternate(push(x; y); z) = push(x; alternate(z; y))

The equation alternate(y;�) = y is valid in I(E), since it is provable for all ground terms of the form
push(s1; push(s2; : : : ; push(sn;�) : : :)), and all other ground terms (entailing alternate) are provably equal
to one of this form. It is not, however, valid in a modelA that, besides the usual stacks, includes stacks built
on top of another empty-stack value, �0, and for which alternateA(�0;�A) = �A. Thus, by Birkho�'s
Completeness Theorem, alternate(y;�) = y is not an equational consequence of the given axioms.

For a system R to correctly implement an algebraic speci�cation E, it is enough that their inductive
theories are the same, i.e. that Ind(E) = Ind(R), when the rules of R are considered as equations. For
example, the convergent three-rule system

alternate(�; z) ! z
alternate(y;�) ! y

alternate(push(x; y); z) ! push(x; alternate(z; y))

is a correct implementation of the above speci�cation E of alternate, since all equations in E are deductive
theorems of R and all rules in R are inductive theorems of E.

The notion of su�cient completeness of function de�nitions (and its relation to software speci�cation)
was introduced in [Guttag, 1976]:

De�nition 6. Let the set F of function symbols be split into a set C of constructors and a set F � C of
other symbols. Let E be a set of equations in T (F ;X ). The speci�cation E is su�ciently complete (or \has
no junk") with respect to C, if every ground term t in G(F) is provably equal to a constructor term s in
G(C).

De�nition 7. Let C be a set of constructors and let E be a set of equations split into a set EC of equations
in T (C;X ) and a set EF�C of other equations. The constructors C are said to be free when EC is empty. The
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speci�cation E is consistent (or \has no confusion") with respect to C, if for arbitrary ground constructor
terms s and t in G(C), s =E t i� s =EC t.

This generalizes the standard notion of consistency, which is with respect to the Boolean values T and F .
For example, the previous speci�cation for stacks becomes inconsistent with respect to the free constructors
f0; succ;�; pushg, if it is \enriched" with the equation alternate(y;�) = alternate(y; y), since that implies
push(0;�) = push(0; push(0;�)). Adding an equation push(x; push(y; z)) = push(y; push(x; z)) to EC makes
the constructors non-free and constructor terms represent unordered \bags." When a set of equations is both
consistent and su�ciently complete, it is reasonable to consider it a \speci�cation" of the functions in F �C.
In this case, the algebra G(F)=E, considered as a C-algebra, is isomorphic to G(C)=EC. This allows one to
build complex speci�cations from simpler ones. Unfortunately, both properties are undecidable in general
(see [Guttag, 1976]).

As mentioned above, term-rewriting is used to compute in the initial algebra. More generally, if R=S
is a ground-convergent class-rewriting (or ordered-rewriting) system, then the normal-form algebra, with
universe R(G) = f[[R(t)]]Sjt 2 Gg and operations de�ned by fR(a1; : : : ; an) = [[R(f(a1; : : : ; an))]]S for all
ai 2 R(G), is initial for the variety de�ned by R [ S, and R(G) is isomorphic to I(R [ S). In implementing
a su�ciently complete speci�cation, one would want all ground normal forms to be constructor terms, i.e.
that R(G(F)) � G(C).

In certain cases, su�cient completeness can be related to the following more tractable property:

De�nition 8. For any rewrite relation !T , a term s in T is ground T-reducible, if all its ground instances
s 2 G are rewritable by !T .

Suppose that (a) a ground-convergent class-rewriting system R=S is complete for an equational speci�cation
E, (b) the R=S-normal form of any ground constructor term in G(C) is a ground constructor term, and (c)
S does not equate any ground constructor term with a ground non-constructor term in G(F) � G(C). For a
system R=S satisfying these properties, E is su�ciently complete i� all terms f(x1; : : : ; xn) are ground R=S-
reducible, when f is in F�C and xi are distinct variables in X . The rationale is that, by ground reducibility,
any non-constructor term t must contain a reducible subterm, and, since the system is terminating and
sound for E, t must be equal to a constructor term. This connection between su�cient completeness and
ground reducibility is implicit in [Plaisted, 1985]. If each left-hand side of a rule in R and each side of an
equation in S contains a non-constructor symbol, then property (b) is ensured; cf. [Huet-Hullot, 1980].

Ground reducibility is decidable for �nite R and empty S [Plaisted, 1985; Kapur-etal, 1987]. A faster
decision method is obtained by reducing ground reducibility to the emptiness problem of the language
produced by a \conditional tree grammar" describing the system's ground normal forms [Comon, 1989].
Testing for ground R-reducibility, however, requires exponential time, even for left-linear R [Kapur-etal,
1987]. In the special case where all constructors are free, ground reducibility is more easily testable. This
case had been considered in [Nipkow-Weikum, 1982] for left-linear systems. The general case was considered
in [Dershowitz, 1985] and [Kounalis, 1985]. The former de�nes a \test set" for ground-reducibility by
instantiating f(x1; : : : ; xn) in all possible ways up to a bound that depends on the maximal depth of a
left-hand side; the latter constructs a smaller test set, computed by repeated uni�cation of f(x1; : : : ; xn)
with left-hand sides, and improves on [Thiel, 1984]. Ground R=S-reducibility is undecidable when S is a
set of associative-commutative axioms [Kapur-etal, 1987], but is decidable when R is left-linear [Jouannaud-
Kounalis, 1989].

For ground-convergent systems R, any equation between distinct R-normal forms is considered to be
inconsistent with R (considering all symbols in F as constructors). The observation that an equation
s = t is valid in the initial algebra I(R) i� no inconsistency follows from R [ fs = tg is the basis of
the proof by consistency method of inductive theorem proving (for proving theorems in Ind(R)), pioneered
by Musser [1980] (and so named in [Kapur-Musser, 1987]). If there exists a ground-convergent system
R0, with the same ground normal forms as R, and which presents the same equational theory as R [
fs = tg, then inconsistency is precluded [Lankford, 1981]. It can readily be shown that R(G) � R0(G),
for any two systems R and R0, i� every left-hand side of R0 is ground R-reducible [Dershowitz, 1982b;

15



Jouannaud-Kounalis, 1989]. It follows that R and R0 have the same inductive theory if they are both ground
convergent and every left-hand side of one system is ground reducible by the other. This method, relating
validity in the initial algebra to ground-reducibility, extends to class-rewriting, with ground R=S-reducibility
replacing its ordinary counterpart [Goguen, 1980; Lankford, 1981; Jouannaud-Kounalis, 1989]. In Section 8,
we will consider how to search for an appropriate R0.

Note that the equation alternate(y;�) = y is not an inductive theorem of the earlier stack speci�cation,
given at the beginning of Section 2.1, even though it holds for all stacks �, push(s1;�), etc. The problem is
that the full vocabulary has a richer set of ground terms, involving top and pop, but their speci�cation is not
su�ciently complete. In particular, the equation in question does not hold true for \error" terms like pop(�):
alternate(pop(�);�) = pop(�) does not follow from the axioms. Test-set based methods for proofs in the
(non-initial) constructor model are described in [Kapur-etal, 1986; Zhang, 1988]; see also [Kapur-Musser,
1987].

3.3 Computable Algebras

When a system R is not terminating, rewriting will not necessarily compute a representative for the congru-
ence class of a term. However, as long as R is Church-Rosser, one knows that if a normal form is obtained,
it is unique. Of course, one can always turn a �nite set of equations into a Church-Rosser system by turning
each equation into a symmetric pair of rules, but then no term at all has a normal form. More interesting is
the ability to code interpreters for functional languages as Church-Rosser systems that are normalizing for
input programs that terminate for the given input values; see [O'Donnell, 1977b]. Furthermore, there are
computational strategies (that is, speci�c choices of where to rewrite next), such as not forever ignoring an
\outermost" redex (one that is not a subterm of another redex), that are guaranteed to result in a normal
form whenever there is one [O'Donnell, 1977a]. An optimal strategy, i.e. one with normalizing derivations of
minimal length, is not in general computable [Huet-Levy, 1990].

Turing machine computations can be simulated by rewrite systems in at least two di�erent ways: by
systems of monadic rules that rewrite instantaneous descriptions according to the machine's transitions
[Huet-Lankford, 1978], and by a (non-monadic) one-rule system in which the transitions appear as part
of the terms ([Dauchet-1989], re�ning [Dershowitz, 1987]). Thus, rewrite systems provide a fully general
programming paradigm (to the extent that Church's Thesis de�nes \fully general"). These constructions
also imply that most interesting properties, including convergence, are in general undecidable. On the other
hand, equality (the word problem) is decidable in what are called \computable" algebras [Meseguer-Goguen,
1985]; see [Wirsing, 1989].

3.4 Further Reading

For a survey of equational logic, see [Taylor, 1979]. A comprehensive multi-volume work on varieties is
[McKenzie-etal, 1987; Freese-etal, 1989]. Some relevant recent results are summarized in [McNulty, 1989].
A detailed exposition of algebraic aspects of rewriting is [Meseguer-Goguen, 1985]; algebraic semantics are
the subject of [Wirsing, 1989].

4 CHURCH-ROSSER PROPERTIES

Newman [1942] developed a general theory of \sets of moves," that is, of arbitrary binary relations. It has
since become customary to deal separately with properties of such abstract binary relations and with those
of relations on terms. In our discussion of the Church-Rosser property, we continue in that tradition, putting
o� almost all mention of rewrite systems to later sections.
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4.1 Conuence

In Section 2, we de�ned the Church-Rosser property for rewrite systems. The analogous property can hold
for any binary relation:

De�nition 9. A binary relation! on any set T is Church-Rosser if its reexive-symmetric-transitive closure
$� is contained in the joinability relation !� � �.

See Figure 1(a). This is equivalent to the following simpler property:

De�nition 10. A binary relation ! on any set T is conuent if the relation  � �!� is contained in the
joinability relation !� � �.

Conuence says that no matter how one diverges from a common ancestor, there are paths joining at
a common descendent. Sometimes the notation " is used for the common ancestor relation and # for
joinability (common descendent); then conuence boils down to " � #. See Figure 1(b). The equivalence
with the Church-Rosser property [Newman, 1942], can be shown by a simple inductive argument on the
number of divergences  � �!� making up $�.

For arbitrary!, de�ne s!! t i� s!� t and there is no u such that t!u and call t the normal form of s.
Conuence implies the impossibility of more than one normal form. A binary relation! on a set is strongly
conuent if any local divergence  �! is contained in the immediate descendent relation != � =, i.e. if
for any peak s u! t of elements s, t, and u, one of the following four cases holds: s = t, s t, s! t,
or s! v t (for some element v). See Figure 1(c). (A slightly weaker de�nition is given in [Huet, 1980],
namely �! � !� � =, which also allows for circumstances like a! b, a! c, b!d! c, and c! d! b.)
Strong conuence implies conuence [Newman, 1942] by a \tiling" argument. Strong conuence is used in
the classical proofs of the Church-Rosser property for the �-calculus, since conuence of! is exactly strong
conuence of !� (see [Barendregt, 1984]).

De�nition 11. A binary relation ! on any set T is locally conuent if any local divergence  �! is
contained in the joinability relation !� � �.

See Figure 1(d). Local conuence does not generally imply conuence; see the counter-examples in Figure
2, due to [Newman, 1942] and [Hindley, 1964].

However:

Diamond Lemma ([Newman, 1942]). A terminating relation is conuent i� it is locally conuent.

The name derives from the pictorial proof in Figure 3, due to [Huet, 1980], which uses induction with
respect to the terminating relation. When ! is terminating, it follows from the above results that it is
Church-Rosser i�  �! is contained in !! � !.

Conuence is sometimes established by well-founded induction in the following way: Let � be a well-
founded ordering on the elements and suppose that for every \peak" s u! t there exists an (undirected)
path s = w0$w1$� � �$wn = t (n � 0) such that u � w1; : : : ; wn�1. Then it can be shown (by induction
on multisets of elements; see Section 5.1) that ! is Church-Rosser [Winkler-Buchberger, 1983]. See Figure
1(e).

4.2 Coherence

As preparation for the study, in the Section 7.3, of Church-Rosser properties of extended-rewriting with a
congruence, we consider here abstract properties of combinations of an arbitrary binary relation !R and a
symmetric binary relation$S , both on the same set. Let!T be a relation lying anywhere between !R and
the quotient relation !R=S . Note that $

�
R[S = $�

S[T . In what follows, we will also use R, S, T , and R=S
to refer to the relations!R,$S ,!T , and!R=S , respectively. At one extreme, T can be R, a case partially
dealt with in [Sethi, 1974; Huet, 1980]; at the other extreme, T can be R=S; the general case|considered
here|was �rst studied in [Jouannaud-Kirchner, 1986].
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Figure 2: Two locally-conuent relations.

Figure 3: Proof of Diamond Lemma.
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If one is going to compute normal forms with T instead of with R, the natural question to ask is if their
normal forms are equivalent. That is, under what conditions is  !

R �!
!
T contained in $�

S? The relation T
is Church-Rosser modulo S if$�

S[T is contained in!�
T �$

�
S � 

�
T ; see Figure 1(f). When T is terminating

and Church-Rosser modulo S, one can determine if s $�
R[S t, by �nding T -normal forms of s and t and

testing them for S-equivalence. That is, $�
R[S is equivalent to$�

S[T which is contained in!!
T �$

�
S � 

!
T ;

in particular, R=S- and T -normal forms must be equivalent.
When R=S is terminating, the Church-Rosser property may be decomposed into two local ones: T is

locally coherent modulo S with R if T �!R is contained in !�
T �$

�
S � 

�
T ; T is locally coherent modulo S

with S if T �$S is contained in!�
T �$

�
S � 

�
T . Compare Figures 2(g) and 2(h) with 2(d). The concept of

coherence was developed by [Jouannaud-Kirchner, 1986] and generalizes compatibility, as in [Peterson-Stickel,
1981].

Coherence Lemma ([Jouannaud-Kirchner, 1986]). Let R � T � R=S. If R=S is terminating, then
T is Church-Rosser modulo S i� it is locally coherent modulo S with both R and S.

One proves that$�
R[S is contained in!!

T �$
�
S � 

!
T by induction on the multiset of elements in a path

t0$R[S t1$R[S � � �$R[S tn. The induction is with respect to the well-founded ordering on multisets (see
Section 5.1) induced by !+

R=S . It then follows that $�
S[T is contained in !�

T �$
�
S � 

�
T .

4.3 Further Reading

Newman's 1942 paper [Newman, 1942] de�ned the basic notions. Huet [1980] introduced the use of (Noethe-
rian) induction on terminating relations for studying these notions. Conuence (the vanilla-avored kind)
and many related properties of relations are discussed in [Klop, 1987].

5 TERMINATION

Recall that a rewrite system R is terminating for a set of terms T if there are no in�nite derivations t1 !R

t2 !R � � � of terms in T . The following is one example of a nonterminating system [Toyama, 1987b]:

f(a; b; x) ! f(x; x; x)
g(x; y) ! x
g(x; y) ! y

The depth (i.e. the maximumnesting of symbols) of a term in any of its derivations is bounded by the depth
of the initial term, but it has a cycling derivation starting from f(g(a; b); g(a; b); g(a; b)). If!R is contained in
some well-founded partial ordering � on T , then R is obviously terminating. The rule f(f(x)) ! f(g(f(x))),
for instance, is terminating, since the number of adjacent f 's is reduced with each application. In general, it
is undecidable whether a system is terminating, even if both sides of all rules are monadic [Huet-Lankford,
1978] or if it has only one left-linear rule [Dauchet, 1989]. For ground systems, however, termination is
decidable [Huet-Lankford, 1978]. The decidability of termination of non-length-increasing string-rewriting
systems is open.

5.1 Reduction Orderings

The above method of establishing termination requires one to reason about the global e�ect of applying a rule
at a subterm. To avoid consideration of the in�nite number of possible contexts, one can use well-founded
orderings on terms:

De�nition 12. A reduction ordering on a set of terms T is any well-founded rewrite ordering of T .
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Termination is assured if each of the rules in R is contained in a reduction ordering; conversely, if R is
terminating, then the relation !+

R itself is a reduction ordering. As suggested in [Manna-Ness, 1970], it is
oftentimes convenient to separate reduction orderings into a homomorphism � from the ground terms G(F)
to an F-algebraW and a \standard" well-founded ordering � onW. The homomorphism and ordering are
constrained to satisfy the following monotonicity condition: f� (: : :x : : :) � f� (: : : y : : :) whenever x � y,
for all f in F and all x, y, etc. in W . Then, the ordering �� , under which s � t if � (s) � � (t), for s and
t in G, is well-founded. To compare free (open) terms s and t in T (F ;X ), variables are added to W , and
variables in terms are mapped by � to distinct variables in W (X ). Then, s �� t only if � (s) � � (t) for all
assignments of values in W to the variables in � (s) and � (t). A system is terminating i� such W, � , and
� exist. For example, the system below, which computes the disjunctive normal form of formulae, can be
shown terminating [Filman, 1978] with an exponential mapping into the natural numbers:

not (not(x)) ! x
not(or (x; y)) ! and (not (x); not(y))

not (and (x; y)) ! or(not (x); not(y))
and (x; or(y; z)) ! or(and (x; y); and (x; z))
and (or(y; z); x) ! or(and (y; x); and (z; x))

The mapping � : T ! f2; 3; : : :g is de�ned by:

or� (a; b) = a + b + 1 not� (a) = 2a

and � (a; b) = a � b c� = 2

for all a and b in f2; 3; : : :g and constant c in F0, with numbers compared under their natural ordering >.
The second rule, for instance, always decreases the interpretation of a term, since � (not(or(x; y))) = 2x+y+1

is greater than � (and (not (x); not(y))) = 2x+y, for all x and y. A class of exponential interpretations were
used for termination arguments in [Iturriaga, 1967].

The use, in particular, of polynomial interpretations was developed in [Lankford, 1975; Lankford, 1979].
Here a multivariate integer polynomial f� (x1; : : : ; xn) of degree n is associated with each n-ary symbol f in
Fn, for all n. The choice of coe�cients must satisfy the monotonicity condition and ensure that terms are
mapped into nonnegative integers only, as is the case, for example, when all coe�cients are positive. Each
rule must be shown to be reducing; that is, for each rule l! r, the polynomial � (l) � � (r) must be positive
for all values of variables greater than the minimal value of a ground term (� interprets variables in X as
variables ranging over the naturals).

To prove termination of an associative-commutative class-rewriting system, the interpretation of an
associative-commutative operator ought to be an associative-commutative polynomial. In general, such
polynomials must be of either the quadratic form f� (x; y) = �xy + �(x + y) + �(� � 1)=� (� 6= 0) or the
linear form f� (x; y) = x+ y +  (where �, �, and  are natural numbers) [BenCherifa-Lescanne, 1987]. For
example, one can use the following polynomial interpretation to prove termination of the BA=AC system of
Section 2:

xor� (a; b) = a + b + 1
and � (a; b) = a � b
c� = 2.

Primitive-recursive interpretations cannot su�ce for termination proofs in general, since they would
place a bound on the length of computations [Stickel, 1976]. In particular, integer polynomials place a
double-exponential bound on the length of a derivation [Lautemann, 1988]. The following system, based
on the \Battle of Hydra and Hercules" in [Kirby-Paris, 1982], is terminating, but not provably so in Peano
Arithmetic:
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h(z; e(x)) ! h(c(z); d(z; x))
d(z; g(0; 0)) ! e(0)
d(z; g(x; y)) ! g(e(x); d(z; y))

d(c(z); g(g(x; y); 0)) ! g(d(c(z); g(x; y)); d(z; g(x; y)))
g(e(x); e(y)) ! e(g(x; y))

Think of g(x; y) as the ordinal !x + y, of d(cn(0); x) as any of the kth predecessors of x (k � n), and of e(x)
as x (e is just a place marker). Trans�nite (�0-) induction is required for a proof of termination.

Nor do total reduction orderings su�ce in termination arguments, as can be seen from the terminating
system ff(a)! f(b); g(b)! g(a)g, for which a and b must be incomparable. Nevertheless, most of the
orderings used in practice do extend to total reduction orderings. For a total rewrite ordering to be well-
founded, it is necessary that it contain the proper subterm relation >, since if tjp � t for some term t and
position p, then there is an in�nite descending sequence t � t[t]p � t[t[t]p]p � � � �. As we will see shortly, for
�nite vocabularies, this \subterm" condition is also su�cient for well-foundedness of a rewrite ordering.

For termination of an ordered rewrite relation !�, the ordering � according to which rewriting is
performed must be a (well-founded) reduction ordering. Note that the variables occurring on the two sides
of an equation need not coincide for termination, since the terms substituted for the variables must be such
that the rewritten term is smaller vis-a-vis the reduction ordering. If the ordering � is total on ground terms
G, then each ground instance of an equation in E can be oriented one way or another. As we will see, such
ground orderings do exist. Of course, no rewrite ordering can be total on T , since no two distinct variables
x and y can be ordered (were we to have x � y, then we would have to have y � x, as well, the latter being
an instance of the former).

5.2 Simpli�cation Orderings

Termination arguments are often facilitated by the observation that all rewrite orderings containing the
subterm relation � are well-founded (when F is �nite). To see why the subterm property su�ces, we need
�rst to de�ne a stronger notion than well-foundedness:

De�nition 13. A quasi-ordering �_ on a set T is a well-quasi-ordered if every in�nite sequence t1, t2, : : : of
elements of T contains a pair of elements tj and tk, j < k, such that tj ��_ tk.

By the Pigeon-Hole Principle, an equivalence relation is a well-quasi-ordering i� there are only a �nite number
of equivalence classes.

The partial ordering � associated with a quasi-ordering �_ is well-founded i� from some point on all
elements in any in�nite \quasi-descending" chain t1 �_ t2 �_ t3 �_ � � � are equivalent. Thus, any well-quasi-
ordered set is well-founded (by the associated partial order), while a set is well-quasi-ordered if it is well-
founded and has only a �nite number of pairwise incomparable elements (the \�nite anti-chain property").
It is also important to note that any extension of a well-quasi-ordering is a well-quasi-ordering and any
restriction is well-founded (though it need not be well-quasi-ordered). This is what makes well-quasi-orderings
convenient.

Our interest focuses on well-quasi-orderings of terms. Any well-quasi-ordering �_ on a vocabulary F
induces a well-quasi-ordering �_emb on the terms T by means of the following set of schematic rules and
equations:

f(s1; : : : ; sn) ! si 1 � i � n
f(s1; : : : ; sn) ! g(s1; : : : ; sn) if f � g
f(s1; : : : ; sn) ! g(si1 ; : : : ; sik) if f�_g; 1 � i1 < � � � < ik � n; k < n
f(s1; : : : ; sn) $ g(s1; : : : ; sn) if f � g

These schemata apply to all f and g of appropriate arity in F . The �rst deletes context; the second decreases
a function symbol; the third deletes subterms; the last replaces symbols with equivalents. (The third rule,
with its condition changed to k � n, would subsume the second and fourth. As given, the termination of
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the one-way rules is more manifest.) We write s �_emb t if t is derivable from s using the above rules. The
equivalence part of �_emb is just renaming symbols with equivalents under �. Viewing terms as (ordered)
trees: s �_emb t if there is a mapping from the nodes in t into the nodes in s such that the function symbol
labeling a node in t is less than or equivalent to (under �_) the label of the corresponding node in s, and
such that distinct edges in t map to disjoint paths of s.

The following deep result is at the heart of our argument:

Tree Theorem ([Kruskal, 1960]). If �_ is a well-quasi-ordering of a vocabulary F , then the embedding
relation �_emb is a well-quasi-ordering of the terms T (F).

It has a beautiful proof, due to [Nash-Williams, 1963]:

Proof. Note that, by the in�nite version of Ramsey's Theorem, any in�nite sequence of elements of a
well-quasi-ordered set must contain a subsequence that constitutes an in�nite quasi-ascending chain.

Suppose, now, that the theorem were false. Then, there would exist (by the Axiom of Choice) a \minimal
counter-example" sequence t1, t2, : : : , ti, : : : , of which each element ti is chosen so that it is smallest (in
number of symbols) among all sequences of terms beginning with t1, t2, : : : , ti�1 and having no embedding
tj ��_emb tk for j < k. By the minimality hypothesis, the set of proper subterms of the elements of the
minimal counter-example must be well-quasi-ordered (or else t1, t2, : : : , tl�1, s1, s2, : : :would be a smaller
counter-example, where s1, s2, : : : is a counter-example of subterms of tl, tl+1, : : : , such that s1 is a subterm
of tl).

Since F is well-quasi-ordered by �_, there must exist an in�nite subsequence ti1 , ti2 , : : :of the minimal
counter-example such that their roots are a quasi-ascending chain. If any of these terms tij are elements

of F , the original sequence could not have been a counter-example, because then tij ��_emb tij+1 . Consider,
then, the immediate subterms wi1 , wi2 , : : :of that subsequence. For example, if tij is f(g(a); b; g(b)), then
wij is the word g(a) b g(b). As noted above, the set of all these words must be well-quasi-ordered.

Using an auxiliaryminimal counter-example argument, it can be shown that any in�nite sequence of words
over a well-quasi-ordered set contains a pair of words such that the �rst is a (not necessarily contiguous)
subword of the second. (This result [Higman, 1952] is known as \Higman's Lemma.") In our case, this
means that the in�nite sequence of words composed of the immediate subterms of ti1 , ti2 , : : :must contain
a pair wij and wik (k > j) such that wij is a subword of wik. That, however, would imply that tij ��_emb tik,
a contradiction.

The (pure) homeomorphic embedding relation !�
> is the special case of embedding, induced by simple

equality of symbols for �_. In other words, it is derivability using only the �rst rule f(s1; : : : ; sn) ! si of
the previous system. It follows from the above theorem that any extension of homeomorphic embedding is
a well-quasi-ordering of terms over a �nite vocabulary. Since any rewrite ordering containing the subterm
relation � also contains homeomorphic embedding, the subterm condition su�ces for well-foundedness of
term orderings over �nite vocabularies, as claimed. Such orderings are the main tool for proving termination
of rewriting:

De�nition 14. A transitive and reexive rewrite relation �_ is a simpli�cation ordering if it contains the
subterm ordering >.

Simpli�cation orderings are quasi-orderings (called \quasi-simpli�cation orderings" in [Dershowitz, 1982a])
and are what Higman [Higman, 1952] called \divisibility orders." For �nite R, only a �nite number of
function symbols can appear in any derivation t1 !R t2 !R � � �. Thus, a �nite R over T is terminating
if there exists any simpli�cation ordering �_ of T such that R is contained in its strict part � [Dershowitz,
1982a]. The existence of such a simpli�cation ordering means that tj �_ tk for all k > j, which precludes
any tj from being homeomorphically embedded in a subsequent tk, as would necessarily be the case for any
in�nite derivation.

Virtually all the reduction orderings used in rewriting-system termination proofs are simpli�cation or-
derings. For instance, integer polynomial interpretations with nonnegative coe�cients are. One can even
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associate polynomials over the reals with function symbols and interpret terms as before [Dershowitz, 1979].
For a given choice � of real polynomials to de�ne a simpli�cation ordering, f� (: : :a : : :) � a must always
hold and a � b must always imply f� (: : :a : : :) � f� (: : : b : : :). For termination, � (l) must be greater than
� (r) for each rule l! r. All these inequalities need hold only when their variables are assigned values at
least as large as the minimal interpretation of a constant, and are decidable [Tarski, 1951].

In di�cult termination proofs, it is frequently useful to build more complicated orderings on top of simpler
ones. For example, if �1 and �2 are partial orderings of S1 and S2, respectively, then we say that the pair
hs1; s2i is lexicographically greater than a pair hs01; s

0
2i (for s1; s

0
1 in S1 and s2; s

0
2 in S2), if s1 �1 s

0
1, or else

s1 = s01 and s2 �2 s
0
2. If �1 and �2 are well-founded, then the lexicographic ordering of the cross-product

S1 � S2 is also well-founded. In the same way, well-founded lexicographic orderings are de�ned on n-tuples
of elements of well-founded sets.

Lexicographic orderings work for tuples of �xed length n. For collections of arbitrary size, another tool
is needed. A (�nite) multiset (or bag) is a �nite unordered collection in which the number of occurrences of
each element is signi�cant. Formally, a multiset is a function from an element set S to the natural numbers,
giving the multiplicity of each element. In general, if � is a partial ordering on S, then the ordering �mul on
multisets of elements of S is de�ned as the transitive closure of the replacement of an element with any �nite
number (including zero) of elements that are smaller under �. If � is well-founded, the induced ordering
�mul also is, as a consequence of K�onig's Lemma for in�nite trees [Dershowitz-Manna, 1979].

As an example of the application of lexicographic and multiset orderings to termination proofs, consider
the rule:

x � (y + z) ! (x � y) + (x � z)

We de�ne a reduction ordering on terms as follows: Working our way from each innermost dot to the
enclosing outermost dot, we construct a tuple of numbers, listing the size (total number of symbols) of the
subterm headed by each dot encountered along the way. Each term is measured by the multiset of all its
tuples (one for each innermost dot), with multisets compared in the ordering induced by the lexicographic
ordering on tuples. The term a � ((b � c) � (d+ (e � f)))), for example, is represented by fh3; 9; 11i, h3; 9; 11ig,
while the term a � (((b �c) �d)+(b �c) � (e �f)) (after rewriting) is represented by fh3; 5; 15i, h3; 7; 15i, h3; 7; 15ig.
The latter multiset is smaller, since each of its elements is lexicographically smaller than h3; 9; 11i, which
appears in the former multiset (but not in the latter).

Multiset orderings will play an important role in Section 8.1.

5.3 Path Orderings

The above termination proof of the single distributivity rule is a complicated way of capturing the intuition
that \�" is, in some sense, the most signi�cant function symbol. This suggests the possibility of construct-
ing simpli�cation orderings directly from well-founded orderings of vocabularies, or precedences. The idea
[Plaisted, 1978; Dershowitz, 1982a] is that a term s should be bigger than any term that is built from terms
smaller than s which are connected together by a structure of function symbols smaller, in the precedence,
than the root of s. One such ordering is the \multiset path ordering" introduced in [Dershowitz, 1982a]:

De�nition 15. For any given precedence �_, the multiset path ordering �_mpo is de�ned as derivability using
the following schematic system mpo:

f(s1; : : : ; sn) ! si 1 � i � n
f(s1; : : : ; sn) ! g(t1; : : : ; tm) if f � g; f(s1; : : : ; sn)!+

mpo t1; : : : ; tm
f(s1; : : : ; si; : : : ; sn) ! g(s1; : : : ; si�1; t1; : : : ; tk; si+1; : : : ; sn) if f�_g;

si!+
mpo t1; : : : ; si!

+
mpo tk; k � 0

f(s1; : : : ; sn) $ g(s�1 ; : : : ; s�n ) if f � g; � a permutation
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The second rule replaces a term with one having a smaller root symbol. The third replaces a subterm
with any number of smaller ones; in particular, it allows deletion of subterms (k = 0). Actually, the third
rule must also permit any number of subterms to be replaced by smaller terms at the same time (to avoid
violating the arity of symbols in the vocabulary).

The multiset path ordering contains the homeomorphic embedding relation and is, therefore, a simpli-
�cation ordering. (That !+

mpo is irreexive is true, but not self-evident.) Moreover, if � is a well-founded

ordering of (possibly in�nite) F , then �mpo is a well-founded ordering of T . To see this [Huet, 1980;
Dershowitz, 1982a], note that (by Zorn's Lemma) a given precedence � may be extended to an ordering >
such that the quasi-ordering > [ �, call it >_, is a total well-quasi-ordering of F . By Kruskal's Tree Theorem,
the induced embedding relation >_emb well-quasi-orders T , as does the total multiset path ordering >_mpo

induced by the total precedence >_. Thus, >mpo is well-founded. Since the mapping from precedence �_ to
term ordering �_mpo is incremental, in the sense that extending the precedence extends the corresponding
ordering on terms, the smaller ordering �mpo must also be well-founded.

The multiset path ordering establishes termination of our stack and disjunctive normal form examples
(as well as the bean-increasing Co�ee Can Game). For the four-rule stack system, take the precedence
alternate > push. The �rst three rules are contained in >mpo by the �rst rule of mpo. For example,
pop(push(x; y)) !mpo push(x; y) !mpo y. For the remaining stack rule, we have alternate(push(x; y); z)
>mpo push(x; alternate(z; y)), since alternate > push and alternate(push(x; y); z) !+

mpo x; alternate(z; y),
the latter since push(x; y) !mpo y and alternate(y; z) $mpo alternate(z; y). Termination of the disjunctive
normal form system may be shown using the precedence not > and > or .

One can think of the multiset path ordering as a functional mapping an ordering on function symbols
(the precedence) to an ordering on terms, by recursively comparing the immediate subterms in the mul-
tiset extension of the term ordering. A related class of orderings [Kamin-Levy, 1980] compares subterms
lexicographically, instead.

De�nition 16. For any given precedence �_, the lexicographic path ordering �_lpo is de�ned as derivability
by the following schematic system lpo:

f(s1; : : : ; sn) ! si 1 � i � n
f(s1; : : : ; sn) ! g(t1; : : : ; tm) if f � g; f(s1; : : : ; sn)!

+
lpo t1; : : : ; tm

f(s1; : : : ; si; : : : ; sn) ! f(s1; : : : ; si�1; ti; : : : ; tn) if si!
+
lpo ti;

f(s1; : : : ; sn)!
+
lpo ti+1; : : : ; tn

f(s1; : : : ; sn) $ g(s1; : : : ; sn) if f � g

As in the multiset path ordering, the precedence � induces an ordering on terms, but, here, subterms of the
same function symbol are compared left-to-right, lexicographically. (They could just as well be compared
right-to-left, or in any �xed order.)

The following traditional example|for Ackermann's function|illustrates its use with a precedence ack
> succ:

ack(0; y) ! succ(y)
ack(succ(x); 0) ! ack(x; succ(0))

ack(succ(x); succ(y)) ! ack(x; ack(succ(x); y))

For example, the third rule is contained in >lpo since x occurs in succ(x) and ack(succ(x); succ(y)) is
lexicographically greater than ack(succ(x); y).

If the strict part of a precedence is of order type �, then the multiset path ordering on the set of terms is
of order type ��(0) in the notation of [Feferman, 1968]. Combiningmultiset and lexicographic path orderings
into one [Kamin-Levy, 1980], gives a more powerful ordering, which we call the recursive path ordering and
which is related to Ackermann's ordinal notation [Dershowitz-Okada, 1988a]. (The original \recursive path
ordering" [Dershowitz, 1982a] was of the multiset variety.) Determining if a precedence exists that makes
two terms comparable is NP-complete [Krishnamoorthy-Narendran, 1984].
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These precedence-based orderings are \syntactic", looking at function symbols one at a time. Similar
semantically-oriented orderings have been devised; they replace the test f � g by s � t, where � is now
a well-founded quasi-ordering of terms, not function symbols. For example, the Knuth-Bendix ordering
[Knuth-Bendix, 1970] assigns a weight to a term which is the sum of the weights of its constituent function
symbols. Terms of equal weight have their subterms compared lexicographically. Methods for choosing
weights are described in [Lankford, 1979; Martin, 1987].

None of these orderings, however, can prove termination of the rule f(f(x))! f(g(f(x))), since the right-
hand side is embedded in the left. To overcome this problem, Puel [1989] compares \unavoidable patterns"
instead of function symbols in the de�nition of �mpo. By unavoidable, we mean that any su�ciently large
term in T must be greater, under the encompassment ordering ��, than one of the unavoidable patterns. For
example, any term constructed from a constant a and three or more f 's and g's must contain an occurrence of
one of the three patterns: f(f(x)), f(g(x)), or g(g(x)). The well-foundedness of this \pattern path ordering"
is based on a powerful extension of Kruskal's Tree Theorem [Puel, 1989] (analogous to a similar theorem on
strings in [Ehrenfeucht-etal, 1983]).

5.4 Combined Systems

We saw above that polynomial orderings are applicable to associative-commutative systems, but are severely
restrictive. The multiset path ordering, though compatible with commutativity axioms, is not well-founded
when associativity is added as a bi-directional rule to mpo. For example, let the precedence be c � b. Then,
(c + b) + b !mpo c + (b + b) $S (c + b) + b, where S is associativity of +. To overcome this problem,
the multiset path ordering has been adapted to handle associative-commutative operators by attening and
also transforming terms (distributing symbols that are bigger in the precedence over smaller ones) before
comparing [Bachmair-Plaisted, 1985], i.e. s is greater than t i� the T -normal form T (s) of s is greater under
�mpo than the T -normal form T (t) of t, for some convergent \transform" system T and precedence �. The
general use of rewrite systems as transforms and the formulation of abstract conditions of the resultant
reduction ordering are explored in [Bachmair-Dershowitz, 1986; Bellegarde-Lescanne, 1987].

Termination of the union of term- or class-rewriting systems can be reduced to the termination of each:
Let R and S be two binary relations contained in well-founded orderings �R and �S , respectively. If
�S commutes over �R, i.e. if �R � �S is contained in �S � �R, then the union R [ S is terminating.
Actually, it su�ces if �S quasi-commutes over �R, by which we mean that �R � �S is contained in
�S � � =R. For example, if R is any terminating rewrite system, then the union of !R with the proper
subterm relation > is well-founded, since taking subterms is well-founded and if a subterm rewrites then
so does the superterm. More generally, the union of any terminating rewrite relation with the (proper)
encompassment ordering �� is also well-founded, since encompassment is just �� (subsumption) and/or >,
both of which are well-founded, and any rewrite relation commutes over both. Similarly, if R is a binary
relation contained in a well-founded ordering �R, S is a symmetric binary relation contained in a congruence
�S , and �R commutes over �S , then the composite relation R � S is terminating. To prove termination
of a combined term-rewriting system R [ S, it is necessary and su�cient that R and S be contained in
reduction orderings that commute as above; to prove termination of a class-rewriting system R=S, it is
necessary and su�cient that R be contained in a reduction ordering that commutes over a symmetric and
transitive rewrite relation that contains S. These ideas generalize results in [Bachmair-Dershowitz, 1986;
Jouannaud-Munoz, 1984]. Note that commutation of!R and!S is not ensured by R and S having disjoint
vocabularies, the system at the beginning of this section being a counter-example [Toyama, 1987b].

5.5 Further Reading

Martin Gardner [1983] talks about multiset orderings and the Hydra battle. For a survey of the history
and applications of well-quasi-orderings, see [Kruskal, 1972]. For a comprehensive survey of termination,
see [Dershowitz, 1987]. The multiset and lexicographic path orderings, and their variants (see [Rusinowitch,
1987]), have been implemented in many rewriting-rule based theorem provers (e.g. [Lescanne, 1984]). Some
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results on the complexity of derivations appear in [Choppy-etal, 1987].

6 SATISFIABILITY

We turn our attention now to the determination of satis�ability. If an equation s = t is satis�able in the
(free-) term algebra T , that is, if s� and t� are identical for some substitution �, then s and t are said to be
uni�able. The uni�cation problem, per se, is to determine if two terms are uni�able. More particularly, we
are interested in determining the set of all unifying substitutions �. Though uni�able terms may have an
in�nite number of uni�ers, there is|as we will see|a unique substitution (unique up to literal similarity)
that is minimal with respect to the subsumption ordering on substitutions. More generally, we are interested
in solving equations in the presence of equational axioms specifying properties of the operators. For a given
equational theory E, we say that s and t are E-uni�able if s = t is satis�able in the free quotient algebra
T =E, in which case it is satis�able in all models of E. In general, there may be no minimal solution to a
given E-uni�cation problem.

6.1 Syntactic Uni�cation

Let
�

= be literal similarity of terms, under which two terms s and t are equivalent if each is an instance
of the other. We show that the quotient T =

�

=, ordered by the subsumption relation ��, is a lower semi-
lattice, by showing that every pair of terms, s and t, has a greatest lower-bound, glb(s; t), called their least
(general) generalization [Plotkin, 1972]. (Note that T =

�

= is not an algebra, because literal similarity is not
a congruence.) Let LG be the following set of \transformation" rules, operating on pairs (P ;w), where w is
a term containing the partial solution, and P contains the pairs yet to be solved:

Decompose: (ff(s1; : : : ; sm) ux f(t1; : : : ; tm)g [ P ; w) )
(fs1 ux1 t1; : : : ; sn uxn tng [ P ; w�)

where � is fx 7! f(x1; : : : ; xn)g
and x1; : : : ; xn are distinct new variable symbols

Coalesce: (fs ux t; s uy tg [ P ; w) ) (fs uy tg [ P ; w�)
where � is fx 7! yg

Each pair is written as s ux t, where x is a variable of w: Applying these rules to (fs ux tg ; x), where
x is not a variable of s or t, until none is applicable, results in (fui u� vi g ; glb(s; t)). To prove that
repeated applications of LG always terminate, note that each application of a rule decreases the number of
function symbols (not including u) in P . Since the system )LG is actually Church-Rosser (on T =

�

=), least
generalizations are unique up to literal similarity. For example, the least generalization of f(g(a); g(b); a)
and f(g(b); g(a); b) is f(g(x); g(y); x). It follows from properties of well-founded lattices [Birkho�, 1948] that
every pair of terms s and t that are bounded from above (i.e., there exists a term that is an instance of both)
have a least (i.e. most general) upper-bound, denoted lub(s; t).

An equation s = t has a solution � if s� = t�. Here, s and t may share variables and we demand that
applying a single substitution � (mapping all occurrences of the same variable to the same term) result
in identical terms. The least solution with respect to subsumption, mgu(s; t), is called their most general
uni�er. For example, the most general common instance of alternate(y0;�) and alternate(push(x; y); z)
is alternate(push(x; y);�), or anything literally similar; the mgu of alternate(y;�) and alternate(�; z) is
fy 7! �; z 7! �g; there is no solution to alternate(z;�) = alternate(push(x; y); z). Most general uni�ers
and least upper bounds of terms are closely related: by revising s and t so that the two terms have disjoint
variables, we get lub(s; t) = s�, where � = mgu(s0; t0), for literally similar terms s0 and t0 of s and t,
respectively; in the other direction, s� and t� are both equal to lub(eq(x; x); eq(s; t)), where � = mgu(s; t),
eq is any binary symbol, and x is any variable. As a consequence, the most general uni�er is unique up to
literal similarity, but need not always exist. This fundamental uniqueness result for �rst-order terms does
not hold true for higher-order languages with function variables [Huet, 1976].
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Robinson [1965] was the �rst to give an algorithm for �nding most general uni�ers. Following [Herbrand,
1930; Martelli-Montanari, 1982], we view uni�cation as a step-by-step process of transforming multisets of
equations, until a \solved form" is obtained from which the most general uni�er can be extracted. A solved
form is any set of equations fx1 = s1; : : : ; xn = sng such that the xi are distinct and no xi is a variable in
any sj . Then, the most general uni�er is the substitution fx1 7! s1; : : : ; xn 7! sng. Let jtj denote the size of
the term t, that is the total number of its function symbols. (The size of a variable is zero.) Equations to be
solved will be written in the form s =? t. De�ne a well-founded ordering � on equations as follows: u=? v �
s=? t if (i) max(juj; jvj) > max(jsj; jtj), or else max(juj; jvj) = max(jsj; jtj) and max(juj; jvj)�min(juj; jvj)i
is greater than max(jsj; jtj)�min(jsj; jtj). We also use a constant F to denote the absence of a solution, and
make it smaller than any equation. Let MM be the following set of transformation rules operating on pairs
(P ;S) of sets of equations, with P containing the equations yet to be solved and S, the partial solution:

Delete: (fs=? sg [ P ;S) ) (P ;S)
Decompose: (ff(s1; : : : ; sm)=? f(t1; : : : ; tm)g [ P ;S) ) (fs1=? t1; : : : ; sn=? tng [ P ;S)
Fail: (ff(s1; : : : ; sm)=? g(t1; : : : ; tn)g [ P ;S) ) (;; fFg)

if f 6= g
Merge: (fx=? s; x=? tg [ P ;S) ) (fx=? s; s=? tg [ P ;S)

if x 2 X and x=? t � s=? t
Coalesce: (fx=? yg [ P ;S) ) (P�;S� [ fx = yg)

if x; y 2 X and x 6= y, where � = fx 7! yg
Check: (fx=? sg [ P ;S) ) (;; fFg)

if x 2 X , x occurs in s, and x 6= s
Eliminate: (fx=? sg [ P ;S) ) (P�;S� [ fx = sg)

if x 2 X , s 62 X , and x does not occur in s, where � = fx 7! sg

De�nition 17. A (syntactic) uni�cation procedure is any program that takes a �nite set P0 of equations,
and uses the above rules MM to generate a sequence of inferences from (P0; ;).

Starting with (fs=? tg; ;) and using the uni�cation rules repeatedly until none is applicable, results in
(;; fFg) i� s=? t has no solution, or else it results in a solved form (;; fx1 = s1; : : : ; xn = sng). The
application of any of these rules does not change the set of solutions of P [ S. Hence, the former signi�es
failure, and in the latter case, � = fx1 7! s1; : : : ; xn 7! sng is a most general uni�er of s and t. That � is
most general follows from the fact that the rules preserve all solutions.

For example, the most general uni�er of f(x; x; a) and f(g(y); g(a); y) is fx 7! g(a); y 7! ag, since

(ff(x; x; a)=? f(g(y); g(a); y)g; ;) )MM (fx=? g(y); x=? g(a); a=? yg; ;) )MM
(fx=? g(y); g(y)=? g(a); a=? yg; ;) )MM (fx=? g(a); g(a)=? g(a)g; fy = ag) )MM

(fx=? g(a)g; fy = ag) )MM (;; fx = g(a); y = ag)

On the other hand, f(x; x; x) and f(g(y); g(a); y) are not uni�able, since

(ff(x; x; x)=? f(g(y); g(a); y)g; ;) )MM (fx=? g(y); x=? g(a); x=? yg; ;) )MM
(fy=? g(y); y=? g(a)g; fx = yg) )MM (;; fFg)

on account of an \occur check."
To prove that repeated applications of MM always terminate, we can use a lexicographic combination of

an ordering on numbers and the multiset extension of the � ordering on equations. With each application of
a rule, (P ;S))MM (P 0;S0), either the solved set S is enlarged, or the problem set P is reduced under �mul.
Since the solved set cannot increase without bound (it can have at most one equation per variable), nor can
the unsolved set decrease without limit (since �mul is well-founded), there can be no in�niteMM -derivations.
Uncontrolled use of eliminate leads to exponential time complexity. With appropriate data structures and
control strategies, an e�cient algorithm is obtained, which is quasi-linear in the worst case (e.g. [Baxter,
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1976]); more careful implementations provide for truly linear, but less practical, algorithms (e.g [Paterson-
Wegman, 1978]). The coalesce rule allows us to avoid the use of \multi-equations"; cf. [Martelli-Montanari,
1982]. Eliminating the check rule produces solutions over the domain of (in�nite) \rational" trees [Huet,
1976], and has rami�cations for the semantics of some Prolog implementations [Colmerauer, 1984].

6.2 Semantic Uni�cation

When it comes to E-uni�cation, the situation is much more complex. A substitution � is a solution in E to an
equation s = t if s� =E t�, in which case we say that � is an E-uni�er of s and t; we say that t E-matches s if
there exists a substitution � such that s� =E t. E-uni�ability is undecidable whenever the word problem is,
and in many other cases as well. For example, the solvability of Diophantine equations, that is, polynomial
equations over the integers, is undecidable [Matijasevic, 1970], as is uni�ability under associativity and
distributivity alone [Szabo, 1982]). Satis�ability may be undecidable even even when congruence classes are
�nite (as for associativity, commutativity, and distributivity [Siekmann, 1984]). Second-order uni�ability
(equivalence of function de�nitions) is also undecidable, in general [Goldfarb, 1981]. On the brighter side,
many other theories have decidable uni�cation problems, including Presburger arithmetic [Presburger, 1927;
Shostak, 1979], real closed �elds [Tarski, 1951; Collins, 1975] and monoids [Makanin, 1978].

When more than one solution may exist for a theory E, we de�ne a solution � to be more general than
a solution �, if � ��E � in the E-subsumption ordering ��E , i.e. if there exists a substitution � such that
x�� =E x�, for all variables x in X , but not vice-versa. An E-uni�er is most general if no more general
uni�er exists. Note that E-subsumption is not well-founded for all E. There are decidable theories with
in�nite sets of most general uni�ers (an example is the set of solutions faiji � 1g to x � a = a � x, where
\�" is associative [Plotkin, 1972]), and there are some for which there are solutions, but no most general
one [Fages-Huet, 1983] (an example is associativity plus idempotence [Baader, 1986]). We say that a set
S of E-uni�ers is complete if for every E-uni�er there is one in S that is more general with respect to E-
subsumption. For example, a complete uni�cation algorithm exists for associativity and commutativity (AC)
[Stickel, 1981; Herold-Siekmann, 1987]; alternative algorithms with better performance are [Kirchner, 1989;
Boudet, 1989]. Other theories for which algorithms are available that compute �nite, complete sets of most
general E-uni�ers include commutativity, AC with identity and/or idempotency (see [Fages, 1987]), as well
as Boolean rings (see [Boudet-etal, 1988]). For many of these theories, uni�cation is believed intractable
from the time-complexity point of view [Kapur-Narendran, 1986].

Of course, E-uni�ability is semi-decidable for recursively-enumerable E. Paramodulation (without the
functional reexivity axioms) [Robinson-Wos, 1969] is one improvement over the obvious \British-museum"
method of interleaving the production of substitutions with the search for equational proofs.

Paramodulation may be improved upon by a more goal-oriented process. The following set of rules,
inspired by [Gallier-Snyder, 1987; Hsiang-Jouannaud, 1988], does the trick:

Decompose: (ff(s1; : : : ; sm)$
? f(t1; : : : ; tm)g [ P ;S) ) (fs1$

? t1; : : : ; sn$
? tng [ P ;S)

Eliminate: (fx$? sg [ P ;S) ) (P�;S� [ fx = sg)
if x 2 X , and x does not occur in s, where � = fx 7! sg

Mutate: (ff(s1; : : : ; sn)$? tg [ P ;S) ) (fs1$? u1; : : : ; sn$? un; r$? tg;S)
if f(u1; : : : ; un) = r is literally similar to an equation in E

but has no variables in common with S, P , t, or the si
Splice: (fs$? tg [ P ;S) ) (fs$? x; r$? tg [P ;S)

if x = r is literally similar to an equation in E
but has no variables in common with S, P , t, or the si

Imitate: (ff(s1; : : : ; sn)$? yg [ P ;S) )
(fs1$

? y1; : : : ; sn$
? yn; y$

? f(y1; : : : ; yn)g [ P ;S)
if y 2 X and the yi are new variables

We call this set of rules EU . These rules non-deterministically compute solved forms, each of which represents
an E-uni�er.
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De�nition 18. An E-uni�cation procedure is any (non-deterministic) program that takes a �nite set P0 of
equations, and uses the above rules EU to generate sequences of inferences from (P0; ;).

To generate a complete set of uni�ers may not require computing all possible sequences. In particular, the
use of imitate can be severely restricted [Hsiang-Jouannaud, 1988]. The set of rules EU can be improved
for particular classes of equations. Two special cases have been investigated: (i) when E is \strict" in the
sense that for any valid equation s = t, there exists a proof with at most one proof step taking place at
the top position [Kirchner, 1986]; and (ii) when there exists a ground-convergent set of rules complete for
E. In the �rst case, axioms of the form x = t, for variable x, are disallowed; hence splice is superuous.
Moreover, decompose must always apply after mutate; hence, the two can be compiled into a single rule.
For example, commutativity uses the following \mutate and decompose" rule:

(ff(s1; s2)=? f(t1; t2)g [P ;S) ) (fs1=? t2; s2=
? t1g [ P ;S)

More complex cases, involving bounded applications of axioms in E prior to decomposition, can be treated
similarly.

Methods of combining uni�cation algorithms for well-behaved theories that do not share symbols have
been given in [Yelick, 1987; Kirchner, 1989; Boudet-etal, 1988]; The general case was solved in [Schmidt-
Schauss, 1988]. Note that a uni�cation algorithm that generates a complete set of most general uni�ers (for
terms without free constants) does not automatically work for matching (one cannot just treat the variables
of t as constants, since that changes the algebra and may introduce unsound solutions) [Burckert-etal, 1987].

6.3 Narrowing

Even when a convergent system R exists for a theory E, E-uni�cation problem remains only semi-decidable.
For example, the system

x+ 0 ! x x+ succ(y) ! succ(x+ y) x+ pred(y) ! pred(x+ y)
x� 0 ! x x� succ(y) ! pred(x� y) x� pred(y) ! succ(x� y)
x � 0 ! 0 x � succ(y) ! (x � y) + y x � pred(y) ! (x � y) � y

succ(pred(x)) ! x pred(succ(x)) ! x

for addition and multiplication of integers is canonical, but were R-uni�cation (or R-matching) decidable,
then the existence of integer solutions to Diophantine equations, such as

x � x + y � y � succ(succ(succ(0))) = 0;

would also be decidable. The latter is Hilbert's Tenth Problem, shown to be undecidable in [Matijasevic,
1970]. (Cf. [Bockmayr, 1987; Heilbrunner-Holldobler, 1987].)

When a convergent R is available, a one-way sort of paramodulation su�ces, due to the existence of a
rewrite proof for an arbitrary valid equation [Dershowitz-etal, 1987b; Martelli-etal, 1989]. The following set
of rules, RU , restricts uses of equations to left-hand sides of rules:

Decompose: (ff(s1; : : : ; sm)!? f(t1; : : : ; tm)g [ P ;S) ) (fs1!? t1; : : : ; sn!? tng [ P ;S)
Eliminate: (fx!? sg [ P ;S) ) (P�;S� [ fx = sg)

if x 2 X , and x does not occur in s, where � = fx 7! sg
Mutate: (ff(s1; : : : ; sn)!? tg [ P ;S) ) (fs1!? u1; : : : ; sn!? un; r!? tg;S)

if f(u1; : : : ; un)! r is literally similar to a rule in R
but has no variables in common with S, P , t, or the si

Imitate: (ff(s1; : : : ; sn)!? yg [ P ;S) )
(fs1!? y1; : : : ; sn!? yn; y!? f(y1; : : : ; yn)g [ P ;S)

if y 2 X and the yi are new variables

This set of rules subsumes \narrowing", as used for this purpose in [Fay, 1979]:
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De�nition 19. A term s narrows (in one step) to a term t, via substitution �, symbolized s ;R t, if t is
s�[r�]p, for some non-variable position p in s, rule l! r in R (the variables of which have been renamed so
that they are distinct from those in s), and most general uni�er � of sjp and l.

The verb \narrow" perhaps carries the wrong connotation: it is the set of R-congruence classes of instances of
the term that is being narrowed. It is easy to see that RU mimics narrowing by using decompose, imitate,
and mutate. For example, if R is ff(x; x)! c(x); a! bg, then the problem ff(a; y)!? z; f(y; b)!? zg
mutates to fa!? x; y!? x; c(x)!? z; f(y; b)!? zg. Then a is imitated by x, and x and y are eliminated,
by substituting a for them: fc(a)!? z; f(a; b)!? zg. This corresponds to narrowing of f(a; y) to c(a) by
instantiating y 7! a, and eventually yields the solution fy 7! a; z 7! c(b)g.

Narrowing has the following property:

Narrowing Lemma. If R is a convergent rewrite system and s� !�
R t, then there exist terms u and v such

that s ;�
R u, t !�

R v, and v �� u.

If � is irreducible (that is, if x� is irreducible for all variables x), then t = v, and the lemma holds even
for non-convergent R [Hullot, 1980]. Without convergence, reducible solutions are lost. For example, if R is
ff(a; b)! c; a! bg or ff(x; g(x))! c; a! g(a)g, then f(y; y) cannot be narrowed, and f(y; y)!? c fails to
lead to a solved form, despite the fact that there is a solution fy 7! ag.

Variations on narrowing include: normal narrowing [Fay, 1979] (in which terms are normalized via !!
R

before narrowing), basic narrowing [Hullot, 1980] (in which the substitution part of prior narrowings is
not subsequently narrowed), and their combination [Rety-etal, 198?], all of which are semi-complete for
convergent R. Class-rewriting yields similar results [Jouannaud-etal, 1983].

6.4 Further Reading

For a survey regarding syntactic uni�cation, see [Lassez-etal, 1988]; for uni�cation in general, see [Huet, 1976].
For a survey of theory and applications of syntactic and semantic uni�cation, see [Knight, 1989]. Questions
of decidability of uni�cation in equational theories are summarized in [Siekmann, 1984]; a summary of
complexity results for some of the decidable cases is [Kapur-Narendran, 1987]. A popular exposition on
the undecidability of the existence of solutions to Diophantine equations is [Davis-Hersh, 1973]. For a
comprehensive treatment of narrowing and E-uni�cation, see [Kirchner, 1985]. For the satis�ability problem
of arbitrary �rst-order formulae with equality as the only predicate, see [Maher, 1988],Comon-Lescanne-1989.

7 CRITICAL PAIRS

In this section, we continue our study of the Church-Rosser property for rewrite systems. In particular, we
will see that conuence is decidable for �nite, terminating systems. Conuence, in general, is undecidable
[Huet, 1980], even if all rules are monadic [Book-etal, 1981]. For �nite ground systems|even if they are
nonterminating|decision procedures exist (see [Dauchet-etal, 1987; Oyamaguchi, 1987]). Ground conuence,
on the other hand, is undecidable, even if the system is terminating [Kapur-etal, 1987]. Even for convergent
systems R, the questions whether congruence classes de�ned by $�

R are �nite in number, or are all �nite in
size, are undecidable, unless R is ground [Raoult, 1981].

7.1 Term Rewriting

Let l ! r and s ! t be two rules. We say that the left-hand side l overlaps the left-hand side s if there is a
nonvariable subterm sjp of s such that l and sjp have a common upper bound with respect to subsumption.
To determine overlap, the variables in the two (not necessarily distinct) rules are renamed, if necessary, so
that they are disjoint. Then, l overlaps s if there exists a unifying substitution � such that l� = s�jp. When
there is an overlap, the overlapped term s� can be rewritten to either t� or s�[r�]p. The two-step proof
t� R s�[l�]p!R s�[r�]p is called a critical peak.
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Figure 4: Proof of Critical Pair Lemma.

De�nition 20. If l ! r and s ! t are two rewrite rules with distinct variables, p is the position of a
nonvariable subterm of s, and � is a most general uni�er of sjp and l, then the equation t� = s�[r�]p is a
critical pair formed from those rules.

Thus, a critical pair is the equation arising from a most general nonvariable overlap between two
left-hand sides. For example, push(x; alternate(�; y)) = push(x; y) is the critical pair obtained from
alternate(push(x; y); z) ! push(x; alternate(z; y)) and alternate(y;�) ! y.

Let cp(R) denote the set of all critical pairs between (not necessarily distinct, but perhaps renamed)
rules in R and let $cp(R) denote its symmetric rewrite closure.

Critical Pair Lemma ([Knuth-Bendix, 1970]). For any rewrite system R and peak s  R u !R t,
there either exists a rewrite proof s !�

R v  �
R t or a critical-pair proof s $cp(R) t.

The proof [Knuth-Bendix, 1970], depicted in Figure 4, considers all relative positions of the two redexes.
As stressed in [Huet, 1980], no assumption of termination is necessary for this lemma. It follows from

this and the Diamond Lemma, that a terminating system R is conuent i� cp(R), regarded as a relation, is
a subset of the joinability relation !�

R � 
�
R. This holds, for instance, for the stack interleaving example of

Section 3.2. Since �nite systems have a �nite number of critical pairs, their conuence is decidable, provided
they are terminating. This criterion for conuence is called the superposition test [Knuth-Bendix, 1970].

Without termination, a system may have no critical pairs (hence be locally conuent), and still be non-
conuent. A system sans critical pairs (except trivial ones of the form t = t) is called non-overlapping ,
or non-ambiguous. The following example of a non-overlapping, but non-conuent system [Huet, 1980], is
based on the \ladder" in Figure 2(b):

f(x; x) ! a
f(x; g(x)) ! b

c ! g(c)

The term c has no normal form, but f(c; c) has two, a and b. This example can be modi�ed so that the
system is normalizing [Sivakumar, 1986]:
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f(x; x) ! g(x)
f(x; g(x)) ! b

h(c; y) ! f(h(y; c); h(y; y))

The Critical Pair Lemma can be weakened so that not all pairs need be considered. Various such critical
pair criteria have been investigated, all revolving around the case of a critical peak that is rewritable in
additional ways, making it possible to replace the peak with an alternate proof that is in some sense smaller.
The connectedness criterion is based on the well-founded method of establishing local conuence (mentioned
in Section 4.1) and ignores any critical pair s = t derived from an overlap s R u!R t such that there
exists another proof s $�

R t, each term of which is derivable from u by!+
R
[Winkler-Buchberger, 1983]; the

compositeness criterion ignores critical pairs for which the overlapped term can be rewritten at a position
strictly below the point of overlap [Kapur-etal, 1988].

7.2 Regular Systems

By enforcing strong restrictions on the form of left-hand sides, conuence can be ensured even for non-
terminating systems.

De�nition 21. A rewrite system that is both left-linear (no multiple occurrences of a variable on the left)
and non-overlapping (no non-trivial critical pairs) is called regular.

Examples of regular systems are the stack and Combinatory Logic systems (of Sections 2.3 and 2.4, respec-
tively). Mutually recursive function de�nitions, with one equation (employing if � then � else �) per de�ned
function, are regular. Regular systems are always conuent, by the following result:

Parallel Moves Lemma ([Huet, 1980]). If R is regular, then !
k
R is strongly conuent.

The symbol !
k
R denotes one \parallel" application of rules in R at disjoint redexes. (For the name

and inspiration of this lemma, cf. [Curry-Feys, 1958]). The conuence of regular systems establishes the
consistency of the operational semantics of recursive programming languages; see [Raoult-Vuillemin, 1980].
The above lemma may be weakened to allow critical pairs that join in one parallel step [Huet, 1980]; the
ground case was considered in [Rosen, 1973].

For regular systems, normal forms can be computed by a \parallel-outermost" redex evaluation scheme
[O'Donnell, 1977a], but not by a \leftmost-outermost" scheme [Huet-Levy, 1990]; with additional \sequential-
ity" requirements, one can e�ciently compute normal forms, without lookahead [Ho�mann-O'Donnell, 1979;
Huet-Levy, 1990]. How to avoid all unnecessary rewrites and obtain an optimal strategy is, however, an
undecidable problem, in general [Huet-Levy, 1990].

For modularity of programming with rewrite systems, one would have wished that the union of two con-
vergent systems over disjoint vocabularies be convergent. Unfortunately, though the union of two conuent
systems sharing no function symbols is conuent [Toyama, 1987a], the termination property (as we saw in
Section 5.4) is not preserved under disjoint union. This is true even for conuent systems [Toyama, 1987b].
If, however, the two convergent systems are also left-linear, then their union is convergent [Toyama-etal,
1989].

7.3 Class Rewriting

Critical pairs also provide a necessary and su�cient condition for a left-linear terminating system R to be
Church-Rosser modulo a congruence S. That is, if cp(R [ S) is a subset of !!

R �$
�
S � 

!
R, then $

�
R[S

is also contained therein [Huet, 1980]. Then, R-normal forms may be used to decide validity, provided S-
equivalence is decidable. For example, if S is commutativity and R includes all commutativity variants of
its rules, then R-normal forms are unique up to permutations of operands.

To handle rewriting modulo a congruence in the presence of non-left-linear rules, [Peterson-Stickel, 1981]

suggested using the extended rewrite relation SnR to compute normal forms. The set of critical peaks of the
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form t� SnR s�!SnR s�[r�]p is in general in�nite, so the Critical Pair Lemma is of little practical help.
Instead, we consider peaks t� R s�!SnR s�[r�]p and cli�s t�$S s�!SnR s�[r�]p separately.

De�nition 22. Let S be an set of equations. If s ! t and l ! r are two rewrite rules with distinct
variables, p is the position of a nonvariable subterm of s, and � is a most general substitution (most general,
with respect to subsumption modulo S) such that s�jp =S l�, then t� = s�[r�]p is an S-critical pair
of the two rules. If s $ t is an equation in S, l ! r is a rewrite rule (renamed as necessary), p is the
position of a nonvariable proper subterm of s, and � is a most general substitution such that s�jp =S l�,
then t� ! s�[r�]p is an S-extended rule of l ! r.

In the set cpS(R), we include all critical pairs obtained by overlapping S-variants of rules in R on (renamed)
rules in R. We also need the set exS(R) of extended rules obtained by overlapping variants of rules in R on
(renamed) equations in S.

Extended Critical Pair Lemma ([Jouannaud, 1983]). For any rewrite system R, equational system
S, and peak s  R � !SnR t, there exists a rewrite proof s !�

SnR � $
�
S �  

�
SnR t, or a critical-pair proof

s $�
S � $cpS(R) � $

�
S t which may involve S-steps within the critical pair's variable part only. Similarly,

for any cli� s $S � !SnR t, there exists a rewrite proof s !�
SnR � $

�
S �  

�
SnR t, or an extended-rule

proof s $�
S � �!exS(R) � $

�
S t which may involve S-steps within the extended rule's variable part only.

The point is that in the absence of a rewrite proof, there must be a proof that is an application of an
\S-instance" of a critical pair. The possible need for S-steps in the variable part is illustrated by the equation
a $ b and rules f(x) ! g(x) and f(x) ! h(x). A critical peak g(a)  R f(a) $S f(b) !R h(b) lends
itself to the critical pair proof g(a) $S g(b) $cp(R) h(b).

Using this lemma, it can be shown that if R=S is terminating and the subterm relation modulo S is well-
founded, then SnR is Church-Rosser modulo S i� cpS(R) and exS(R) are contained in !!

SnR �$
�
S � 

!
SnR

[Jouannaud-Kirchner, 1986]. If these conditions are satis�ed, and an S-matching procedure is available, then
validity in R [ S can be decided. Note that subterm modulo S is well-founded when S-congruence classes
are �nite.

It is possible to combine the above results by partitioning rules into left-linear and not necessarily left-
linear subsets. The critical pair condition can then be tailored to the di�erent kinds of rules, with term
rewriting used for the left-linear subset and extended rewriting for the rest [Jouannaud-Kirchner, 1986]. Ad-
ditional improvements are provided by critical pair criteria for extended rewriting, as described in [Bachmair-
Dershowitz, 1987a].

7.4 Ordered Rewriting

Ordered rewriting systems enjoy a similar critical pair condition for conuence, but only for certain classes
of orderings and only for ground terms. An ordering > is called a complete simpli�cation ordering if it is
a simpli�cation ordering that is total on G, i.e. for any two distinct ground terms u and v, either u > v or
v > u. For example, if a precedence is total, it is easy to show that the induced lexicographic path ordering
>lpo is a complete simpli�cation ordering (a property not shared by the multiset path ordering).

De�nition 23. Let l = r and s = t be two equations in E (with disjoint variables) such that l overlaps s
at non-variable position p with most general uni�er �. The equation t� = s�[r�]p is a critical pair if the
participating steps t� $E s� $E s�[r�]p can form a peak; in other words, if t�  E s� !E s�[r�]p,
for some substitution .

Let cp>(E) denote the set of all such critical pairs between equations in E.

Ordered Critical Pair Lemma ([Lankford, 1975]). For any set of equations E, complete simpli�cation
ordering >, and peak s  E u !E t between ground terms s; t; u, there either exists an ordered-rewrite proof
s !�

E �  
�
E t or a critical-pair proof s $cp

>
(E) t.
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The di�erence between the proof of this and the original Critical Pair Lemma is only that the bottom
step in Figure 4(b) may go one way or the other, depending on whether s > t or vice-versa. (If s = t, the
rewrite proof is trivial.) It is to ensure that s and t are comparable, that we require > to be total on ground
terms.

It may seem that local conuence is not guaranteed by the critical pair condition, when equations in E
have variables on one side that do not appear on the other. For example, with E = fx+ g(y) = x+ f(z)g,
and > the lexicographic path ordering induced by the precedence g > f > b > a, there is a peak a+f(b)
 E a + g(a) !E a + f(a), whereas there is no rewrite proof a + f(b) !E a + f(a). But, in fact, there
is a critical pair hidden here: overlapping the left-hand side of the equation on a literally similar instance
x+ g(y0) = x+ f(z0) gives the pair x+ f(z) = x+ f(z0). Thus, a+ f(b) �!cp

>
(E) a + f(a).

With local conuence established, we have a ground convergent rewrite relation !E . Such an ordered-
rewriting system|when �nite|may be used to decide validity: if s = t is valid for ground convergent E,
then by Skolemizing the variables in s and t, that is by treating those variables as constants, and extending
the ordering > to include them, both s and t will have the same normal form. For example, if E is the
commutativity axiom x � y = y � x and z > y > x in a lexicographic path ordering, then (y � x) � z and
z � (y � x) have the same normal form, (x � y) � z.

As a more interesting example, consider the following system for entropic groupoids [Hsiang-Rusinowitch,
1987]:

(x � y) � x ! x
x � (y � z) ! x � z

((x � y1) � y2) � z) ! x � z
(x � y1) � z $ (x � y2) � z

and suppose we wish to decide validity of an equation s = t. First, the variables x1, : : : , xn appearing in
s and t are replaced by Skolem constants c1, : : : , cn. Then, a lexicographic path ordering is used with a
precedence in which \�" is larger than the constants, and the constants are linearly ordered: cn > : : : > c1.
The equation is used to rewrite any product of the form (x � y1) � z to the same term with the occurrence of
y1 replaced by the smallest term (viz. c1) under >lpo .

7.5 Reduced Systems

By reducing right-hand sides and deleting rules with rewritable left-hand sides, a convergent system can
always be converted into a canonical, i.e. reduced and convergent, one (see, e.g., [Metivier, 1983]). One
of the nice things about reduced systems is that, for any given equational theory, there can be only one
(�nite or in�nite) canonical system contained in a particular reduction ordering [Butler-Lankford, 1980;
Metivier, 1983]. This uniqueness result is up to literal similarity. Uniqueness does not, however, hold for
arbitrary canonical class-rewriting systems [Dershowitz-etal, 1988], but does for associative-commutative
systems [Lankford-Ballantyne, 1983].

7.6 Further Reading

A detailed study of the Church-Rosser property of non-overlapping systems is [Klop, 1980]. Computing with
regular systems is the subject of [O'Donnell, 1977a].

8 COMPLETION

In the previous section, we saw that conuence of �nite terminating systems can be decided using the
superposition test. Suppose a given system fails that test because some critical pair has no rewrite proof.
Building on ideas of Evans [1951], Knuth and Bendix [1970], suggested extending such a system with a
new rule tailored to cover the o�ending critical pair. Of course, new rules mean new critical pairs, some of
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which may also not pass the test. But, often enough, repeating this process eventually leads to a convergent
system, with all critical pairs having rewrite proofs. This procedure is called completion. Interestingly, the
critical pairs generated along the way are frequently the kind of lemmata a mathematician would come up
with [Knuth-Bendix, 1970].

Starting with a �nite set of equations and a reduction ordering on terms, the completion procedure
attempts to �nd a �nite canonical system for the theory presented by the equations by generating critical
pairs and orienting them as necessary. If reducing the two sides of a critical pair s = t yields an equation
u = v, where u and v are not identical, then adding a new rule u!v or v!u supplies a rewrite proof for
s = t. To decide between the two orientations, the given reduction ordering is employed: if u � v then
u!v is added, while if v � u then v!u is chosen. The new rule, u!v or v!u, is then used to form
new critical pairs. Running the procedure can have one of three outcomes: success in �nding a canonical
system, failure in �nding anything, or looping and generating an in�nite number of rules (forming an in�nite
canonical system).

8.1 Abstract Completion

Completion has recently been put in a more abstract framework [Bachmair-etal, 1986], an approach we adopt
here. As in traditional proof theory (cf. [Takeuti, 1987]), proofs are reduced, in some well-founded sense, by
replacing locally maximal subproofs with smaller ones, until a normal-formproof is obtained. In completion,
the axioms used are in a constant state of ux; these changes are expressed as inference rules, which add a
dynamic character to establishing the existence of reducible subproofs. This view of completion, then, has
two main components: an inference system, used in the completion process to generate new rewrite rules,
and a rewrite relation that shows how any proof can be normalized, as long as the appropriate rules have
been generated.

An inference rule (for our purposes) is a binary relation between pairs (E;R), where E is a set of equations
and R is a set of rewrite rules. (Rules or equations that di�er only in the names of their variable are, for all
intents and purposes, treated as identical.) Let � be a reduction ordering, and ��_ the well-founded ordering
on rules de�ned as follows: s! t ��_ l! r if (i) s �� l under the encompassment ordering, or else (ii) s

�

= l (s
and l are literally similar) and t � r. We de�ne the following set KB of six inference rules:

Delete: (E [ fs = sg;R) ` (E;R)
Compose: (E;R [ fs! tg) ` (E;R [ fs!ug) if t !R u
Simplify: (E [ fs = tg;R) ` (E [ fs = ug;R) if t !R u
Orient: (E [ fs = tg;R) ` (E;R [ fs! tg) if s � t
Collapse: (E;R [ fs! tg) ` (E [ fu = tg;R)

if s !R u by l! r with s! t ��_ l! r
Deduce: (E;R) ` (E [ fs = tg;R) if s = t 2 cp(R)

We write (E;R) `KB (E0;R0) if the latter may be obtained from the former by one application of a rule in
KB . Delete removes a trivial equation s = s. Compose rewrites the right-hand side t of a rule s ! t,
if possible. Simplify rewrites either side of an equation s = t. Orient turns an equation s = t that is
orientable (s � t or t � s) into a rewriting rule. Collapse rewrites the left-hand side of a rule s ! t
and turns the result into an equation u = t, but only when the rule l ! r being applied to s is smaller
than the rule being removed under the rule ordering. Deduce adds equational consequences to E, but only
those that follow from critical overlaps s  R u !R t.

De�nition 24. A (standard) completion procedure is any program that takes a �nite set E0 of equations
and a reduction ordering �, and uses the above rules KB to generate a sequence of inferences from (E0; ;).

In practice, the completion rules are usually applied in the given order, saving space by preserving only
reduced rules and equations. The results of a �nite completion sequence (E0; ;) `KB (E1;R1) `KB � � � `KB
(En;Rn) are En and Rn; more generally, the limit of a possibly in�nite completion sequence (E0; ;) `KB
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(E1;R1) `KB � � � is the pair (E1;R1), where E1 is the set [i�0 \j�i Ej of persisting equations and R1

is the set [i�0 \j�i Rj of persisting rules. We say that a completion sequence is successful, if E1 is empty
and R1 is canonical.

If success occurs after a �nite number of steps, then the resultant system R1 is a decision procedure for
E0. But the completion may \loop", producing an in�nitely large set of persisting rules. A simple example
[Ardis, 1980] of looping is provided by the equation f(g(f(x))) = g(f(x)). Oriented the only way possible,
the rule f(g(f(x)))! g(f(x)) overlaps itself, generating the critical pair g(f(g(f(x)))) = f(g(g(f(x)))),
which simpli�es to g(g(f(x))) = f(g(g(f(x)))). Continuing in the same manner, an in�nite set of rules
ff(gi(f(x)))! gi(f(x))ji � 1g is produced.

The rules in KB are evidently sound, in that the class of provable theorems is unchanged by an inference
step. Furthermore, only rules contained in � are added. We are thus assured that the limit R1 of any
(�nite or in�nite) successful completion sequence is terminating and presents the same equational theory as
did E0. Figure 5 shows an example of a successful completion sequence. Starting with the three axioms

x � 1 = x
1 � x = x

x� � (x � y) = y

over a vocabulary containing a constant 1, post�x unary symbol \�", and in�x binary symbol \�", it generates
the eight-rule canonical system

1 � x ! x x � 1 ! x
x� � x ! 1 x � x� ! 1

1� ! 1 (x�)� ! x
x� � (x � y) ! y x � (x� � y) ! y

using size as the reduction ordering.
For a given reduction ordering �, a (not necessarily �nite) convergent system R contained in � exists

for an equational theory E, i� each E-congruence class of terms has a unique minimal element vis-a-vis �
[Avenhaus, 1985]. Nonetheless, completion may fail to �nd R, even when given!+

R as the reduction ordering
[Dershowitz-etal, 1988]. For example, despite the existence of ff(a)! a; c!a; b!ag, no successful sequence
exists for ff(b) = a; f(c) = c; b = cg, as long as b and c are incomparable under the given ordering. In fact, on
account of the partialness of the ordering, some sequences may fail while others may succeed [Avenhaus, 1985;
Dershowitz-etal, 1988]. For example, let � be a recursive path ordering with precedence f � d � c � a
and d � b � a (but b and c are incomparable), and let E0 = ff(c) = c; b = d; c = d; f(d) = ag. There is a
successful sequence:

(E0; ;)
+
`
KB

(fb = d; f(d) = ag; fd!c; f(c)! cg)
+
`
KB

(;; ff(a)! a; b!a; c!a; d!ag)

as well as a failing one:

(E0; ;)
+

`
KB

(fc = d; f(d) = ag; fd!b; f(c)! cg)
+

`
KB

(fb = cg; ff(b)!a; d!b; f(c)! cg)

The latter sequence cannot be extended further.
As pointed out already in [Knuth-Bendix, 1970], such failures can be circumvented by incorporating an

inference rule that adds s ! k(x1; : : : ; xn) and t ! k(x1; : : : ; xn) to Ri if s = t is an unorientable equation
in Ei, where k is a new function symbol not in the original vocabulary and x1; : : : ; xn are those variables
appearing in s and t. Though this inference is not sound (it constitutes a conservative extension), it results
in a decision procedure if ultimately successful. In the above failing example, replacing b = c with b!k and
c!k leads directly to fa!k; b!k; c!k; d!k; f(k)! kg. Two terms s and t in T (fa; b; c; d; fg) are equal
in the original theory i� they have the same normal form in this system. Unfortunately, this process can, in
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i Ri Ei inference

0 1 � x = x
x � 1 = x

x� � (x � y) = y
1 x � 1 ! x 1 � x = x orient

x� � (x � y) = y

2 R1 x� � (x � y) = y orient
1 � x ! x

3 R2 orient
4 x� � (x � y) ! y x� � x = 1 deduce (1,3)
5 R3 orient
6 x� � x ! 1 1� = 1 deduce (1,5)
7 R5 orient
8 1� ! 1 (x�)� � y = x � y deduce (3,3)
9 R7 orient
10 (x�)� � y ! x � y 1� � y = 1 � y deduce (7,9)
11 1� � y ! 1 � y orient
12 R9 compose (11,2)

1� � y ! y
13 R9 1 � y = y collapse (12,7)
14 y = y simplify (2)
15 delete
16 (x�)� = x deduce (1,9)
17 R9 orient

(x�)� ! x
18 R7 x � y = x � y collapse (9,17)
19 1� � y ! y delete
20 (x�)� ! x x � (x� � y) = y deduce (3,17)
21 R18 orient
22 x � (x� � y) ! y x � x� = 1 deduce (1,21)
23 R21 orient

x � x� ! 1

Table 1: A successful completion sequence for a fragment of group theory.
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general, degenerate into unsuccessful sequences that add in�nitely many new symbols. As we will see below,
completion has been extended in various ways, in particular to handle the associative-commutative axioms,
which cannot be handled as rules.

Completion can also be used as a mechanical theorem prover. The idea is that, even when the procedure
loops, any valid theorem should eventually have a rewrite proof using the rules already on hand. This is not
actually the case, since a procedure might abort when no equation is orientable. But for implementations that
are fair in their choice of inferences, one can show that|barring abortion|all provable equations eventually
lend themselves to a direct proof by rewriting. This perspective on completion was taken by Huet [Huet,
1981], and in [Lankford, 1975] from the refutational point of view. The di�cult part is the need to show that
deleting simpli�able rules does not|in the long run|shrink the class of equations having rewrite proofs.
Once we have established that completion acts as a semi-decision procedure for validity when it loops, we
will be ready to apply it to theorem-proving in inductive theories and in �rst-order predicate calculus.

A proof in E [R is a sequence of E-steps and R-steps. By applying the above inference rules, it may be
possible to simplify a given proof, replacing some steps with alternate ones from E0 [ R0, whenever (E;R)
`�
KB

(E0;R0). By a proof pattern we intend a schema describing a class of subproofs; e.g. to characterize
rewrite proofs, we use the pattern s!�

R v  �
R t, where s, t, and v denote arbitrary terms. If a proof contains

no peaks s  R u !R t nor applications s $E t of equations, it must be a rewrite proof. Let E� be the set
of all equations deducible from E0 and R� be the orientable subset of E� that intersects with the reduction
ordering �. The following set C of proof-pattern rules captures the elimination of the undesirable patterns
and the simpli�cation of proofs that takes place during completion:

s$E� s ) s
s!R� t ) s!R� v R� t where s!R� t by l! r and s!R� v by l0! r0 and l! r ��_ l0! r0

s$E� t ) s!R� v$E� t
s$E� t ) s!R� t
s!R� t ) s!R� v$E� t where s!R� t by l! r and s!R� v by l0! r0 and l! r ��_ l0! r0

s R� u!R� t ) s$E� t
s R� u!R� t ) s!�

R� v 
�
R� t

Symmetric rules, with the proof patterns on both sides of ) inverted, are also needed.
Note how these rules correspond exactly to the e�ect of the inference rules: Any proof step involving a

deleted equation can be omitted; when a rule is replaced with a new composed rule, any rewrite step using
it can be replaced by a two-step valley; when an equation is simpli�ed, its use in a proof is replaced by
a rewrite step and a smaller equational step; when an equation is oriented, the corresponding proof step
becomes a rewrite step; when a rule is collapsed into an equation, a combination of a rewrite and equational
steps may be used instead; when a critical pair is deduced, the corresponding critical peak in a proof may
be replaced by a new equational step. The last proof-pattern rule corresponds to a non-critical peak, which
can always be converted into a valley.

We assume that the ordering is such that for any equation s = t in E� there is a term v for which s !�
R�

v  �
R� t. (With a reduction ordering that does not satisfy this condition there is no chance of a successful

completion.) Then, at least one of the rules of C can be applied to any non-rewrite proof or to any proof
employing a non-reduced rule. Thus, C-normal forms are R�-rewrite proofs that use only reduced rules.
Furthermore, we can apply the techniques of Section 5 and show that the proof-normalization relation )C

is terminating: Consider the ordering �c which compares proofs by comparing multisets containing the pair
hfsg; l! ri for each application s !R� t of a rule l! r and hfs; tg; l! ri for each application s $E� t of
an equation l = r. Pairs are compared lexicographically, using the multiset ordering �mul induced by the
given reduction ordering � for the �rst component, and the ordering ��_ on rules for the second. Multisets
of pairs, measuring the complexity of proofs, are compared by �c, the multiset ordering induced by this
lexicographic ordering. Since � and ��_ are both well-founded, �c is a reduction ordering on proofs. Since it
can be veri�ed that C is contained in �c, the former is terminating. Note how this proof ordering considers
the justi�cation of a proof and not just the terms in it. For further details, consult [Bachmair, 1989b].
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8.2 Fairness

For any given completion sequence (E0; ;) `KB (E1;R1) `KB � � �, let $�
i stand for $�

Ei[Ri , that is, for a
proof at the ith stage, using rewriting with Ri in either direction or equational steps with Ei. The proof
normalization relation C mirrors the inference system KB in that for any completion sequence and for any
proof s$�

i t at stage i there exists a proof s$�
j t at each subsequent stage j such that s $�

i t )�
C s $�

j

t. In this way, inference rules are used to generate rules needed for proofs to be C-reducible. A (possibly
in�nite) sequence (E0; ;) `KB (E1;R1) `KB � � � is deemed fair if for any proof s $�

i t that is C-reducible,
there exists a step j, such that s $�

i t )
+
C s $�

j t. Imposing fairness, we have:

Proof Normalization Theorem ([Huet, 1981]). If a completion sequence (E0; ;) `KB (E1;R1) `KB � � �
is fair, then for any proof s $�

i t there exists a proof s !�
R1

v  �
R1

t using reduced rules only.

Huet introduced the notion of fairness of completion and proved this theorem for a speci�c fair imple-
mentation; the following proof [Bachmair-etal, 1986] builds on the above development and holds for any
implementation of the inference system KB :

Proof. The proof is by induction with respect to )C . Suppose that s $�
i t is not a rewrite proof

s !�
R1
� �

R1
t. Then it must contain a peak that is reducible by C. Similarly, if s $�

i t involves a

nonpersistent step, then it is C-reducible. By fairness, s $�
i t )

+
C s $�

j t for some step j and by induction
there is a proof s !�

R1
� �

R1
t with only reduced rules.

By the Critical Pair Lemma, non-critical peaks are C-reducible. Thus, it can be shown that a completion
sequence is fair if all persistent critical pairs are accounted for (cp(R1) is a subset of [Ei), no simpli�able
rule persists (R1 is reduced), and no equation persists (E1 is empty). Practically speaking, fairness means
that critical pairs are generated for all new rules, and need eventually to be simpli�ed or oriented, unless
the new rule itself is later simpli�ed. A marking scheme is generally used to keep track of which rules still
need to be overlapped with which; see, for instance, [Huet, 1981]. By generating the remaining critical pairs
and then eliminating them, Figure 5 becomes fair.

We say that an n-step completion sequence (E0; ;) `KB (E1;R1) `KB � � � `KB (En;Rn) succeeds if En is
empty, Rn is reduced, and each of the latter's critical pairs already appeared in some Ei. The sequence fails
if no fair sequence has it as a pre�x; in that case there is little point continuing. A completion procedure
is considered correct if it only generates fair, successful sequences|when it does not abort. Assuming
the procedure never discriminates against any critical pair or simpli�able rule or equation, the only good
reason to abort (and produce a failing sequence) is if all equations are unorientable. The critical pair criteria
mentioned in the Section 7.1 may be used to improve on the above requirements for fairness, by necessitating
consideration of fewer critical pairs; see [Bachmair-Dershowitz, 1988].

It follows from the above theorem that the limit R1 of a fair sequence is canonical. Furthermore, since
$�

1 =$�
0, completion, correctly implemented, provides a semi-decision procedure for validity, or else aborts.

That is, ifMod(E0) j= s = t, and if completion does not give up in the middle, then, at some step k, it will
be possible to check that s !!

Rk
� !

Rk
t.

Note that two successful derivations, given the same starting set E0 and reduction ordering �, must
output the same canonical systems, be they �nite or in�nite, since there can be but one reduced, canonical
system (up to literal similarity) contained in � (see Section 7.5). Thus, if there exists a canonical system
R for E0 contained in �, then a correct procedure, given E0 and �, cannot succeed with any system but
R|though it may abort without �nding it. Furthermore, if R is �nite, then an in�nite, looping completion
sequence is likewise impossible, since R1 must be of the same size as R.

8.3 Extended Completion

Before we consider other theorem-proving applications of completion, we adapt it to handle extended rewrit-
ing. Let S be an equational system and � a reduction ordering such that � commutes over S. Rules are
compared using the following ordering: s! t ��_ l! r if s �� s0 =S l, for some s0 (i.e. if s properly encompasses
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a term that is S-equivalent to l), or else s
�

= l and t � r. We de�ne the following set KB=S of inference
rules:

Delete: (E [ fs = tg;R) ` (E;R) if s $�
S t

Compose: (E;R [ fs! tg) ` (E;R [ fs! vg) if t !R=S v
Simplify: (E [ fs = tg;R) ` (E [ fu = tg;R) if s !R=S u
Orient: (E [ fs = tg;R) ` (E;R [ fs! tg) if s � t
Collapse: (E;R [ fs! tg) ` (E [ fv = tg;R)

if s !R=S v by l! r with s! t ��_ l! r
Extend: (E;R) ` (E;R [ fs! tg) if s! t 2 exS(R)
Deduce: (E;R) ` (E [ fs = tg;R) if s = t 2 cpS(R)

As before, we write (E;R) `KB=S (E0;R0) if the latter may be obtained from the former by one application
of a rule in KB=S. With this inference system, delete removes an equation between S-equivalent terms;
collapse simpli�es left-hand sides; extend adds extended rules; deduce generates extended critical pairs.
Extended rewriting requires S-matching; S-completion requires S-uni�cation to generate critical pairs and
extended rules. The set S is unchanging throughout.

De�nition 25. An S-completion procedure is any program that takes a �nite set E0 of equations, an S-
uni�cation procedure, and a reduction ordering � that commutes over S, and uses the above rules KB=S to
generate a sequence of inferences from (E0; ;).

The most important case, in practice, is when S is a set of commutativity (C) or associativity-
commutativity (AC) axioms for some binary function symbols [Lankford-Ballantyne, 1977b; Peterson-Stickel,
1981]. For the purposes of AC-completion, rules are commonly attened by removing nested occurrences of
associative-commutative symbols. An associative-commutative uni�cation algorithm is employed|in place
of the standard (syntactic) uni�cation algorithm|to generate the critical pairs in cpAC(Ri), and associative-
commutativematching is used to apply rules. For each rule f(s; t) ! r headed by an associative-commutative
symbol f , an extended rule f(s; f(t; z)) ! f(r; z) is added and attened out to f(s; t; z) ! f(r; z); exten-
sions of AC-extended rules are redundant.

For example, consider the same set E0 as in Figure 5, along with the following set S of AC axioms:

x � y $ y � x
x � (y � z) $ (x � y) � z

Extend uses associativity to create two extended rules, (1 � x) � z!x � z and x� � (x � z)! 1 � z, the �rst
of which collapses away, and the second of which composes to yield an existing rule. Deduce generates
(x �y)� �x!y� from an S-overlap of x� � (x � y) ! y on itself (at position 2). The resultant rule is extended
to (x � y)� � (x � z)! y� � z, which forms an S-critical pair with x� � x!1 and generates x� � y�!(x � y)�.
Extending as necessary, cleaning up, and attening products, the �nal result is:

1� ! 1 x � 1 ! x
x � x� ! 1 x � x� � z ! z
(x�)� ! x (x � y�)� ! x� � y

(x � y)� � x ! y� (x � y)� � x � z ! y� � z
x� � y� ! (y � x)� x� � y� � z ! (y � x)� � z

A better choice of ordering, one that would make (y �x)� greater than x� � y�, would result in the following
neater system G=AC for Abelian (commutative) groups:

1� ! 1 x � 1 ! x
x � x� ! 1 x � x� � z ! z
(x�)� ! x (y � x)� ! x� � y�
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A proof in S [E [R is a sequence of S-steps, E-steps, and R-steps. Analogous to the standard case, a
relation )C=S can be de�ned that describes the simplifying e�ect of S-completion at the proof level. Using
the Extended Critical Pair Lemma, it can then be shown that a completion sequence is fair (with respect to
)C=S) if all persistent critical pairs are accounted for (cpS(R1) is a subset of the S-variants of [Ei), all
persistent extended rules are accounted for (exS(R1) is a subset of the S-variants of [Ri), and no equation
persists (E1 is empty). With fairness, we get that an extended-rewrite proof s !�

SnR1
�$�

S � 
�
SnR1

t will

eventually be generated if s$S[E0 t [Jouannaud-Kirchner, 1986]. However, the limit SnR1 need not be
reduced.

Additional aspects of completion modulo equational theories have been considered: [Huet, 1980] deals
with the left-linear case; [Jouannaud-Kirchner, 1986] analyze exactly which critical pairs are necessary when
some rules are left-linear and others are not; [Bachmair-Dershowitz, 1987a] take the inference rule approach
and generalize previous results.

8.4 Ordered Completion

We have seen that completion can have any one of three outcomes: it may succeed in �nding a decision
procedure for validity after a �nite number of steps; it may loop and generate more and more rules until|at
some point|any particular valid equation has a rewrite proof; or it may abort with unorientable equations
before �nding any proof.

Since there are total reduction orderings for any set of ground terms (the lexicographic path ordering
with total precedence is one such), completion of ground terms|given such an ordering|will not abort.
Moreover, ground completion need never apply the deduce inference rule, since the collapse rule always
applies to one of the rules contributing to a critical pair. And without deduce, completion will not loop.
Thus, for any �nite set of ground equations, completion is sure to generate a decision procedure [Lankford,
1975], which is not surprising, since all such theories are decidable [Ackermann, 1954]. In fact, various
O(n lgn) congruence-closure algorithms exist for the purpose (e.g. [Downey-etal, 1980]; see also [Snyder,
1989]). More interesting are those cases where there are non-ground rules for which a canonical rewrite
system is available, and all critical pairs between a ground rule and a non-ground one are either ground or
simplify to a trivial rule. By supplying completion with a complete simpli�cation ordering, these critical
pairs can always be oriented. (The complete ordering must be compatible with the canonical system for the
non-ground rules.) For example, AC-completion can be used in this way to generate decision procedures for
�nitely-presented Abelian groups starting from G=AC [Lankford-etal, 1984].

We now turn our attention to completion of ordered rewriting systems, and call the process \ordered"
(or \unfailing") completion. Ordered completion either returns a (�nite) ordered rewriting system in �nite
time, or else loops and generates an in�nite system. With a �nite system, validity can be decided by ordered
rewriting; an in�nite system can only serve as a semi-decision procedure. Since all orientable instances
of equations are used to rewrite, there will be no need to explicitly distinguish between rewrite rules and
other equations in the inference rules. Let � be a reduction ordering that can be extended to a complete
simpli�cation ordering, and let �� be the encompassment ordering. Consider the following set OC of inference
rules, operating on set of equations E (cf. [Bachmair-etal, 1989]):

Delete: E [ fs = sg ` E
Simplify: E [ fs = tg ` E [ fs = ug if t !� u and s � u
Collapse: E [ fs = tg ` E [ fs = ug if t !� u by l = r and t ��l
Deduce: E ` E [ fs = tg if s = t 2 cp�(E)

We write E `OC E0 if the latter may be obtained from the former by one application of a rule in OC. With
this inference system, deduce generates ordered critical pairs, and the other rules simplify them.

De�nition 26. An ordered completion procedure is any program that takes a �nite set E0 of equations and
a reduction ordering � that can be extended to a complete simpli�cation ordering, and uses the above rules
OC to generate a sequence of inferences from E0.
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For example, consider the following axioms for entropic groupoids:

(x � y) � x = x
(x � y1) � (z � y2) = (x � z) � (y1 � y2)

The second equation is permutative and cannot be oriented by any reduction ordering. Completion will
therefore fail. Ordered completion, on the other hand, yields the ground-convergent ordered-rewriting system
shown in Section 7.4.

Analogous to the standard case, a relation )OC can be de�ned that describes the simplifying e�ect of
ordered completion at the proof level. Fairness is de�ned accordingly. Using the Ordered Critical Pair
Lemma, it can then be shown that a completion sequence is fair (with respect to )OC) if all persistent
critical pairs are accounted for, i.e. if cp�(E1) is a subset of [Ei. With fairness, we get that a rewrite proof
between two ground terms s and t will eventually be generated i� s $�

E0
t [Hsiang-Rusinowitch, 1987].

Thus, the word problem in arbitrary equational theories can always be semi-decided by ordered completion.
(See [Boudet-etal, 1988] for an interesting application.)

It is not hard to see that OC can mimic KB for any given equational theory E and reduction ordering �
(not necessarily total on G). The natural question is whether ordered completion must succeed in generating
a canonical set of rules whenever one exists for the given reduction ordering �. The answer is a�rmative
[Bachmair-etal, 1989], provided � can be extended to a complete reduction ordering. For example, if b and
c are incomparable, ordered completion infers

(fb = cg; ff(b)!a; d! b; f(c)! cg) `
OC

(fb = c; f(c) = ag; ff(b)!a; d!b; f(c)! cg)

With the recursive path ordering in which f � c � a, this sequence continues until success:

+
`
OC

(fb = c; c = ag; ff(b)!a; d!b; f(c)! c; f(c)! ag)
+
`
OC

(;; ff(a)!a; b!a; c!a; d!ag)

Ordered completion can also be modi�ed to act as a refutationally complete inference system for validity
in equational theories. To prove s = t, its Skolemized negation eq(s0; t0) = F is added to the initial set
E [ feq(x; x) = Tg of equations. With a completable reduction ordering (the Skolem constants are added
to the algebra, hence must be comparable), the outcome T = F characterizes validity of s = t in the theory
of E [Hsiang-Rusinowitch, 1987].

8.5 Inductive Theorem Proving

An inductive theorem-proving method based on completion was �rst proposed in [Musser, 1980]. Recall from
Section 3.2 that an inductive theorem s =I(E) t holds i� there is no equation u = v between ground terms
that follows from E [ fs = tg, but not from E alone. Let H be a set of equational hypotheses. Given a
ground-convergent system R for E, we aim to �nd a ground-convergent system R0 for E [H with the same
ground normal forms. If R0 is the result of a successful completion sequence starting from (H;R) and using
an ordering containing R, then, by the nature of completion, R0 is convergent and every term reducible by R
is reducible by R0. To check that every ground term reducible by R0 is also R-reducible, it is necessary and
su�cient that every left-hand side of R0 be ground R-reducible. If R0 passes this test, then the two systems
have the same ground normal forms and s =I(R) t for each s = t in H [Dershowitz, 1982b; Jouannaud-
Kounalis, 1989]. If, on the other hand, s 6=I(R) t, then fair completion will uncover an inconsistency, if it
does not fail. This approach is also valid when extended-completion (or ordered-completion) is used [Goguen,
1980].

For example, let F be f�; push; alternateg and R be the following canonical system for interleaving
stacks:

alternate(�; z) ! z
alternate(push(x; y); z) ! push(x; alternate(z; y))
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and suppose we wish to prove that alternate(y;�) = y is an inductive theorem. This equation can be
oriented from left to right. Since the critical pairs � = � and push(x; y) = push(x; alternate(�; y)) are
provable by rewriting, completion ends with the system R0 = R [ falternate(y;�)! yg. Since the left-hand
side alternate(y;�) of the new rule is ground R-reducible, for all ground terms y in G(f�; push; alternateg),
the theorem is valid in I(R). In more complicated cases, additional lemmata may be generated along the
way.

Finding an R0 that is complete for H [ R (as completion does) is actually much more than needed to
preclude inconsistency. One need only show that some R0 provides a valley proof for all ground consequences
of H [R (and that R(G) � R0(G)). Thus, for each inference step (Hi; Ri) `OC (Hi+1; Ri+1), the equational
hypotheses in Hi should be inductive consequences of Hi+1 [Ri, and the rules in Ri+1 should be inductive
consequences of Ri [Bachmair, 1988]. Then, at each stage n, H0 [ R0 follows from Hn [ R0; the original
hypotheses H0 are proved as soon as an emptyHn su�ces. AssumingRi is always the originalR, it is enough
if any ground cli� v R u$Hi w can be reduced to a smaller proof inHi+1[R (smaller, in some well-founded
sense), and no instance of a hypothesis in Hi is itself an inconsistency (that is, an equation between two
distinct ground R-normal forms). Consequently, there is no need (though it may help) to generate critical
pairs between two rules derived fromH0; it su�ces to consider critical pairs obtained by narrowing with R at
a set of \covering" positions in Hi [Fribourg, 1986]. When, and if, these pairs all simplify away, the inductive
theorems are proven. On the other hand, if any of the hypotheses are false, a contradiction must eventually
surface in a fair derivation. The use of critical pair criteria in this connection is explored in [Gobel, 1987;
Kuchlin, 1989]. How to handle inductive equations that cannot be oriented is discussed in [Bachmair, 1989b;
Jouannaud-Kounalis, 1989].

8.6 First-Order Theorem Proving

Rewriting techniques have been applied to �rst-order theorem proving in two ways. One approach is to use
resolution for non-equality literals together with some kind of superposition of left-hand sides of equality
literals within clauses [Lankford-Ballantyne, 1979; Peterson, 1983; Hsiang-Rusinowitch, 1986; Bachmair,
1989a].

An alternative approach [Hsiang-Dershowitz, 1983] is to use the Boolean ring system BA of Section 2
and treat logical connectives equationally. Let R be BA, S be AC for xor and and , and E = fs = Tg, where
s is a logically unsatis�able Boolean formula. It follows from Herbrand's Theorem [Herbrand, 1930] that a
�nite conjunction of instances s�i has normal form F under BA=AC. Thus, AC-completion, starting with
R and E, will reduce the proof

T
�
 
BA

and (: : :and (T; T ); : : : ; T )
�
$
E

and (: : :and (s�1; s�2); : : : ; s�n) �!
�
BA=AC F

to a critical pair T = F , if it does not fail. As with resolution theorem-proving, one can prove validity of
a closed formula in �rst-order predicate calculus by deriving a contradiction from its Skolemized negation.
There are several problems with such an approach: (a) AC-uni�cation is required to compute critical pairs;
(b) failure is possible unless the more expensive ordered procedure is used; and (c) critical pairs with the
distributivity axiom in BA are very costly. Hsiang [1985] showed that if each equation in E is of the form
xor(s; T ) = F , where s is the exclusive-or normal form of a clause, then only a subset of the critical pairs
with BA must be computed. (See [Muller-Socher-Ambrosius, 1988] for clari�cations regarding the need for
\factoring" if terms are simpli�ed via BA.) This approach allows the integration of convergent systems for
relevant equational theories, when such are available. A di�erent completion-like procedure for �rst-order
theorem proving, incorporating simpli�cation, has been proved correct by [Bachmair-Dershowitz, 1987b]. A
�rst-order method, using Boolean rings and based on polynomial ideals, is [Kapur-Narendran, 1985].

8.7 Further Reading

A survey of completion and its manifold applications may be found in [Dershowitz, 1989]. For a book
focusing on the abstract view of completion and its variants, see [Bachmair, 1989b]. The relationship

43



between completion and algorithms for �nding canonical bases of polynomial ideals is discussed in [Loos,
1981] and [Buchberger, 1987]. Reve [Lescanne, 1983], Formel [Fages, 1984], Kads [Stickel, 1986], and Rrl
[Kapur-Zhang, 1988] are four current implementations of AC-completion. Rewrite-based decision procedures
for semigroups, monoids, and groups are investigated in [Benninghofen-etal, 1987]; experiments with the
completion of �nitely-presented algebras are described in [Lankford-etal, 1984; LeChenadec, 1985]; some
new classes of decidable monadic word problems were found in [Pedersen, 1989]. The use of completion
and its relation to Dehn's method for deciding word problems and small cancellation theory is explored in
[LeChenadec, 1987].

Early forerunners of ordered completion were [Lankford, 1975; Brown, 1975]. Ordered completion modulo
a congruence has been implemented by [Anantharaman-etal, 1989]. One of the �rst implementations of
inductive theorem proving by completion was [Huet-Hullot, 1980]. A recent book on using rewrite techniques
for theorem proving in �rst-order predicate calculus with equality is [Rusinowitch, 1989].

9 EXTENSIONS

In this section, we briey consider four variations of the rewriting theme: \order-sorted rewriting," \condi-
tional rewriting," \priority rewriting," and \graph rewriting."

9.1 Order-Sorted Rewriting

In ordered rewriting, replacement is constrained to make terms smaller in a given ordering; more syntactic
means of limiting rewriting are obtained by taxonomies of term types. For example, some data may be of
type Boolean, some may represent natural numbers, others, stacks of reals. The appropriate semantic notion
in this case is the many-sorted (heterogeneous) algebra. Under reasonable assumptions, virtually everything
we have said extends to the multisorted case. Sorted (i.e. typed) rewriting has been dealt with, for example,
in [Huet-Oppen, 1980; Goguen-Meseguer, 1985].

Order-sorted algebras, introduced in [Goguen, 1978] and developed in [Gogolla, 1983; Dick-Cunningham,
1985; Goguen-etal, 1985; Goguen-Meseguer, 1987; Smolka-etal, 1989], and others, extend sorted algebras by
imposing a partial ordering on the sorts, intended to capture the subset relation between them. For example,
one can distinguish between stacks, in general, and non-empty stacks by declaring NonEmptyStack to be a
subsort of Stack and specifying their operations to have the following types:

� : ! Stack
push : Nat� Stack ! NonEmptyStack

top : NonEmptyStack ! Nat
pop : NonEmptyStack ! Stack

The main advantage is that de�nitions can be su�ciently complete without introducing error elements for
functions applied outside their intended domains (like top(�)).

Free algebras can be constructed in the order-sorted case [Goguen-Meseguer, 1987], but the algebra
obtained is, in general, an amalgamation of the term algebra. To avoid this complication, a syntactic
\regularity" condition (namely, that every term has a least sort) may be imposed on the signature [Goguen-
Meseguer, 1987]. Subsorts also require run-time checking for syntactic validity. For example, the term
pop(push(e; push(e;�))) has sort Stack, so its top cannot be taken, yet that term is equal to the nonempty
stack push(e;�). Fortunately, the run-time checks require no additional overhead [Goguen-etal, 1985].

Deduction in order-sorted algebras also presents some di�culties. For example, suppose that a sort S0

contains two constants a and b, and S is the supersort S0 [ fcg. Let E consist of two identities: a = c and
b = c, and consider the equation f(a) = f(b), where f is of type S0!S. Clearly, the equation holds in
all models, but this cannot be shown by replacement of equals, since f(c) is not well-formed. Additional
problems are caused when a sort is allowed to be empty, as pointed out in [Huet-Oppen, 1980]. A sound and
complete set of inference rules for order-sorted equality is given in [Goguen-Meseguer, 1987].
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For order-sorted rewriting, conuence does not imply that every theorem has a rewrite proof. Consider
the same example as in the previous paragraph. The system fa! c; b!cg is conuent, but there is no rewrite
proof for a = b, since a term is not rewritten outside its sort. One way to preclude such anomalies is to insist
that rules be \sort decreasing," i.e. that any instance of a right-hand side have a sort no larger than that of the
corresponding left-hand side [Goguen-etal, 1985]. Order-sorted uni�cation is investigated in [Walther, 1988;
Meseguer-etal, 1989] and order-sorted completion, in [Kirchner, 1987].

9.2 Conditional Rewriting

Another way to restrict applicability of equations is to add enabling conditions. A conditional equation is
an equational implication u1 = v1 ^ � � � ^ un = vn ) s = t, for n � 0 (that is, a universal Horn clause with
equality literals only). An example of a conditional equation with only one premiss is empty?(x) = no )
push(top(x); pop(x)) = x. Initial algebras exist for classes of algebras presented by conditional equations. A
conditional rule is an equational implication in which the equation in the conclusion is oriented, for which
we use the format u1 = v1^� � �^un = vn j l! r. The following is an example of a system of both conditional
and unconditional rules:

top(push(x; y)) ! x
pop(push(x; y)) ! y

empty?(�) ! yes
empty?(push(x; y)) ! no

empty?(x) = no j push(top(x); pop(x)) ! x

To give operational semantics to conditional systems, the conditions under which a rewrite may be
performed need to be made precise. In the above example, is a term push(top(s); pop(s)) rewritten whenever
the subterm s is such that the condition empty?(s) = no can be proved, whenever a rewrite proof exists, or
only when empty?(s) rewrites to no? The rami�cations of various choices are discussed in [Brand-etal, 1978;
Bergstra-Klop, 1986; Dershowitz-etal, 1988]. The most popular convention is that each condition admit a
rewrite proof; in other words, for a given system R, a rule u1 = v1^ � � �^un = vn j l! r is applied to a term
t[l�] if ui� !�

R � 
�
R vi�, for each condition ui = vi, in which case t[l�]!R t[r�]. Recent proposals for logic

programming languages, incorporating equality, have been based on conditional rewriting and narrowing
(e.g. [Dershowitz-Plaisted, 1985; Goguen-Meseguer, 1986]; see [Reddy, 1986].

For the above recursive de�nition of !R to yield a decidable relation, restrictions must be made on the
rules. The most general well-behaved proposal are decreasing systems, terminating systems with conditions
that are smaller (in a well-de�ned sense) than left-hand sides [Dershowitz-etal, 1988]; hence, recursively
evaluating the conditions always terminates. More precisely, a rule u1 = v1 ^ � � � ^ un = vn j l! r is
decreasing if there exists a well-founded extension � of the proper subterm ordering such that � contains
!R and l� � ui�; vi� for i = 1; : : : ; n. Decreasing systems generalize the concept of \hierarchy" in the work
of [Remy, 1982], and are slightly more general than the systems considered in [Kaplan, 1987; Jouannaud-
Waldmann, 1986]; they have been extended in [Dershowitz-Okada, 1988b] to cover systems (important in
logic programming) with variables in conditions that do not also appear in the left-hand side, e.g. g(x) = z
j f(x)! h(z).

The rewrite relation!R for decreasing systems is terminating, and|when there are only a �nite number
of rules|is decidable. For conuence, a suitable notion of \conditional critical pair," which is just the
conditional equation derived from overlapping left-hand sides, is de�ned. The Critical Pair Lemma holds for
decreasing systems R [Kaplan, 1987]: a decreasing system R is locally conuent (and hence convergent) i�
there is a rewrite proof s� !�

R � 
�
R t� for each critical pair u1 = v1^� � �^un = vn ) s = t and substitution

� such that ui� = R vi� for i = 1; : : : ; n. Nevertheless, conuence is only semi-decidable, on account of
the semi-decidability of satis�ability of the conditions ui = vi. For non-decreasing systems, even ones for
which the rewrite relation is terminating, the rewrite relation may be undecidable [Kaplan, 1987], and the
Critical Pair Lemma does not hold, though terminating systems having no critical pairs are conuent (see
[Dershowitz-etal, 1987a]). To handle more general systems of conditional rules, rules must be overlapped on
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conditions, extending ordered completion to what has been called \oriented paramodulation" [Ganzinger,
1987; Dershowitz, 1988; Kounalis-Rusinowitch, 1988].

9.3 Priority Rewriting

In priority rewriting, the choice among several possible redexes is constrained to meet, a priori, given
priorities on the rules. Priorities, then, are just a partial ordering of rules. The original Markov algorithms
were priority string rewriting systems, in which the written order of the rules determined their priority. The
following de�nition of subtraction of natural numbers and divisibility of integers by naturals illustrates the
conciseness made possible by using subsorts and priorities:

Zero = f0g
Pos = succ(Zero) [ succ(Pos)
Nat = Zero [ Pos
Neg = neg(Pos)
Int = Nat [ Neg

�: Nat � Nat ! Int
j: Nat � Int ! fT; F; errorg

x� 0 ! x
0� y ! neg(y)

succ(x) � succ(y) ! x� y
0jx ! error

zjx : Neg ! F
zj0 ! T
zjx ! zj(x� z)

Note how priority systems (with a total priority ordering) can have no \critical" overlaps between two
left-hand sides at the top. Priority term-rewriting systems were �rst formally studied in [Baeten-etal, 1984].
Their de�nition is subtle, since an outermost redex is rewritten only if no possible derivation of its proper
subterms enables a higher-priority rule at the outermost position. A condition is given under which this
de�nition of rewriting is computable. Priority systems cannot, in general, be expressed as term-rewriting
systems.

9.4 Graph Rewriting

Rewriting has also been generalized to apply to graphs, instead of terms. In fact, the idea of rewriting all
kinds of objects is already in [Thue, 1914]. In graph rewriting, subgraphs are replaced according to rules,
containing variables, themselves referring to subgraphs. For example, a rule f(g(x))! h(x), when applied
to a directed acyclic graph k(g(a); f(g(a))), where g(a) is shared by k's two subterms, should rewrite the
graph to k(g(a); h(a)), with the a still shared. Unlike trees, graphs do not have a simple structure lending
itself to inductive de�nitions and proofs, for which reason, the graph-rewriting de�nitions, as introduced
in [Ehrig, 1977] and simpli�ed in [Raoult, 1984], have a global avor. A categorical framework is used to
precisely de�ne matching and replacement; a rewriting is then a pushout in a suitable category. Though
the categorical apparatus leads to apparently complicated de�nitions, many proofs, e.g. the Critical Pair
Lemma, become nothing more than commutativity of diagrams.

A completely di�erent approach to graph rewriting is taken in [Bauderon-Courcelle, 1987], where �nite
graphs are treated as algebraic expressions. Finitely-oriented labeled hypergraphs are considered as a set
of hyperedges glued together by means of vertices. This generalizes the situation of words, with hyperedge
labels as the constants, gluing for concatenation, and a set S of equational laws de�ning equivalence of
expressions (instead of associativity). Class-rewriting in R=S is, then, tantamount to graph-rewriting with
a system R.
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